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Abstract In this work we study the solutions to some fractional
higher-order equations. Special cases in which time-fractional
derivatives take integer values are also examined and the explicit
solutions are presented. Such solutions can be expressed by means
of the transition laws of stable subordinators and their inverse pro-
cesses. In particular we establish connections between fractional
and higher-order equations.

1 Introduction

The aim of this work is to investigate the solutions to some boundary value
problems involving the equation

(Dν1
t +Dν2

x )u = 0, x ∈ Ω0, t ≥ 0, νj ∈ (0, 1) ∪ N, j = 1, 2 (1.1)

where Ω0 = Ω ∪ {0} and Ω = (0,∞). The symbol Dν
z stands for the Riemann-

Liouville fractional operator and will be better characterized further in the text.
Here the fractional powers νj , j = 1, 2 can take both real and integer values in
the interval (0, 1) ∪ N. Thus, we study fractional- and higher-order equations.

Time fractional equations have been investigated by many researchers. The
context in which such equations have been developed is that of anomalous dif-
fusions or diffusions on porous media. In the works by Nigmatullin [22]; Wyss
[27]; Schneider and Wyss [26]; Kochubei [14] the authors dealt with second-order
operators in space and gave the solutions in terms of Wright or Fox functions.
More recently, in the paper by Orsingher and Beghin [24] some interesting re-
sults on the explicit form of the solutions have been presented. Moreover, in the
paper by Meerschaert et al. [21] and the references therein the reader can find
some interesting results on abstract Cauchy problems and fractional diffusions
on bounded domain.

In the present paper we deal with higher-order heat type equations in which
the derivative with respect to t is replaced by the fractional derivative and
therefore we obtain higher-order fractional equations. Such equations have been
studied by Beghin [2] who has presented the solutions in terms of inverse Fourier
transforms. In that paper, the author pointed out that such solutions can be
viewed as the transition laws of compositions involving pseudo-processes and
randomly varying times. Furthermore, we establish some connection between

1



higher-order equations which lead to pseudo-processes (or higher-order diffu-
sions) and, the time-fractional counterparts to those equations which lead to
either stable or their inverse processes. In the matter of pseudo-processes (see
Section 4) we refer to the paper by Krylov [15]; Hochberg [10]; Funaki [7]; Ors-
ingher [23]; Hochberg and Orsingher [11]; Lachal [16]. In sections 2,3 and 4,
some preliminary results are presented whereas, the main results of this work
are collected in section 5. In particular, we obtained the solutions to the equa-
tion (1.1) in the following cases:

a) ν1 ∈ N, ν2 ∈ (0, 1],
b) ν1 ∈ (0, 1], ν2 ∈ N,
c) ν1 ∈ (0, 1], ν2 ∈ (0, 1].

The special cases

a1) ν1 = 1, ν2 = 1/n, n ∈ N,
b1) ν1 = 1/n, n ∈ N, ν2 = 1,

represent the fractional counterpart of the higher-order equations of order n.
Section 6 is devoted to the explicit representation of solutions in some particular
cases involving fundamental equations of mathematical physics.

2 Inverse processes

Let ϕ = ϕ(x, t) denote the distribution of a Lévy process Xt, t > 0 on Rn for
which

E exp−iξXt = exp−tΨX(ξ). (2.1)

The Lévy process Xt, t > 0 represents the stochastic solution to the equation

(D0+,t −A)ϕ = 0, ϕ ∈ D(A)

where

D(A) =
{
f ∈ L1

loc(Rn) :
∫

Rn

|f̂(ξ)|2(1 + ΨX(ξ)) dξ <∞
}
.

We have used the familiar notation in which f̂(ξ) = F [f(·)](ξ) stands for the
Fourier transform of f .

A stable subordinator, say Hν(t), t > 0, is a Lévy process with non-negative,
independent and homogeneous increments, see Bertoin [3] and, the x-Lapace
transform reads as

E exp−λHν(t) = L[hν(·, t)](λ) = exp−tλν (2.2)

where hν is the density law of Hν . Straightforward calculations lead to

ΨH(ξ) = |ξ|ν
(
−iπν

2
ξ

|ξ|

)
. (2.3)

According to the literature, we define the process Lν(t), t > 0 as the inverse
to the stable subordinator Hν and for which Pr{Hν(x) > t} = Pr{Lν(t) < x}.
Such an inverse process has non-negative, non-stationary and non-independent
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increments (see Meerschaert and Scheffler [20]). The law of Lν can be written
in terms of the Wright function

Wα,β(z) =
∞∑

k=0

zk

k! Γ(αk + β)

as follows

lν(x, t) = t−νW−ν,1−ν

(
−xt−ν

)
, x ∈ Ω0, t > 0, ν ∈ (0, 1). (2.4)

From (2.4) we immediately get the Laplace transform

E exp−λLν(t) = L[lν(·, t)](ξ) = Eν(−ξtν) (2.5)

in terms of the Mittag-Leffler function Eα(z) = Eα,1(z) where the entire function

Eα,β(z) =
∑
k≥0

zk

Γ(αk + β)

is the generalized Mittag-Leffler for which∫ ∞

0

e−λzzβ−1Eα,β(−czα) dz =
λα−β

λα + c
. (2.6)

The function lν is the density law of the inverse process Lν . The governing
equations of both processes introduced so far can be written by means of the
fractional operators (A.1) and (A.2) as we will show in the next section. In
particular, from the symbol (2.3), we recognize that Hν is a stable process (pos-
itively) totally skewed (see e.g. Zolotarev [28]). Thus, as for stable processes,
we expect a fractional operator in space as well.

We state the following relevant fact.

Lemma 2.1. The following holds

t

x
lν(t, x) = hν(x, t), x ∈ Ω, t > 0. (2.7)

Proof. The (x, t)− Laplace transforms of hν writes∫ ∞

0

e−λt

∫ ∞

0

e−ξxhν(x, t) dx dt =
∫ ∞

0

e−λte−tξν

dt =
1

λ+ ξν
. (2.8)

This is because of the fact that E exp−ξHν(t) = exp−t ξν . From (2.6) we obtain
the Fourier-Mellin integral

L[hν(x, ·)](λ) =
1

2πi

∫
Br

eξx dξ

λ+ ξν
= xν−1Eν,ν(−λxν). (2.9)

Let us assume that formula (2.7) holds true. Thus, the t-Laplace transform of
hν can be evaluated as follows

L[hν(x, ·)](λ) =
∫ ∞

0

e−λt t

x
lν(t, x) dt
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=− 1
x

d

dλ

∫ ∞

0

e−λtlν(t, x) dt

=(by (2.5)) = − 1
x

d

dλ
Eν(−λxν)

=xν−1Eν,ν(−λxν)

which coincides with (2.9). We can obtain the same result by considering (2.2)
and the fact that∫ ∞

0

e−ξxL[lν(x, ·)](λ)dx = λν−1

∫ ∞

0

e−ξx exp−xλν dx =
λν−1

λν + ξ
. (2.10)

The Laplace transform L[lν(x, ·)](λ) can be easily carried out from (2.4).

3 Fractional equations on Ω0

It is well-known that the law hν of the stable subordinator Hν satisfies the
fractional equation (

D0+,t +Dν
0+,x

)
hν =0, x ∈ Ω, t > 0 (3.1)

with initial condition hν(x, 0) = δ(x) whereas, for the inverse process Lν , we
have that (

Dν
0+,t +D0+,x

)
lν =δ(x)

t−ν

Γ(1− ν)
, x ∈ Ω0, t > 0 (3.2)

with initial condition lν(x, 0) = δ(x). The fractional operators appearing in
(3.1) and (3.2) are the Riemann-Liouville fractional derivatives defined in (A.1)
and (A.2). The initial and boundary conditions for the equation (3.1) can be
written as {

hν(x, 0) = δ(x), x ∈ Ω,
hν(0, t) = 0, t > 0, (3.3)

whereas, for the equation (3.2), we get(
Dν

0+,t +D0+,x

)
lν =0, x ∈ Ω, t ≥ 0 (3.4)

subject to the initial and boundary conditions{
lν(x, 0) = δ(x), x ∈ Ω,
lν(0, t) = Φν(t), t > 0. (3.5)

In (3.5) we considered the function

Φα(z) =
1

Γ(1− α)
z−α
+

where z−α
+ = H(z) z−α with α 6= 1, 2, . . . and, H(z) is the Heaviside function.

Since Φα(z) ∈ L1(R) we have that

L[Φα(·)](ζ) = ζα−1. (3.6)

4



From the discussion made so far, the problem of finding solutions for (3.4) is to
trace back through the study of boundary values for lν . This approach will turn
out to be useful when we study the solutions to higher-order equations which
represent the higher-order counterparts of both (3.4) and (3.1).

The problem of solving (1.1) with fractional powers νj ∈ (0, 1), j = 1, 2 can
be approached by introducing the process Hν2(Lν1(t)), t > 0 driven by the law

fν1,ν2(x, t) = 〈hν2(x, ·), lν1(·, t)〉, x ∈ Ω0, t > 0, νj ∈ (0, 1), j = 1, 2 (3.7)

(see e.g. [5; 12; 19] and the references therein). For ν1 = ν2 = ν the law (3.7)
takes the form fν,ν(x, t) = t−1fν(t−1x) where

fν(x) =
1
π

xν−1 sinπν
1 + 2xν cosπν + x2ν

, x ∈ Ω0, t > 0, ν ∈ (0, 1)

and Hν(Lν(t)) law= t× 1H
ν(t)/ 2H

ν(t), t > 0 where jH
ν(t), j = 1, 2 are indepen-

dent stable subordinators (see for example [4; 5; 17]). We notice that the ratio
1H

ν(t)/ 2H
ν(t) is independent of t. The governing equation of the density (3.7)

(see e.g. [6]) is written as

(Dν1
0+,t +Dν2

0+,x)fν1,ν2(x, t) = δ(x)
t−ν1

Γ(1− ν1)
, x ∈ Ω0, t > 0 (3.8)

with fν1,ν2(∂Ω0, t) = 0 and fν1,ν2(x, 0) = δ(x) or, by considering (A.4), as(
∂ν1

∂tν1
+Dν2

0+,x

)
fν1,ν2(x, t) = 0, x ∈ Ω0, t > 0. (3.9)

In the next sections we will study the remaining cases in which the powers
νj , j = 1, 2 can also take integer values. For this reason we will give a short
introduction on pseudo-processes.

4 Pseudo processes

According to the literature we define the pseudo-process X(n)
t , t > 0, n > 2,

which is a Markov pseudo-process with law satisfying the higher-order heat
equation (

∂

∂t
− κn

∂n

∂xn

)
vn = 0, x ∈ R, t > 0, n > 2 (4.1)

where κn = (−1)p+1 for n = 2p or κn = ±1 for n = 2p + 1. Such a process is
termed ”pseudo-process” because of the fact that the driving measure is a signed
measure. We refer to the interesting work by Lachal [16] and the references
therein for an exhaustive discussion on this topic. Here, we only recall that, for
a given order n > 2, the solution to (4.1) can be expressed in terms of its inverse
Fourier transform

vn(x, t) =
1
2π

∫ +∞

−∞
e−iζx+κn(−iζ)ntdζ (4.2)

when it exists. For n = 3 we obtain a solution in a closed form. Indeed, the
solution to the third-order heat equation with κ3 = ±1 can be written in terms
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of the well-known Airy function (see, for example, Lebedev [18] for information
on this function) and we obtain that

v3(x, t) =
1

3
√

3t
Ai

(
∓x
3
√

3t

)
, x ∈ R, t > 0. (4.3)

The reader can consult the paper by Orsingher [23] for further details on this
case.

The following result can be viewed as the higher-order counterpart of Lemma
2.1.

Lemma 4.1. Let wj, j = 1, 2 be two solutions of (4.1). We have that

w1(x, t) =
x

t
w2(x, t), x ∈ R, t > 0. (4.4)

Proof. First, for the solution (4.2), we prove that(
Dn−1

0+,x +
κn

n

x

t

)
vn = 0. (4.5)

Let us write
vn(ζ, t) = F [vn(·, t)](ζ) =

∫
R
eiζxvn(x, t) dx.

We have that
F [Dn−1

0+,x vn(·, t)](ζ) = (−iζ)n−1vn(ζ, t)

and
F [x vn(·, t)](ζ) =

1
i

d

dζ
vn(ζ, t) = −nκnt(−iζ)n−1vn(ζ, t).

By collecting all pieces together we prove the identity (4.5). The next step is to
evaluate the following derivatives:

∂nw1

∂xn
=
n

t

∂n−1w2

∂xn−1
+
x

t

∂nw2

∂xn
.

and
∂w1

∂t
= − x

t2
w2 + κn

x

t

∂nw2

∂xn

where we used the fact that w2 solves (4.1). By summing up such derivatives
we get that

∂w1

∂t
− κn

∂nw1

∂xn
=− x

t2
w2 − κn

n

t

∂n−1w2

∂xn−1

=− 1
t

(
nκn

∂n−1w2

∂xn−1
+
x

t
w2

)
where w2 solves (4.1) and thus, the identity (4.5) is in order. We obtain that

∂w1

∂t
− κn

∂nw1

∂xn
= 0

and therefore w1 solves the higher-order equation (4.1).

Remark 4.1. From Lemma 4.1, by applying m-times the identity (4.4) we
immediately obtain that

w(x, t) =
xm

tm
vn(x, t), x ∈ R, t > 0, m ∈ N

solves the equation (4.1).
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5 Fractional higher-order equations on Ω0

The solutions to the fractional problem involving higher-order operators in space
of a general order n ∈ N on the whole real line have been investigated by Beghin
[2]. In that paper the solutions are presented as the transition functions of
pseudo-processes with randomly varying time Tα. In particular, see [2, Theorem
2.3], the solutions to{

∂α

∂tαu(x, t) = κn
∂n

∂xnu(x, t), x ∈ R, t > 0
u(x, 0) = δ(x)

(5.1)

coincide with
uα(x, t) =

∫ ∞

0

pn(x, s)v̄2α(s, t)ds

where v̄2α is the Wright function (2.4). In such problems only the initial condi-
tions are required and the solutions are presented in terms of the inverse Fourier
transform (4.2). Indeed, the functions pn are the solutions to (4.1).

Our aim is to investigate fractional higher-order equations on the semi-
infinite interval Ω0 with suitable boundary conditions. Due to the fact that
lν(0+, t) = Φν(t) < ∞ for t > 0, if we are looking for solutions which are sym-
metric, then we can extend these results to the whole real line without effort.
It is enough to consider the function lν(|x|, t).

We state the following result.

Theorem 5.1. For ν ∈ (0, 1], n ∈ N, we have that

(Dn
0−,x −Dν

0+,t)l ν
n

= 0, x ∈ Ω, t > 0 (5.2)

with conditions (3.5) and

Dk
0−,xl ν

n
(x, t)

∣∣∣
x=0+

= Φ ν(k+1)
n

(t), 0 ≤ k < n. (5.3)

Proof. We write the Laplace transforms∫ ∞

0

e−ξx

∫ ∞

0

e−λt l ν
n
(x, t) dt dx = l ν

n
(ξ, λ).

Keeping in mind formulae (A.3) and (A.7) we evaluate the Laplace transform

L[Dn
0−,xl ν

n
(·, t)](ξ) =(−1)nL[Dn

0+,xl ν
n
(·, t)](ξ)

=(−1)n

[
ξnl ν

n
(ξ, t)− ξn−1

n−1∑
k=0

(−1/ξ)kΦ ν(k+1)
n

(t)

]

where, once again from (A.3), formula (5.3) has been rewritten as

Dk
0+,xlν(x, t)

∣∣
x=0+ = (−1)k Φ ν(k+1)

n
(t).

From (3.6) and the linearity of the Laplace transform we get that∫ ∞

0

e−λt
n−1∑
k=0

(−1/ξ)kΦ ν(k+1)
n

(t) dt (5.4)
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=
n−1∑
k=0

(−1/ξ)kλ
ν(k+1)

n −1 = λ
ν
n−1

n−1∑
k=0

(
−λ ν

n /ξ
)k

=λ
ν
n−1ξ1−n ξ

n − (−λ ν
n )n

ξ + λ
ν
n

= ξ1−n λ
ν
n−1

ξ + λ
ν
n

(ξn − (−1)nλν) .

Thus, from (A.6) and (5.4), the equation (5.2) takes the form

0 =− λν l ν
n
(ξ, λ) + (−1)n

[
ξnl ν

n
(ξ, λ)− λ

ν
n−1

ξ + λ
ν
n

(ξn − (−1)nλν)
]

=((−1)nξn − λ) l ν
n
(ξ, λ)− λ

1
n−1

ξ + λ
1
n

((−1)nξn − λ)

and immediately we get that

l ν
n
(ξ, λ) =

λ
1
n−1

ξ + λ
1
n

which is in accord with (2.10). This concludes the proof.

Corollary 5.1. For ν = 1/n, n ∈ N we have that(
D0−,t +Dn

0−,x

)
lν =0, x ∈ Ω, t > 0 (5.5)

with conditions (3.5) and

Dk
0−,xlν(x, t)

∣∣
x=0+ = Φν(k+1)(t), 0 < k < n. (5.6)

is the higher-order counterpart of the equation (3.4).

Remark 5.1. We notice that Φ1(t) = 0 and thus, for ν = 1/n we have that

Dn−1
0−,xlν(x, t)

∣∣
x=0+ = 0.

Furthermore,

Dk
0−,xlν(x, t)

∣∣
x=0+ = Dνk

0+,tΦν(t) = Dνk
0+,tlν(0, t).

We pass to the study of the equations involving the laws of stable subordi-
nators.

Theorem 5.2. For ν ∈ (0, 1], n ∈ N, we have that

(Dn
0−,t −Dν

0+,x)h ν
n

= 0, x ∈ Ω, t > 0 (5.7)

with initial conditions (3.3) and

Dk
0−,th ν

n
(x, t)

∣∣∣
t=0+

= Φ νk
n +1(x), 0 < k < n. (5.8)

Proof. First, we write∫ ∞

0

e−λt

∫ ∞

0

e−ξxh ν
n
(x, t) dxdt = h ν

n
(ξ, λ).
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By evaluating the x-Laplace transform of the equation (5.7) with the boundary
condition hν(0, t) = 0 we get that(

Dn
0−,t − ξν

)
h ν

n
(ξ, t) = 0.

By applying standard Laplace technique, in particular from (A.3) and (A.7), we
obtain that∫ ∞

0

e−λtDn
0+,th ν

n
(x, t) dt = λnh ν

n
(x, λ)−λn−1δ(x)−λn−1

n−1∑
k=1

(−1/λ)k Φ νk
n +1(x).

From (3.6) we get∫ ∞

0

e−ξx
n−1∑
k=1

(−1/λ)k Φ νk
n +1(x)dx =

n−1∑
k=1

(
−ξ ν

n /λ
)k

and thus, the (x, t)-Laplace transforms of the equation (5.7) lead to

0 =(−1)n

[
λnh ν

n
(ξ, λ)− λn−1 − λn−1

n−1∑
k=1

(−ξ ν
n /λ)k

]
− ξνh ν

n
(ξ, λ)

=(−1)n

[
λnh ν

n
(ξ, λ)− λn−1

n−1∑
k=0

(−ξ ν
n /λ)k

]
− ξνh ν

n
(ξ, λ)

=(−λ)nh ν
n
(ξ, λ)− ξνh ν

n
(ξ, λ)− (−1)nλn−1

n−1∑
k=0

(−ξ ν
n /λ)k

=((−λ)n − ξν)h ν
n
(ξ, λ)− (−1)nλn−1 1− (−ξ ν

n /λ)n

1 + ξ
ν
n /λ

=((−λ)n − ξν)h ν
n
(ξ, λ)− (−λ)n − ξν

λ+ ξ
ν
n

.

Finally, we obtain that

h ν
n
(ξ, λ) =

1
λ+ ξ

ν
n

(5.9)

which is in accord with (2.8) and this concludes the proof.

From (5.7), for n = 1, we immediately reobtain the equation (3.1). Further-
more, a direct consequence of the previous Theorem is the following

Corollary 5.2. For ν = 1/n, n ∈ N, we have that(
Dn

0−,t +D0−,x

)
hν = 0, x ∈ Ω, t > 0 (5.10)

with conditions (3.3) and

Dk
0−,t hν(x, t)

∣∣
t=0+ = Φνk+1(x), n > k > 0. (5.11)

is the higher-order counterpart of the equation (3.1).

Remark 5.2. The functions lν and hν , for ν = 1/n, n ∈ N can be written as
Mellin convolution of generalized gamma functions or, for n ∈ 2N + 1, in terms
of Mellin convolution of the Modified Bessel function Kα (see [5; 6]).

9



6 Higher-order equations: further directions

Let v(·, t) be in C(Ω0) as a function of t. We have that

〈v(x, ·), D0+,· h 1
n
(·, t)〉 = Nn(x, t)− 〈h 1

n
(·, t), D0+,· v(x, ·)〉

where
Nn(x, t) = v(x, s)h 1

n
(s, t)

∣∣∣
s∈∂Ω0

.

For n > 1, the conditions (3.3) hold true and then we get that Nn(x, t) ≡ 0 and

〈v(x, ·), D0+,· h 1
n
(·, t)〉 = 〈h 1

n
(·, t), D0−,· v(x, ·)〉.

Thus, the stochastic solution to the equation

(Dn
0−,t +Dm

0−,x)um,n = 0, x ∈ Ω, t > 0, m, n > 1 (6.1)

is given by the process L
1
m (H

1
n (t)), t > 0 with law

um,n(x, t) = 〈l 1
m

(x, ·), h 1
n
(·, t)〉.

From the fact that lν(x, s) ν→1−→ δ(x− s) and hν(s, t) ν→1−→ δ(s− t) we obtain that
um,1 = l1/m and u1,n = h1/n. As a direct consequence we also obtain that

lim
n→1

Nn(x, t) = ψ(x, t), x ∈ Ω0, t ≥ 0

which must be understood in the sense of distribution.

6.1 m = 2

The case m = 2 leads to the process |B(H
1
n (t))|, t > 0 where |B| is the reflecting

Brownian motion. From the subordination principle we have that the law of
|B(H

1
n )| coincides with the folded law of a 2/n-stable process with characteristic

function (2.1) and Ψ(ξ) = |ξ|2/n. Thus, for n = 2 (and m = 2), we obtain the
folded Cauchy process driven by the Laplace equation.

6.2 m = 3

For m = 3 we focus on the following few cases:

(D0+,t +D3
0+,x)u1 = 0,

(D2
0+,t −D3

0+,x)u2 = 0,

(D3
0+,t +D3

0+,x)u3 = 0.

The explicit solutions to the equations above are listed below:

u1(x, t) =
1
π

√
x

t
K 1

3

(
2

33/2

x3/2

√
t

)
(which is the solution of (4.1) on the positive real line) where (see Lebedev [18,
formula 5.7.2])

Kν(z) =
π

2
I−ν(z)− Iν(z)

sin νπ
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is the modified Bessel function of the second kind (or Macdonald’s function)
and

Iν(z) =
∞∑

k=0

(z/2)2k+ν

k! Γ(k + ν + 1)

is the modified Bessel function of the first kind (see [18, formula 5.7.1]);

u2(x, t) =
1
4

√
3
xπ

exp
(
x3

33t2

)
W− 1

2 , 1
6

(
2x3

33t2

)
where (see Lebedev [18, formula 9.13.16])

Wα,β(z) = zβ+1/2e−
z
2U(1/2− α+ β, 2β + 1; z)

is the Whittaker function (U is the confluent hypergeometric function of the
second kind);

u3(x, t) =
2t

33/2π

x− t

x3 − t3
.

The solution u2 can be obtained by considering the integral

u2(x, t) =
∫ ∞

0

u1(x, s)
t e−

t2
4s

√
4πs3

ds

and the formula 6.631 of Gradshteyn and Ryzhik [9]. The solution u3 comes
out from the integral

u3(x, t) =
∫ ∞

0

u1(x, s)
1
3π

t3/2

s3/2
K 1

3

(
2

33/2

t3/2

√
s

)
ds

and the fact that∫ ∞

0

sKν(ys)Kν(zs) ds =
π(yz)−ν(y2ν − z2ν)
2 sinπν (y2 − z2)

, <{y + z} > 0, |<{ν}| < 1

(see [9, formula 6.521]). We observe that

u3(x, t) =
2

33/2π

t

x2 + xt+ t2

which agrees, in some sense, with (3.7) for ν1 = ν2.

6.3 m = 4

For n = 1, the solution to (6.1) is the law of the folded iterated Brownian motion
|B(|B(t)|)|, t > 0. This is because of the fact that l1/4 = l1/2 ◦ l1/2 is the density
law of L1/2(L1/2(t)), t > 0. The solution y(x, t) = u4,1(|x|, t), x ∈ R, t > 0
has been thoroughly studied (see e.g. Allouba and Zheng [1]) and solves the
generalized equation

∂y

∂t
=
∂4y

∂x4
+
t−1/2

√
π
δ′′, x ∈ R, t ≥ 0

11



where 〈δ′′, φ〉 = φ′′(0) for φ ∈ C∞c (R). In this case we have that

Nn(x, t) n→1−→ δ′′(x)/
√
πt.

For n = 2 we have that r(x, t) = u4,2(|x|, t) solves the equation of vibra-
tions of rods on R and the corresponding process is B(|S1/4(t)|) where B is the
standard Brownian motion and Sα is the Lévy process with ΨS(ξ) = |ξ|α and
α ∈ (0, 2] (that is, an α-stable symmetric process).

A Fractional and Higher-order derivatives

We recall the Riemann-Liouville fractional derivatives

Dα
0+,zf(z) =

1
Γ (n− α)

dn

dzn

∫ z

0

(z − s)n−α−1f(s) ds, z ∈ R+ (A.1)

and

Dα
0−,zf(z) = − 1

Γ(n− α)
dn

dzn

∫ ∞

z

(s− z)n−α−1f(s) ds, z ∈ R+ (A.2)

which hold for n − 1 < α < n, n ∈ N. Formulae (A.1) and (A.2) are usually
refered to the right and left Riemann-Liouville fractional derivatives and become
an ordinary derivative for α = n ∈ N. Indeed,

Dn
0+,z = (−1)nDn

0−,z = ∂n/∂zn. (A.3)

For the sake of simplicity we will write D0+,z instead of D1
0+,z. Furthermore,

we recall that

Dα
0+,zf(z) =

dαf

dzα
(z) +

n−1∑
k=0

Dk
0+,zf(z)

∣∣∣∣∣
z=0+

zk−α

Γ(k − α+ 1)
, n− 1 < α < n

(A.4)
(see Gorenflo and Mainardi [8]; Kilbas et al. [13]; Samko et al. [25]) where

dα

dzα
f(z) =

1
Γ (n− α)

∫ z

0

(z − s)n−α−1 d
nf

dsn
(s) ds, n− 1 < α < n (A.5)

is the Dzerbayshan-Caputo fractional derivatives. The Laplace transform of
(A.4) is written as

L[Dα
0+,zf(·)](ζ) = ζαL[f(·)](ζ). (A.6)

For the sake of completeness we also recall the Laplace transform

L[Dn
0+,zf(·)](ζ) = ζnL[f(·)](ζ)−

n−1∑
k=0

ζn−k−1Dk
0+,zf(z)

∣∣∣∣
z=0+

. (A.7)
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