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Abstract

We investigate automatic classification procedures for thediagnosis of the Carpal Tunnel Syn-
drome, a disease frequently observed in occupational medicine. We apply different classification
techniques to a medical data set of patients reporting the typical symptoms of this syndrome and
exploit the predictive power of such data to classify subjects as “sick” or “healthy”, according to
the information obtained from the electromyography and theultrasound imaging tests. Particular
attention is paid to the “Box-Clustering” methodology which, among the tested techniques, is the
most recent one. We show that all the automatic classification methods have a comparable diagnostic
performance but, in some cases, Box-Clustering performs better than the others. Even if for the di-
agnosis of Carpal Tunnel Syndrome electromyography cannotbe completely replaced by ultrasound
imaging, our results show that ultrasound scan can be a valuable screening tool to detect the pathol-
ogy.

Keywords: Automatic classification Box-Clustering Carpal Tunnel Syndrome Ultrasound imaging
Electromyography.

1 Introduction

In recent years, the widespread use of computers and the fastimprovement of technologies allowed the
creation and the analysis of large data sets for problems in avariety of application areas, such as in
industry, business, and many other real-life decision contexts. In particular, in medical applications, the
increasing importance of data analysis is leading to the useof statistical and mathematical methods for
the automatic diagnosis of a given syndrome. In the medical field, the main interest is in the study of
the cause-effect relationships between a set of symptoms observed on a group of patients and a specific
syndrome. The classical methods used for data analysis range from decision trees, neural networks
to the more recent technique known as Logical Analysis of Data (LAD) which showed a very good
performance when adopted for medical diagnosis applications [1, 2, 6, 9, 22]). Following the general
principles of LAD - that was originally developed for the case of binary data - a new methodology called
Box-Clustering (BC) was introduced in [15] based on the notion of “homogeneous boxes”. In spite of
its recent appearance, the experimental results obtained with BC have shown that it is a very competitive
classification method (see, e.g., [29, 30]).

In this paper, we study the Carpal Tunnel Syndrome (CTS), forwhich the diagnosis is particularly
important in occupational medicine [17, 20], since it is generally due to the overuse of the arms (es-
pecially the right one) and it affects muscles, tendons and nerves [10, 21, 23, 27]. CTS produces an
external compression of the median nerve at the wrist level,the consequence being a reduction of the
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nerve conduction capability. The clinical picture of the patient is usually taken as the “gold standard”
for the diagnosis in the medical context (clinical diagnosis) [5, 31]. However, some relevant tests can be
carried out to help the medical doctor in providing a correctdiagnosis, such as electromyography which
measures the nerve conduction directly, and ultrasound scan of the wrist which visualizes the modified
configuration of the median nerve [10]. Traditionally, in the medical literature, the possibility of an au-
tomatic diagnosis for CTS always falls back upon the use electromyography, while the diagnostic power
of the ultrasound test is not universally accepted. However, in the last decade, a renewed interest for the
ultrasound scan arose in studies published both in radiological and neuromuscular journals, providing
a revaluation of the utility of such test in the CTS diagnosis(for a detailed critical review, see [5]). In
spite of the abundance of papers on this topic, the characteristics of the corresponding study designs -
which may be related to the composition of the group of patients, the execution of the diagnostic tests,
the adopted gold standard, the criteria to consider a test positive, etc. - are so different that a comparison
of the results is quite difficult. Actually, in [5] it is pointed out that in the majority of such papers the
study design is affected by serious methodological shortcomings and, thus, the authors propose a clear
description of a firm methodology for the study of the diagnostic capability of ultrasound scan for CTS.

Following the indication given in [5], the objective of the present paper is two-fold. First of all, we
want to investigate the effectiveness of the diagnosis of CTS based on the ultrasound scan versus the one
performed via the electromyography [19]. The advantage here is to replace an invasive diagnostic tool
with an easy, non-invasive and low cost one [24]. This point will be evaluated by applying different data
analysis techniques, but special attention will be paid to BC. In fact, our second aim is to show that BC -
which is employed here for the first time in an actual medical application - is a particularly valuable tool
for medical diagnosis, since, besides its classification capability, it is also able to produce information
about typical profiles characterizing patients affected bythe syndrome, thus providing additional support
for the medical doctors in their decisions. In fact, we will describe how the outcome of a BC procedure
can be easily red and interpreted by a medical doctor, since the configuration of the “boxes” - which are
the actual output of the procedure - has a natural interpretation as the intersection of intervals of values
related to the symptoms variables. In this sense, BC merges together the advantages of a sophisticated
combinatorial technique and the ease of interpretation of the results required by the non-technical experts.

The rest of the paper is organized as follows. In Section 2 we present the medical data set on which
our experiments are performed. In Section 3 some details areprovided about the BC methodology, while
in Section 4 we illustrate the BC classification technique based on a given “system of boxes”. In Section
5 we introduce our experimental plan and in Section 6 we applya selection of classical classification
techniques to predict the presence or absence of CTS in our set of subjects; the same data set is then
processed by BC and its performance is compared with the previous experimental results. Besides this
comparison, in our experiments we focus the attention on theanalysis of the variables related to the
ultrasound imaging and study the possibility of obtaining an efficient method for the correct classification
of CTS patients relying only on the ultrasound variables. Finally, in Section 7, some conclusions are
drawn and an emphasis is given to the particular advantages of using BC methodology in a medical
context.

2 Input data

The study is based on a set of data collected in the period ranging from December 2003 to September
2004 on a sample of 102 subjects who were examined at their right wrist, performing in the same day
both electromyography and ultrasound imaging. The analysis focuses on the right wrist injury which is
the most frequently observed one. Thus, we consider the one-side classification variable called “Right
Carpal Tunnel Syndrome” (and denoted by RCTS) for which a value equal to 0 corresponds to the ab-
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sence of the injury at the right wrist, while it is equal to 1 when the syndrome is present at such wrist.
The data set has 64 records with no (right) injury and 38 records with (right) injury.
Electromyography was performed twice on each patient1 measuring two different variables, namely, the
Distal Latency of the Motor nerve(or Distal Motor Latency, DML) and theNerve Conduction Velocity
(NCV). For these variables, a value is considered “at risk” if it is greater than or equal to 4.4 msec (time
delay measured in milliseconds) for the former, and less than or equal to 41.5 msec for the latter. The
electromyography variables (EMG) were labeled by NCVR and DMLR, respectively, where the “R” de-
notes that they refer to the right wrist.

Figure 1: Oval shaped nerve sections at the four different levels.

The ultrasound graphic imaging was carried on, independently of the other examinations2: through a lon-
gitudinal scanning of the wrist (that locates the the track of the median nerve) it was possible to take the
graphical imaging of the nerve at four specific axial levels.As shown in Figure 1, levels 4, 3 and 2 well
represent the head, the neck and the body of the typical “hourglass” configuration of a nerve affected
by CTS. However, the hourglass configuration alone is not generally considered a certificate of CTS,
since, according to the medical literature, this configuration may be observed on a subject either if he/she
suffers from CTS or if he/she does not [23, 25]. Hence, additional information was obtained related to
the size of the hourglass nerve. Through a scanning orthogonal to the nerve axis it is possible to measure
the sections of the median nerve. In particular, we computedthe area of an oval shaped section at the
four axial levels obtaining the values, denoted by R1, R2, R3and R4, of the ultrasound scan variables
(US) reported in Table 1 (see Figure 1).

On the basis of the values measured at levels 2 and 3, anindex of compression(called CR2R3) was also
computed as the percentage of the median nerve compression at level 3 with respect to the largest section

1The two examinations were performed independently by two different doctors working in different sites in Italy, one at
the Department of Neurophysiopathology of the “San Salvatore” Hospital in the city of L’Aquila, and the other at the INAIL-
Abruzzi Regional Polydiagnostic Center.

2It was performed by a third medical doctor under the protocolthat he was neither informed about the diagnosis based on
the other examination, nor about the specific clinics of the subject under study.
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of the median nerve (the one at level 2):

CR2R3=
R2−R3

R2
×100. (1)

Table 1: Full description of US and EMG variables and their coding.

US Labels of the US variables

Level 1 R1
Level 2 R2
Level 3 R3
Level 4 R4

Compression Index CR2R3

EMG Labels of the EMG variables

Nerve Conduction Velocity NCVR
Distal Motor Latency DMLR

This means that we have two different data sets, one related to the two EMG variables, and another one
given by the five US variables reported in Table 1.

3 Box-Clustering

In Logic Mining n observations are given in the form ofd-dimensional vectors. Here we assume that the
vectors are not constrained in type, so that they can be either binary or real, or of both types. In addition,
a binary outcome variable, defining two separated classes, is associated to each of these vectors and,
according to its value, the corresponding observation is termedpositive(or true, or sick - in the medical
terminology), ornegative(or false, or healthy) [7, 8, 14]. A box in R

d is a multi-dimensional interval
delimited by twobounding points L= (l1, . . . , ld),U = (u1, . . . ,ud) in R

d:

I(L,U) = {x∈R
d : l i ≤ xi ≤ ui , i = 1, . . . ,d}. (2)

A box is calledpositive(or negative) if it includes only positive (respectively, negative) observations.
Positive and negative boxes are also calledhomogeneous boxes. For any finite set of pointsS∈ R

d we
define itsbox-closure[S] as the intersection of all boxes containing the points inS. For two sets of points
S,T ∈R

d, and their corresponding box-closuresBS= [S] andBT = [T], thejoin BS∨BT is the box[S∪T].
The BC problem consists of generating a system of boxes satisfying a certain set of conditions related

to some desired geometrical properties of the boxes. The system can be generated by formulating and
solving a suitable optimization problem in which both the constraints and the objective function are
defined on the basis of criteria related to the above properties (for details, see [29]). Let us denote by
B = {B1, . . . ,Bm} a system ofmboxes inRd. In the following we recall the main geometrical properties
for a system of boxes.

Given a set of observationsP (for example the set of positive points in the training set),a system of
boxes is acoverageof P if every observation ofP is included in at least one box ofB and every box inB
includes at least one observation ofP. In other words,P⊆

⋃m
i=1 Bi andP∩Bi 6= /0 for everyi = 1, . . . ,m.

A systemB is homogeneousif all the boxes are homogeneous, i.e., all the points insidea box are
from the same class. It isspanningif every box is exactly the box-closure of the set of points included in
it.
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An additional criterion for evaluating a box system is to measureoverlapping, that is, possible in-
tersections between boxes in the system. In principle, overlapping boxes should be forbidden, but, in
order to favor the other criteria, overlaps are generally allowed, provided that no point of the training set
belongs to two boxes simultaneously. Finally, we define a system of boxesB saturatedif the join of any
two positive (negative) boxes ofB contains some negative (positive) point.

From a learning point of view, given, for example the setP of positive points in the training set, we
want to find the minimum number of homogeneous (positive) boxes covering all points inP. Since this is
a hard problem [15], one falls back upon searching for aspanning and saturated system of homogeneous
boxes covering the points in the training set. Even if it is not guaranteed that the number of boxes in the
generated system is minimum, one can be sure that every training point is inside a box of its class. In [15]
the above problem was solved by a simple agglomerative approach which generates boxes sequentially
without any special rule for the best choice of the pair of boxes to be joined at each iteration. Here we
adopt a clustering method based on a new class of graphs called “Incompatibility Graphs” (see, [28]).
Given a supervised classification problem(P,N), wherePandN are two finite and disjoint sets of positive
and negative points inRd, respectively, we can define a graphG with vertex setV(G) = P and such that
two verticesu,v∈ P are connected by an edge iff[{u,v}]∩N 6= /0. G is called theIncompatibility Graph
(IG) of (P,N) and it is denoted byGP,N. Important relations exist between systems of positive boxes for
(P,N) and stable sets in the corresponding IGGP,N. As known, for any given graphG, a stable setis a
subsets of pairwise non-adjacent vertices ofG. In R

d the points of a homogeneous box correspond to a
stable set in the related IG, but the reverse is not necessarily true. In fact, a stable set of the givenGP,N

may not correspond to a homogeneous box whend > 2 (see, [28]). Given a set of homogeneous boxes,
one can extend the definition of IG to the more general case in which the vertices of the graph correspond
to boxes and an edge exists between two boxesBS andBT iff [S∪T]∩N 6= /0. In this case, the IG related
to the set of boxesB is denoted byGB,N. Notice that,GB,N coincides withGP,N in the particular case
of boxes corresponding to single positive points (singletons). In Figure 2 we report the main steps of our
clustering algorithm (ALGORITHM: Clustering) which, starting from a given set of boxesB, tries to
find a new one (with a smaller number of boxes) by merging together boxes corresponding to the vertices
of a stable set ofGB,N. At step 4 the algorithm searches for a large cardinality stable set of the current
GB,N denoted byB̂. Then, steps 7-12 try to join as many boxes as possible inB̂. During this loop,
joined boxes are deleted from the systemB, which is then updated by adding the new obtained box
B. In principle, one would search for a maximum cardinality stable set, but, due to the computational
complexity for solving this problem, at step 4 a simple greedy heuristic procedure can be applied, such
as, for example, the so called GMIN algorithm which consistsof selecting a vertex of minimum degree,
removing it and its neighbors from the graph, and iterating the process until no vertices remain (see, for
example, [26]). this is a fast and simple method to get a maximal (but not necessarily maximum) stable
set which usually delivers quite close to the maximum.

If the input box setB is saturated, the clustering algorithm returns the same system of boxesB,
otherwise it always provides a new updated system with a smaller number of boxes. The test is performed
by checking if the current graphGB,N is complete, since, in this case, no further join is possiblefor the
boxes inB.

In Figure 3 we report the high level algorithm for the generation of the system of boxes based on
incompatibility graphs (ALGORITHM: BC). The algorithm starts from the set of positive points, so
that the first system of boxes is given by the singletons inP. The system of boxes is then updated by
repeatedly calling (at step 5) the subroutine Clustering until the current box system is saturated.

The maximum number of iterations for the search loop is not greater than the number of points in the
training set, and the last system generated by the above procedure is a saturated system of homogeneous
(positive) boxes. The complete description of the algorithm would require details about the rule adopted
for the selection of the two boxes to join at each iteration. This depends on the generation procedure
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of the possible joins and from the criterion for ranking themand choose one. For details about this
implementation, the reader is referred to [15, 29, 30].

ALGORITHM: Clustering (B,P,N)
1 begin
2 ConstructGB,N related to the current set of boxesB

3 if GB,N is not a complete graph
4 heuristically find a maximum stable set ofGB,N

5 let B̂ = {B̂i} be such stable set
6 B := B̂1

7 for i = (2, . . . , |B̂|)
8 if (B∨ B̂i ∩N = /0)
9 B := B∨ B̂i

10 B := B− B̂i

11 endif
12 endfor
13 B := B∪B
14 endif
15 return(B)
16 end

Figure 2: Clustering algorithm based onGB,N.

ALGORITHM: BC (P,N)
1 begin
2 B1 := P
3 do
4 B

+ := B1

5 B1 =Clustering(B+,P,N)
6 while(B1 6= B

+)
7 return(B+)
8 end

Figure 3: Box Clustering algorithm.

It must be pointed out that for the same classification problem (P,N), the above algorithms can be adopted
also to obtain a saturated system of negative boxes. Actually, in this case, the same analysis applies but
the clustering procedure must rely on the incompatibility graphGB,P instead of onGB,N.

4 Box-Clustering Classifier

The algorithm described in Section 3 provides solutions to the geometrical problem of clustering posi-
tive (or negative) points into a saturated system of homogeneous boxes, corresponding to a systemB

+
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of positive boxes and a systemB− of negative ones. In this section we define our approach for the
classification problem based on such system of boxes.

A BC-based classifier requires the following three inputs: (a) a set of positive boxesB+; (b) a set of
negative boxesB−; (c) the pointp to classify. A functionw(B, p) measuring theattraction intensityof
the boxB with respect to the pointp must be also defined. The output of the classifier is the estimated
class for the pointp. For a given pointp, the classifier computes all the weightsw+

i = w(Bi, p) and
w+

j = w(B j , p) w.r.t. to all the positive boxesBi ∈ B
+ and negative boxesB j ∈ B

−, respectively, and
assignsp to the class of the box corresponding to the minimum of such weights.

Figure 4 reports the steps of the classification procedure based onB
+ and B

− (ALGORITHM:
BC-classifier). If one of the tests performed at step 4 and 5 issuccessful, the pointp can be univocally
classified, but, if the minimum weight ofp w.r.t. a positive box is equal to the one w.r.t a negative box
(that is,w+ = w− = w̄), an additional test is required and the classifier computesthe number of positive
and negative boxes with minimum weight w.r.t.p (denoted byn+ andn−, respectively). A tie for this
check definitively means thatp cannot be classified.

ALGORITHM: BC-classifier (B+,B−, p)
1 begin
2 let w+ = min{w(B, p)|B∈ B

+}
3 let w− = min{w(B, p)|B∈ B

−}
4 if(w+ < w−) return: p is positive
5 if(w+ > w−) return: p is negative
6 if(w+ = w− = w̄)
7 let n+ = |{B∈ B

+|w(B, p) = w̄}|
8 let n− = |{B∈ B

−|w(B, p) = w̄}|
9 if(n+ > n−) return: p is positive

10 if(n+ < n−) return: p is negative
11 endif
12 return:p cannot be classified (classification failure)
13 end

Figure 4: A BC-based classifier related to box systemsB
+ andB

−.

Different measures can be adopted to compute the weightw(B, p) for a boxB and a pointp. If the box
systemsB+ andB

− provide a coverage of the whole observation space (both training and testing sets),
one can naturally definew(B, p) as the following characteristic function:

w(B, p) =

{

0 p∈ B
1 otherwise

. (3)

If, on the contrary, there are some points in the observationspace that are not covered by any box inB
+

or in B
−, adistancemeasure is required to define the attraction intensity between a non-covered pointp

and a boxB (see, e.g., [22]). In our BC-classifier we considered a box asa continuous set of points and
computed the distance between a boxB and a pointp as the Manhattan distance betweenp and the point
in B closest top.

7



5 The experimental plan

In order to empirically evaluate the efficiency of BC and its use in data analysis, we applied it to our
CTS data set, and we compared its results with those providedby a wide range of other frequently-used
classification methods. We considered several classes of methods, as defined in Weka software [13]:
decision trees (j48), neural networks (multilayer), SVM (smo), bayes classifiers (naive bayes, bayes
netand locally weighted naive bayes, denoted bylwl), regression (regression), and multinomial logistic
regression (logistic). In addition, we implemented BC independently, since it isnot still available in
Weka or in other data analysis software packages.
The use of the simple test accuracy for the evaluation of the predictive power of a classification method is
not a straight-forward choice. The literature proposes alternative and possibly more meaningful methods
to evaluate the performance of a classifier. An example is themethod based on theROC (Receiver
Operating Characteristic) plots which are frequently used in clinical medicine [32];another one is the
AUC (Area Under Curve) method, which is widely used to measure the model performance in binary
classification problems [11, 16]. In particular, to evaluate a medical test, the concepts of “sensitivity”
and “specificity” are often used; more generally, these concepts are readily usable for the evaluation of
any binary classifier. They depend on the prevalence of the disease in the population of interest. To
understand the utility of clinical tests, patients can be grouped into the following four classes, according
to their clinical situation and their predictive value given by the test:

• true positive(A):
the patient has the disease and the test is positive;

• false positive(B):
the patient does not have the disease but the test is positive;

• false negative(C):
the patient has the disease but the test is negative;

• true negative(D):
the patient does not have the disease and the test is negative.

Thesensitivityof a clinical test refers to the ability of the test to correctly identify those patients with the
disease, while thespecificityrefers to the ability of the test to correctly identify thosepatients without the
disease. LetnA, nB, nC, andnD denote the number of patients from the above defined classes,respectively.
In order to measure sensitivity, one can compute the index TPR (True Positive Rate):

TPR=
nA

nA+nC
(4)

Similarly, specificity of a classifier can be measured through the index TNR (True Negative Rate):

TNR=
nD

nD +nB
. (5)

The relationship between sensitivity and specificity, as well as the performance of the classifier, can be
visualized and studied using the graphical plot of the ROC space (πROC), where thex andy axes refer to
FPR = (1 - TNR) and TPR , respectively. By definition, the points in πROC are inside the unit box[0,1]2,
and the four corner points have a special meaning:

• Pbest= (0,1) is the perfect classifier: it classifies all positive cases and negative cases correctly
(TNR=1, TPR=1).
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• (0,0) represents a classifier that predicts all cases to be negative (TNR=1, TPR=0), while(1,1)
corresponds to a classifier that predicts every case to be positive (TNR=0, TPR=1).

• Pworst = (1,0) is the classifier that provides an incorrect prediction for all classifications (TNR=0,
TPR=0).

Our analysis is based on the assumption that all methods are required to have a 100% performance
and no error is admitted. We point out here that, an alternative analysis could be performed if one
would accept a percentage of errors different from 0. Actually, by accepting increments in the per
cent number of errors, for example for the FPR index, for eachgiven method one could obtain a set of
performance points (corresponding to increasing percentages of tolerated errors) and plot a curve inπROC

approximating the trend of such points; the method’s performance could be then evaluated by measuring
the area under this curve.

For every method we consider the corresponding point (FPR,TPR) and its distance toPbest, so that the
“best methods” are those which minimize this distance. Notice that in our CTS application we do not
have any information about possible different costs for errors of different type, such as errors of type B
and C listed above. For this reason, we suppose here that the cost is given by a constant, but it must be
pointed out that the distances in Table 2 and in Table 3 could be computed with a more general measure
taking into account also a weighting function related to thecost.

In the following section, we exploit this graphical analysis to discuss our experimental results, and to
present a synthetic comparison between the tested classifier based on the two data sets for CTS provided
by the US and EMG variables.

6 Results

Cross-validation is a widespread strategy to perform modelselection, because of its simplicity and its
apparent universality, see [3]. Many results exist on the model selection performance of cross-validation
procedures, see [12]. In our study, for the two sets of variables - US and EMG - we performed a 10-fold
cross validation for each method mentioned in Section 5, andfor BC as well. Tables 2 and 3 show the
best results obtained for the two sets of variables.

Table 2: Performance of the classification methods based on the EMG variables.

classifier nA nB nC nD FPR TPR distance toPbest

j48 37 1 1 63 0.0156 0.9737 0.0306049
multilayer 37 2 1 62 0.0312 0.9737 0.0408544

smo 34 1 4 63 0.0156 0.8947 0.1064170
lwl 37 0 1 64 0.0000 0.9737 0.0263158 ∗

naive bayes 36 3 2 61 0.0469 0.9474 0.0704794
bayes net 37 0 1 64 0.0000 0.9737 0.0263158 ∗
regression 37 0 1 64 0.0000 0.9737 0.0263158 ∗

logistic 36 2 2 62 0.0312 0.9474 0.0612098
BC 37 0 1 64 0.0000 0.9737 0.0263158 ∗
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The methods that provide the best results are marked by an asterisk in the last column of the table.
A general good performance can be observed for all methods with both data sets, since basically only
few observations are misclassified. The performance is particularly good when the EMG variables are
considered: in this case, the values ofnB andnC are very small and several 0 and 1 are observed. It must
be also noticed, however, that the number of false negative predictions - which is the most serious error
in medical applications - is greater than the number of falsepositive ones. Even if the behavior of the
tested classification methods is similar, a general increase of the number of this type of errors is observed
when the US variables are adopted instead of the EMG ones. This result confirms for CTS the already
known superior diagnostic power of the nerve conduction study over the ultrasound imaging.

Table 3: Performance of the classification methods based on the US variables.

classifier nA nB nC nD FPR TPR distance toPbest

j48 34 5 4 59 0.0781 0.8947 0.1310870
multilayer 34 4 4 60 0.0625 0.8947 0.1224200

smo 35 4 3 60 0.0625 0.9211 0.1006920
lwl 37 10 1 54 0.1562 0.9737 0.1584510

naive bayes 35 5 3 59 0.0781 0.9211 0.1110680
bayes net 29 5 9 59 0.0781 0.7632 0.2493950
regression 34 4 4 60 0.0625 0.8947 0.1224200

logistic 35 3 3 61 0.0469 0.9211 0.0918148
BC 38 1 0 63 0.0156 1.0000 0.0156000 ∗

Nevertheless, it must be pointed out that in our experimentsthe behavior of BC seems to be not affected
by which set of variables is used. By looking at the simple numbersnB andnC - which for BC are very
small in both tables - one may check that BC turns out to be as good as the other methods with the EMG
variables and clearly better with the US ones. Thus, sincenB andnC are monotone decreasing w.r.t. the
increasing performance of a classification method, no matter which evaluation measure one uses, for our
CTS data set BC would always turn out to be the one which works better.

According to these promising results, BC seems to be the right learning method for the CTS auto-
matic diagnosis, since it showed to be able to exploit well the information lying in the EMG variables, as
well as the one in the US variables. From our results, one may even guess that the US variables carry as
much information as EMG ones, thus suggesting a completely different and new approach in the specific
medical context of automatic diagnosis of CTS.

All the analyzed classification methods are comparable alsounder a computational viewpoint: all of
them showed to be really fast for the real-life data set understudy and they all delivered the final output
almost instantly. In fact, the running times are within few seconds for all the methods provided by Weka
(Java-based), while BC takes just a fraction of a second for each run.

To have a synthetic picture of the performance of all the tested methods, in Figure 5 and Figure 6 we show
the points of coordinates FPR and TPR corresponding to each method drawn inπROC. The pictures show
the location of each classifier-point in the plane and its distance to the reference pointPbest, emphasizing
the “good position” of BC w.r.t. the other methods. In Figure 5 many methods (including BC) provide the
same best result, i.e., they correspond to the point(0,0.9737) and, therefore, all of them are represented
together by a single grey point. The methodlwl provided very poor results with the US variables, and,
thus, we did not plot it in Figure 6.
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Pbest

j48 multilayer

smo

naive bayeslogistic

0 0.0125 0.025 0.0365 0.046

0.89

0.95

1.00

Figure 5: Representation inπROC of the classification methods’ performances: EMG results. The meth-
odslwl, bayes net, regression, and BC have the same performance and, thus, they are all represented by
a common grey point.

Pbest

multilayer,regression
smo naive bayes

bayes net

logistic

BC

j48

0 0.039 0.078

0.76

0.88

1.00

Figure 6: Representation inπROC of the classification methods’ performances: US results. The perfor-
mance oflwl was too bad w.r.t. FPR to be plotted.
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In Table 4 we can visualize the box system that we used for the classification problem with the EMG
approach:BEMG

1 is the negative box (healthy patients) andBEMG
2 is the positive one (sick patients). For

the US analysis we adopted the box set shown in Table 5, whereBUS
1 is a negative box, whileBUS

2 and
BUS

3 are the positive ones.

Table 4: Box system based on the EMG variables:BEMG
1 is a negative box,BEMG

2 is positive.
BEMG

1 BEMG
2

NCVR 39.50 68.00 39.60 54.30
DMLR 2.30 4.20 4.40 6.80

Table 5: Box system based on the US variables:BUS
1 is a negative box, whileBUS

2 andBUS
3 are positive.

BUS
1 BUS

2 BUS
3

R1 1.03 2.50 1.50 2.78 2.03 2.51
R2 2.35 14.10 4.06 16.70 5.93 10.99
R3 2.76 15.19 2.43 9.87 4.52 9.39
R4 1.93 7.08 3.62 15.32 5.77 9.74

CR2R3 −19.80 31.80 32.00 56.80 14.50 23.80

27.6 38.5 77.5

2.3

4.5

6.8

NCVR

DMLR

Figure 7: Box system for EMG variables: negative points are reported in black, positive ones in grey.

Under a methodological viewpoint, our results seem to be very promising. First of all, it must be pointed
out that all points in our test set were classified, meaning that our implementation of the BC-classifier
never returns a failure. Moreover, only one error was made ineach application of the method (see, tables
2 and 3). In addition, both box systems showed in Table 4 and Table 5 have a very low number of boxes
(two and three, respectively), thus suggesting that our heuristic solution for the BC geometrical problem
is close to the optimum. In particular, for the analysis based on EMG variables we have exactly two

12



boxes, one positive and one negative and this is the optimal number of boxes that one can get. For this
case, since we have only two variables, we can provide an explicit geometrical representation inR2 of
the two boxesBEMG

1 andBEMG
2 , together with the positive and negative points of our data set. In Figure

7 black and grey points correspond to negative and positive points, respectively, and it is easy to see that
the two boxes of the system are well separated. The picture also shows that - as we already pointed out -
when the EMG variables are adopted, a “natural” separation of the points of the data set arises.

The experimental results obtained with BC become more relevant if one considers the advantages of this
methodology for the readability and interpretation of the results by a medical doctor. If, on the one hand,
BC is rigidly constrained by the geometrical shape of the boxes, on the other hand, the intervals of values
provided by BC for the variables are easily interpretable bythe clinician in terms of cut-off values. They
offer viable explanations of the syndrome presence or absence, according to the specific profiles observed
for subjects that are classified in the same box. In this sense, each box provides a specific set of useful
indications in the diagnostic process. The number of boxes,which is also provided by the procedure,
gives additional information in the recognition of the pathology profiles. The EMG system reported in
Figure 7 provides a clear example of the typical geometricalstructure of a “good” system of boxes. The
plot refers to the system described in Table 4 and includes all points in the data set. The points in the
training set are obviously included in their own homogeneous box; there are some points of the test set
which are inside a box and some others which are not, but theirclassification is always unambiguous,
since it is clear which box is the closest for each of them. From the picture one can also see the ease of
interpretation of the boxes. In fact, in this simple case, one can realize that the DMLR value is crucial for
the diagnosis of CTS, while NCVR alone could be not sufficientfor this task. Actually, the combination
of high values of DMLR with low values of NCVR provides the typical profile of a sick patient, while
the opposite (low values of DMLR with high values of NCVR) seems to correspond to healthy patients.

We do not go beyond this kind of analysis for our BC results, rather we leave the final judgement to
medical doctors who are the only ones who may evaluate wetherthe good technical performance of BC
can be confirmed also under a medical point of view.

7 Conclusions

In the present paper we dealt with the automatic diagnosis ofCTS with the two-fold aim of showing the
high performance of statistical techniques for this specific type of diagnosis and assessing that ultrasound
imaging is a useful tool in managing the CTS. Even if for the diagnosis of CTS electromyography cannot
be completely replaced by ultrasound imaging, our results show that ultrasound scan can be a valuable
screening tool to detect the pathology. All the applied methodologies showed a good and comparable
prediction power, but BC seems to provide the best performance. As expected, our results confirmed the
high reliability of EMG testing, but they also showed that UScan be very informative, especially if the
BC-based classifier is used. This result is particularly important for the CTS diagnosis at the early “irri-
tative” stage of the pathology when often even neurophysiological tests are unable to detect the presence
of the syndrome.

Given that US can be a valuable diagnostic tool for CTS, at least in a screening stage, one should not
underestimate its many advantages, namely,

- low cost;

- ease of repetition;
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- portability on the workplace;

- pain-free and non-invasive nature (implying easy acceptance by the patients);

- detection of possible underlying anomalies;

- when CTS is excluded, detection of other possible causes ofhand pain.

The above aspects become much more relevant if one considersthe ultrasound imaging as a screening
tool for the diagnosis of CTS in occupational medicine, which was the original motivation of our work.
For example, in large firms, it is recommended to repeat the test periodically on all the employees, in
order to detect the pathology when it is still at an early stage. Then, on the basis of the result of this test,
the - more expensive and more invasive - electromyographic examination can be performed only on those
who are already suspected of suffering from CTS. The last twofeatures are particularly important, since
they provide additional information which can be useful in view of possible later surgical operations for
CTS, and in case of a different diagnosis, respectively.

The promising results obtained in this experimental work for the real-life application related to CTS
suggest that BC could be a valuable tool for the medical diagnosis and encourage the study of this
methodology: further developments of the technique and additional empirical applications to medical
data sets will be crucial for a definitive assessment of this methodology in the future.
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