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Abstract

In possibilistic clustering the objects are assigned to clusters ac-
cording to the so-called membership degrees taking values in the unit
interval. Differently from fuzzy clustering, it is not required that the
sum of the membership degrees of an object in all the clusters is equal
to one. This is very helpful in the presence of outliers, which are usu-
ally assigned to the clusters with membership degrees close to zero.
Unfortunately, a drawback of the possibilistic approach is the ten-
dency to produce coincident clusters. A remedy is represented by the
use of a repulsion term among prototypes in the loss function forcing
the prototypes to be ‘enough’ far from each other. Here, a possi-
bilistic clustering model with repulsion constraints for imprecise data,
managed in term of fuzzy sets, is introduced. Two applications to
synthetic and real fuzzy data are considered in order to analyze how
the proposed clustering model works in practice.

Keywords: Cluster analysis, possibilistic approach, repulsion term,
fuzzy data.

1 Introduction

In cluster analysis we aim at determining a small number k of groups (clus-
ters) from a set of n � k objects. Every group is composed by objects
homogeneous according to a given dissimilarity measure based on p observed
features X1, . . . , Xp. For this purpose, a well-known tool is the Fuzzy k-
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Means algorithm (FkM) [2]:

min
U,H

JFkM =
n∑
i=1

k∑
g=1

umigd
2 (xi,hg) , (1a)

s.t. uig ∈ [0, 1], i = 1, . . . , n, g = 1, . . . , k, (1b)
n∑
i=1

uig = 1, g = 1, . . . , k, (1c)

where uig is the membership degree of object i in cluster g and hg = [hg1, . . . , hgp]
is the so-called prototype for cluster g, that is, a p-vector identifying each
cluster and is the g-th row of the prototype matrix H of order (k × p). The
membership degrees uig are stored in the matrix U of order (n × k) and
express the extent to which an object belongs to a cluster. The closer uig
is to 1, the higher is the membership of object i in cluster g. In fact, the
objects can be assigned to more than one cluster (with different membership
degrees), but the sum of the membership degrees of an object in all the clus-
ters must be equal to 1 (fuzzy approach to clustering). Finally, d2 (xi,hg) is
the dissimilarity measure (usually the squared Euclidean distance) between
object i and prototype g and m > 1 is a fuzziness coefficient tuning the
amount of fuzziness in the solution.
The optimal parameter matrices H and U can be found iteratively updating
the membership degrees keeping fixed the prototypes and viceversa. The
update formulas are

uig =
1∑k

g′=1

(
d2(xi,hg)

d2(xi,hg′)

) 1
m−1

(2)

and, if d2 (xi,hg) =
∑p

j=1 (xij − hgj)2,

hgj =

∑n
i=1 u

m
igxij∑n

i=1 u
m
ig

, g = 1, . . . , p. (3)

Although FkM is a very powerful tool, the constraints in (1c) may lead to
anomalous results. In particular, it may occur that an object is assigned to a
cluster even if it is far from the corresponding prototype. By inspecting (2)
this can be easily explained noting that the generic uig is obtained comparing
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the dissimilarity between object i and prototype g to the sum of the dissim-
ilarities between object i and all the prototypes. This suggests to interpret
the membership degrees in FkM as degrees of sharing of object i in cluster
g.
The constraints of FkM are such that possible outliers, i.e. objects “very
far” from all the cluster prototypes, can be assigned to a cluster with a high
membership degree when their distance from the corresponding prototype
is high, but remarkably lower than those from the remaining k − 1 proto-
types. In the literature, to overcome this drawback several proposals have
been introduced. These can be seen as robust versions of FkM. In particular,
at least four approaches can be found. These are the metric approach (see,
e.g., [9]) in which a suitable metric for handling outliers is considered in the
loss function, the noise approach (see, e.g, [5]) in which outliers are forced to
belong to an additional cluster, called noise cluster, with high membership
degrees (of course, such a cluster is not formed by homogeneous objects), the
evidential approach (see, e.g., [13]) in which objects belong to several subsets
of classes and the possibilistic approach in which outliers tend to have low
membership degrees in all the clusters. The latter approach shall be adopted
in this paper.
The Possibilistic k-Means algorithm (PkM) in the version of Krishnapuram
and Keller [11] can be formulated as

min
U,H

JPkM =
n∑
i=1

k∑
g=1

umigd
2 (xi,hg) +

k∑
g=1

ηg

n∑
i=1

(1− uig)m , (4a)

s.t. uig ∈ [0, 1], i = 1, . . . , n, ∀g = 1, . . . , k, (4b)

where ηg is a tuning parameter associated with cluster g, weighting its con-
tribution to the penalization function.
By comparing (1a)-(1c) and (4a)-(4b) we can see that the loss in (4a) con-
tains an additional term, which plays the role of avoiding the trivial solution
with uig = 0, i = 1, . . . , n, g = 1, . . . , k. Furthermore, the row-wise sum of U
is no longer required to be equal to 1.
As for FkM, the optimal solution of PkM can be found iteratively. The up-
date of the prototypes can be done using (3) and that of the membership
degrees is given by

uig =
1

1 +
(
d2ig
ηg

) 1
m−1

. (5)
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In contrast with (2) the membership degree uig in (5) is based only on the
distance between object i and prototype g allowing us to interpret such a de-
gree as a measure of the compatibility of an object with respect to a cluster.
Several extensions of PkM have been proposed in the literature. Refer, for
instance, to [14, 16, 19]. Unfortunately, as pointed out by Barni et al. [1],
the possibilistic approach to clustering suffers from the so-called coincident
cluster problem, that is, the obtained solution is formed by one cluster. This
is so because the minimization problem in (4a) boils down to the sum of k
minimization problems (one for each cluster) that can be minimized inde-
pendently of each other. A heuristic remedy to this problem suggested by
Krishnapuram and Keller [12] is to consider the FkM solution as (rational)
starting point of the iterative algorithm. A more powerful remedy is repre-
sented by the use of repulsion terms [15, 16, 17] which force the prototypes
to be the farthest away possible. In this work we suggest a possibilistic clus-
tering algorithm with repulsion constraints for imprecise data exploiting the
proposal by Timm et al. [16]. We chose this proposal because, differently
from the other ones, it involves a loss function to be minimized incorporating
a repulsion term and the optimal prototypes are found by suitably taking it
into account. Instead, in [15, 17], the repulsion term is inserted in the update
of the prototypes, but it is not clear what is the loss to be minimized.
The paper is organized as follows. In the next section the PkM proposed
by Timm et al. [16] is recalled. In doing so, we suggest an improvement for
updating the prototypes based on the Newton algorithm since a non-linear
problem must be solved. In Section 3 fuzzy data and metrics for such a kind
of data are introduced. In fact, we handle imprecision in terms of fuzzy data.
Section 4 deals with PkM with repulsion constraints for fuzzy data. Finally
some applications and concluding remarks are given in Sections 5 and 6,
respectively.
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2 Possibilistic clustering with repulsion con-

straints

The PkM with Repulsion constraints (PkM-R) [16] can be formalized as

min
U,H

JPkM−R =
n∑
i=1

k∑
g=1

umigd
2 (xi,hg) +

k∑
g=1

ηg

n∑
i=1

(1− uig)m

+
k∑
g=1

γg

k∑
g′=1,g′ 6=g

1

ξd2 (hg,hg′)
(6a)

s.t. uig ∈ [0, 1], i = 1, . . . , n, ∀g = 1, . . . , k, (6b)

where ηg, ξ and γg are non-negative parameters to be chosen in advance. In
particular, ηg is a cluster-specific parameter tuning the importance of the
clusters and, following [16], can be defined as

ηg = η

∑n
i=1 u

m
igd

2
ig

d2 (xi,hg)
, (7)

where U and H are found by standard FkM and, usually, η = 1. γg is a
cluster-specific weighting factor, which can be set as

γg = γ
n∑
i=1

umig , (8)

where, once again, the membership degrees are found by FkM and γ increases
the importance of the repulsion term in the optimization problem. Finally,
as clarified in [16], the parameter ξ depends on the minimal distance we are
willing to accept between neighboring clusters. However, we can observe that

k∑
g=1

γg

k∑
g′=1,g′ 6=g

1

ξd2 (hg,hg′)
=

k∑
g=1

γg
ξ

k∑
g′=1,g′ 6=g

1

d2 (hg,hg′)
=

k∑
g=1

γ′g

k∑
g′=1,g′ 6=g

1

d2 (hg,hg′)
,

(9)
with γ′g = γg

ξ
. Hence, from a practical point of view, we can set ξ = 1 falling

the relevance of the repulsion term on γ′g = γg. In the following, calculi will
be done with ξ = 1.
The main difference between PkM and PkM-R is given by the repulsion term
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∑k
g=1 γg

∑k
g′=1,g′ 6=g

1

d2(hg ,hg′)
. It acts avoiding that coincident clusters occur.

In fact, if g and g′ are almost coincident clusters, then d2 (hg,hg′) is close to
0 and therefore the repulsion term tends to infinity. Obviously the repulsion
term plays a relevant role only when the risk of getting coincident clusters is
high. If d2 (hg,hg′) is large ∀g, g′, the repulsion term is close to 0.
As for PkM, an iterative algorithm should be adopted for determining the
updates of H and U. Since the repulsion term can be considered as a constant
when updating U, the optimal value of uig does not vary with respect to the
PkM case and, therefore, coincides with (5). Things concerning the update
of hg are remarkably more complex. According to Timm et al. [16], by

equating the gradient g(hg) = ∂JPkM−R

∂hg
to zero the update of hg is given by

hg =

∑n
i=1 u

m
igxi − γg

∑k
g′=1,g′ 6=g

hg′[
‖hg−hg′‖2

]2∑n
i=1 u

m
ig − γg

∑k
g′=1,g′ 6=g

1[
‖hg−hg′‖2

]2 . (10)

Timm et al. [16] suggest to solve (10) recursively because hg appears also
on the right side, i.e. g(hg) is non-linear. However, in the literature, it is
recognized that minimizing a function f or, equivalently, solving g = f ′ = 0
when g is non-linear should be done by means of second-order approximation
methods, rather than with first-order approximations method as the gradient
one (see, e.g., [3]). For this purpose, we suggest to consider the Newton
method, which is briefly recalled below.

2.1 Newton method

Given f : Rp −→ R, we look for θ∗ ∈ Rp such that

f(θ∗) = min
θ
f(θ). (11)

The Newton method is an iterative procedure for determining θ∗ in (11).
Since the existence of θ∗ is not guaranteed and it is therefore impossible to
guarantee the convergence of a numerical algorithm to a global minimum,
the objective reduces to find a local minimum θ∗. Generally speaking, the
iterative solution of the Newton method takes the form

θ(n+1) = θ(n) + ϕ(n)Λ(n) (12)
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where θ(n) is the value of θ at the n− th iteration, ϕ(n) is the step length and
Λ(n) is the direction of search. θ(n+1) is such that f(θ(n+1)) < f(θ(n)). The
Newton method consists in setting θ(n) := θ(n+1) and repeating (12) upon
convergence.
If the first and second derivatives of f exist, a second-order approximation
of f can be found by Taylor expansion as

f (θ) ≈ f
(
θ(n)
)

+ g
(
θ(n)
) (
θ − θ(n)

)
+

1

2

(
θ − θ(n)

)′
H
(
θ(n)
) (
θ − θ(n)

)
, (13)

where g = f ′ is the gradient of f and H = f ′′ is the Hessian matrix of f . θ
is a local optimum if f ′(θ) = 0 and from (13) we thus have

f
′
(θ) = 0 + g

(
θ(n)
) (
θ − θ(n)

)
+H

(
θ(n)
) (
θ − θ(n)

)
= 0, (14)

hence

θ = θ(n) −
[
H
(
θ(n)
)]−1

g
(
θ(n)
)
, (15)

where [H
(
θ(n)
)
]−1 denotes the inverse of H

(
θ(n)
)
. By considering (12), we

get ϕ(n) = 1 and Λ(n) =
[
H
(
θ(n)
)]−1

g
(
θ(n)
)
.

Remark 1 (step-halving)
When the Newton algorithm runs and is close to a solution, it may occur
that f(θ(n+1)) > f(θ(n)). This is so because the step length ϕ(n) is too
large and, thus, the algorithm “overtakes” the minimum during the search.
This drawback can be easily solved by the so-called backtracking step, which
consists in reducing the step length by a fixed fraction δ each time. If
f(θ(n+1)) > f(θ(n)) then θ(n+1) should be rejected and replaced by a new

solution setting ϕ(n) := ϕ(n)

δ
until f(θ(n+1)) ≤ f(θ(n)). A common choice is

δ = 1
2

and is usually referred to as step-halving.

2.2 Newton method in PkM-R

In order to apply the Newton method in PkM-R for updating the prototypes,
the gradient and the Hessian must be computed. It is easy to show that the
gradient is

g (hg) =
∂JPkM−R
∂hg

= −2
n∑
i=1

umig (xi − hg)− 2γg

k∑
g′=1,g′ 6=g

(hg − hg′)[
‖hg − hg′‖2

]2 , (16)
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and that the generic diagonal element of Hg is

∂2JPkM−R
∂2hgj

= 2
n∑
i=1

umig − 2γg

k∑
g′=1,g′ 6=g

[
1[

‖hg − hg′‖2
]2 − 4 (hgj − hg′j)2[

‖hg − hg′‖2
]3
]
,(17)

while the generic off-diagonal one is

∂2JPkM−R
∂hgj∂hgj′

= 8γg

k∑
g′=1,g′ 6=g

(hgj − hg′j) (hgj′ − hg′j′)[
‖hg − hg′‖2

]3 . (18)

In order to update the prototypes we then use

h(n+1)
g = h(n)

g − [H]−1 g
(
h(n)
g

)
(19)

3 Fuzzy data and metrics for fuzzy data

Suppose now that the observed data are affected by imprecision and cannot
be expressed in terms of single values. A useful approach consists in managing
them in terms of fuzzy sets [20]. In this work, we limit our attention to the
class of LR symmetric fuzzy numbers. In this case, the generic fuzzy datum
X̃ can be defined in terms of a pair of parameters, namely the center c and
the spread s(> 0), and the so-called membership function giving the degree

of membership of x in X̃:

µX̃(x) = L

(
c− x
s

)
, x ≤ c (s > 0), (20)

where the function L : R→ [0, 1] is a convex upper semi-continuous function
so that L(0) = 1 and L(z) = 0, for all z ∈ R \ [0, 1]. If L(z) = 1 − z for

0 ≤ z ≤ 1, then X̃ is a symmetric triangular fuzzy number. A fuzzy datum
can be seen as an interval of values between c − s and c + s with weights
given by the membership function.
When the available data refer to a set of n objects on which p LR symmetric
fuzzy variables are collected, we have a fuzzy data matrix

X̃ = {x̃ij ≡ (cij, sij)L, i = 1, ..., n, j = 1, ..., p} , (21)

where x̃ij ≡ (cij, sij)L represents the LR symmetric fuzzy variable j observed
on the i-th object with center cij and spread sij. Also we can define the
matrices of the centers (C) and of the spreads (S) of order (n × p) with
generic elements cij and sij, respectively.
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3.1 Metrics for fuzzy data

A crucial point when dealing with fuzzy data concerns how to compute a
suitable dissimilarity measure. The Euclidean distance could be applied to
the centers of the fuzzy data but the conclusions are in general misleading
since the spread information is ignored. In order to compare two objects i
and i′ characterized by one LR symmetric fuzzy variable (p = 1), Yang and
Ko [18] suggest the following (squared) distance:

d2F (x̃i, x̃i′) = (ci − ci′)2 + [(ci − λsi)− (ci′ − λsi′)]2 + [(ci + λsi)− (ci′ + λsi′)]
2

= 3 (ci − ci′)2 + 2 (λsi − λsi′)2 ,
(22)

with x̃i ≡ (ci, si)L, x̃i′ ≡ (ci′ , si′)L and λ =
∫
R
L(z)dz is a parameter taking

values in [0,1] based on the shape of the membership function (in the trian-
gular case λ = 1

2
). The intuition behind the Yang and Ko [18] distance is to

compare two fuzzy numbers by the sum of the squared Euclidean distances
between their centers and their “trimmed” lower bounds and upper bounds
(bearing in mind that the spreads are scaled by λ < 1).
In (21) objects i and i′ are characterized by p > 1 LR symmetric fuzzy vari-
ables. In particular, we denote the fuzzy vectors of length p for objects i and
i′ as x̃i ≡ (ci, si)L and x̃i′ ≡ (ci′ , si′)L, respectively. Note that x̃i, ci and si
are the i-th rows of X̃, C and S, respectively. In this case, the objects are no
longer represented by intervals (with weights). If p = 2 every object can be
seen as a rectangle in R2 with four vertices and, if p > 2, as a hyperrectagle
in Rp with 2p vertices. In these cases, the (squared) distance between the
objects i and i′ can be computed as the sum of the squared Euclidean dis-
tances between the centers and all the 2p vertices [8]. It can be shown that,
after a little algebra, such a distance can be rewritten as

d2F (x̃i, x̃i′) = (2p + 1) ‖ci − ci′‖2 + 2p ‖λ ∗ si − λ ∗ si′‖2 , (23)

where λ is the p-vector with generic element λj =
∫
R
Lj(z)dz, where Lj(z)

is the membership function of the LR symmetric fuzzy variable j and ∗
denotes the Hadamard product (elementwise product between vectors of the
same length). In the following we shall consider the case in which all the
variables have the same membership function. Thus, λj = λ, j = 1, . . . , p,
and (23) can be simplified as

d2F (x̃i, x̃i′) = (2p + 1) ‖ci − ci′‖2 + 2pλ2 ‖si − si′‖2 . (24)
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It is worth mentioning that, if p = 1, (23) and (24) reduce to (22). See, for
more details, [8]. As it will be clarified in the next section, the metric in (24)
shall be considered for extending PkM-R to fuzzy data.

4 Fuzzy clustering with repulsion constraints

for fuzzy data

In this section we propose a generalization of PkM-R to fuzzy data. In the
last decade, a few attempts to generalize fuzzy clustering for fuzzy data have
been suggested in the literature. For an overview see [7].
In the case of fuzzy data, it must be underlined that the concept of ho-
mogeneous clusters is related to the positions (i.e. the centers) and/or the
sizes (i.e. the spreads) of the hyperrectangles. It follows that outliers can
be determined not only with respect to the location of the objects, as in the
non-fuzzy data case, but also with respect to the associated imprecision. Al-
though this is a relevant problem in the domain of cluster analysis for fuzzy
data, a limited number of robust variants of FkM for such a kind of data ex-
ists [4, 10]. In [10], a robust version of FkM for fuzzy data is introduced such
that, following the metric approach, an exponential-based distance for fuzzy
data is considered in the loss function. Note that this proposal works only in
the univariate case (p = 1). A possibilistic clustering model for fuzzy data
(hereinafter PkM-F) has been suggested in [4]. Similarly to standard PkM,
also in [4] the use of the FkM for fuzzy data as starting point is recommended
to solve empirically the coincident cluster problem. Here, we are going to
introduce a new possibilistic clustering model for fuzzy data involving repul-
sion constraints between pairs of prototypes. This represents a more elegant
and fruitful way to handle the risk of obtaining coincident clusters. To do it,
we assume that the prototypes inherit the imprecision of the observed data
and hence are LR symmetric fuzzy numbers. Thus, the prototype matrix is
H̃ ≡

(
HC ,HS

)
L

with generic element h̃gj ≡
(
hCgj, h

S
gj

)
L
, where HC and HS

are the matrices of the centers and of the spreads with generic elements hCgj
and hSgj, respectively. Furthermore, in order to take into account properly
the features of the observed data and of the prototypes, the distance in (24)
is adopted.
The Possibilistic k-Means with Repulsion constraints for Fuzzy data (PkM-
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RF) can be formalized as

min
U,H̃

JPkM−RF =
n∑
i=1

k∑
g=1

umigd
2
F

(
x̃i, h̃g

)
+

k∑
g=1

ηg

n∑
i=1

(1− uig)m

+
k∑
g=1

γg

k∑
g′=1,g′ 6=g

1

d2F

(
h̃g, h̃g′

) (25a)

s.t. uig ∈ [0, 1], i = 1, . . . , n, ∀g = 1, . . . , k. (25b)

Note that in (25a) all the ingredients are based on d2F in (24) rather than
on the standard d2. The parameters ηg and γg play the same role as for
PkM-R and can be defined as reported in (7) and (8), respectively, provided
that the prototypes and the membership degrees are obtained considering a
suitable FkM for fuzzy data. In our analyses, we used the FkM for Fuzzy
data (FkM-F) proposed in [6].
The loss in (25a) must be minimized with respect to U, C and S. The update
of the elements of U, keeping fixed C and S is given by (5), provided that d2

is replaced by d2F . The updates of the centers and spreads of the prototypes
is computed by Newton algorithm since the gradients g(hCg ) and g(hSg ) are
non-linear.

Update of the centers of the prototypes:
The update of the prototype centers hCg can be done by

hCg
(n+1)

= hCg
(n) − [Hc]

−1 g
(
hCg

(n)
)
, (26)

where

g
(
hCg
)

= ∂JPkM−RF

∂hC
g

= −2 (2p + 1)
∑n

i=1 u
m
ig

(
ci − hCg

)
−2 (2p + 1) γg

∑k
g′=1,g′ 6=g

(
hC
g −hC

g′

)
[
(2p+1)

∥∥∥hC
g −hC

g′

∥∥∥2+2pλ2
∥∥∥hS

g−hS
g′

∥∥∥2]2 .
(27)
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The generic diagonal element of the Hessian matrix can be computed as

∂2JPkM−RF

∂2hCgj
= 2 (2p + 1)

∑n
i=1 u

m
ig

−2 (2p + 1) γg
∑k

g′=1,g′ 6=g

 1[
(2p+1)

∥∥∥hC
g −hC

g′

∥∥∥2+2pλ2
∥∥∥hS

g−hS
g′

∥∥∥2]2

−
4(2p+1)

(
hCgj−hCg′j

)2
[
(2p+1)

∥∥∥hC
g −hC

g′

∥∥∥2+2pλ2
∥∥∥hS

g−hS
g′

∥∥∥2]3


(28)
and the off-diagonal one as

∂2JPkM−RF
∂hCgj∂h

C
gj′

= 8 (2p + 1)2 γg

k∑
g′=1,g′ 6=g

(
hCgj − hCg′j

) (
hCgj′ − hCg′j′

)[
(2p + 1)

∥∥hCg − hCg′
∥∥2 + 2pλ2

∥∥hSg − hSg′
∥∥2]3 .(29)

Update of the spreads of the prototypes:
Similarly, we can update the prototype spreads hSg as

hSg
(n+1)

= hSg
(n) − [Hs]

−1 g
(
hSg

(n)
)

(30)

with

g
(
hSg
)

= ∂JPkM−RF

∂hS
g

= −2 (2pλ2)
∑n

i=1 u
m
ig

(
si − hSg

)
−2 (2pλ2) γg

∑k
g′=1,g′ 6=g

(
hS
g−hS

g′

)
[
(2p+1)

∥∥∥hC
g −hC

g′

∥∥∥2+2pλ2
∥∥∥hS

g−hS
g′

∥∥∥2]2 ,
(31)

∂2JPkM−RF

∂2hSgj
= 2 (2pλ2)

∑n
i=1 u

m
ig

−2 (2pλ2) γg
∑k

g′=1,g′ 6=g

 1[
(2p+1)

∥∥∥hC
g −hC

g′

∥∥∥2+2pλ2
∥∥∥hS

g−hS
g′

∥∥∥2]2

−
4(2pλ2)

(
hSgj−hSg′j

)2
[
(2p+1)

∥∥∥hC
g −hC

g′

∥∥∥2+2pλ2
∥∥∥hS

g−hS
g′

∥∥∥2]3


(32)
and

∂2JPkM−RF
∂hSgj∂h

S
gj′

= 8
(
2pλ2

)2
γg

k∑
g′=1,g′ 6=g

(
hSgj − hSg′j

) (
hSgj′ − hSg′j′

)[
(2p + 1)

∥∥hCg − hCg′
∥∥2 + 2pλ2

∥∥hSg − hSg′
∥∥2]3 .(33)
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Remark 2 (starting point of the PkM-RF algorithm)
The starting point of the PkM-RF algorithm can be chosen either randomly
(i.e. randomly generating the membership degree matrix U(0) fulfilling (25b))
or rationally (i.e. using U(0) obtained from FkM-F). We saw that the former
choice should be preferred (note that the solution of FkM-F must always be
computed since it is required for defining ηg and γg). In fact, a severe local
optimum problem was observed starting in a random manner. It is worth
mentioning that if random starting points are considered, then the algorithm
usually converges to a local optimum and the corresponding solution is not
characterized by coincident clusters. Therefore, our suggestion to use a ra-
tional starting point is not connected with the attempt to solve empirically
such a problem. Rather, it is related to the more general problem of hitting
the global optimum whenever iterative algorithms are implemented.

Algorithm PkM-RF

Step 0: Define ηg and γg according to (7) and (8), respectively, and U(0)

using the FkM-F solution. Set t := 1.

Step 1: Update the prototypes H(t) according to (26) and (30) keeping fixed
U(t−1).

Step 2: Update the membership degree matrix U(t) according to (5) pro-
vided that d2 is replaced by d2F keeping fixed H(t).

Step 3: If
∥∥∥U(t) −U(t−1)

∥∥∥ < ε, where ε is a small number fixed in advance

(we use ε = 10−4), the algorithm has converged, otherwise set t:=t+1
and go to Step 1.

5 Applications

This section is devoted to two applications of PkM-RF to synthetic and
real data. A comparison with the results obtained using PkM-F [4] is also
discussed.

13



5.1 Synthetic data

We generated n = 22 objects with respect to p = 2 LR symmetric fuzzy
variables such that k = 2 clusters with 10 objects each and two outliers can
be found. The centers and the spreads of the objects (n.1–n.10) belong-
ing to Cluster 1 were generated randomly from U[0,1]. Also the spreads of
the objects (n.11–n.20) belonging to Cluster 2 came from U[0,1], whereas
the centers from U[0,1]+w. The two outliers were such that the first one
(n.21) had spreads from U[0,1] and centers from U[0,1]+1

2
w and the latter

one (n.22) spreads from U[0,1]+1
2
w and centers from U[0,1]. The data with

w = 0.5, 1.0, 2.0 (partially overlapped, separated and well separated clusters,
respectively) were analyzed by PkM-RF and PkM-F setting m = 2 and us-
ing the solution from FkM-F as starting point. Obviously, the models were
expected to work better as w increased. The results are summarized in Ta-
ble 1. The first two rows of Table 1 give the number of times (out of ten)

Table 1: Solutions obtained using PkM-RF and PkM-F
w = 0.5 w = 1.0 w = 2.0

PkM-RF PkM-F PkM-RF PkM-F PkM-RF PkM-F
(γ = 3) (γ = 2) (γ = 4)

10∑
i=1

I{ui1≥0.5} 5 2 8 3 9 9

10∑
i=1

ui1

/
10 0.52 0.20 0.58 0.34 0.62 0.68

20∑
i=11

I{ui2≥0.5} 3 3 6 4 8 8

20∑
i=11

ui2

/
10 0.52 0.30 0.59 0.43 0.64 0.73

22∑
i=21

2∑
g=1

I{uig≥0.5} 0 0 0 0 0 0

22∑
i=21

2∑
g=1

uig

/
4 0.34 0.00 0.27 0.02 0.14 0.04

2∑
g=1

d2
(
ĥCg , h̄

C
g

)
0.10 0.23 0.01 0.13 0.01 0.00

2∑
g=1

d2
(
ĥSg , h̄

S
g

)
0.02 0.09 0.00 0.10 0.00 0.01
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in which objects n.1–n.10 were well assigned to Cluster 1 in the hard clus-
tering sense (I denotes the indicator function) and the average membership
degree of objects n.1–n.10 in Cluster 1. The same information for objects
n.11–n.20 and for Cluster 2 can be found in the third and fourth rows of
the table. The next two rows contain the number of times in which an out-
lier was assigned to a cluster in the hard clustering sense and the average
membership degree of the outliers in all the clusters. Finally, in the last
two rows we report the squared Euclidean distances for, respectively, the
centers (superscript C) and the spreads (superscript S) between the known-

in-advance prototypes (h̄Cg =

{
h̄Cgj =

1+10(g−1)∑
i=1+10(g−1)

cij

/
10, j = 1, 2

}
, g = 1, 2

and h̄Sg =

{
h̄Sgj =

1+10(g−1)∑
i=1+10(g−1)

sij

/
10, j = 1, 2

}
, g = 1, 2) and the estimated

ones (ĥCg =
{
ĥCgj, j = 1, 2

}
, g = 1, 2 and ĥSg =

{
ĥSgj, j = 1, 2

}
, g = 1, 2).

By inspecting Table 1, we can see that PkM-RF worked better than PkM-F
when w = 0.5 and w = 1.0. When w = 2.0, the two models well assigned
the same numbers of objects to the known-in-advance clusters, but the mem-
bership degrees are higher for PkM-F. This can be explained noting that a
peculiarity of PkM-F is its tendency to produce membership degrees close to
zero unless there exists a strong evidence of assigning an object to a given
cluster. On the contrary, PkM-RF tends to produce a fuzzier membership
degree matrix. In other words, if an object does not belong to a cluster,
then the corresponding membership degree from PkM-F is very close to 0,
whereas that from PkM-RF is low, but, in general, sensibly higher than 0.
This implies that the solutions of PkM-F were such that some non-outlier
objects were correctly assigned to a cluster with a high membership degree
and some others wrongly had low membership degrees to both the clusters,
whereas the outlier objects had membership degrees close to zero in both the
clusters. This comment does not hold for the PkM-RF solutions in which the
non-outlier objects were often assigned correctly to one of the two clusters,
sometimes with a not remarkably high membership degree, and the outliers
had low (within 0 and 0.50) membership degrees in all the clusters. The
last two rows of Table 1 show that PkM-RF worked better than PkM-F in
recovering the prototypes. Finally note that coincident clusters were never
found.
In the previous analyses, γ was found by running PkM-RF considering dif-
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ferent values of γ and choosing the best solution from a subjective point of
view. However, we now give an objective hint that can help to choose γ.
Consider the data with w = 0.5. As we can see from the last two rows of
Table 1, using γ = 2 the prototypes obtained from PkM-RF are very accu-
rate estimates of the known-in-advance ones. When we decreased γ setting
γ = 0.1 or γ = 0.01 we found that the two clusters (the two prototypes)
were almost coincident. If γ decreases, the role of the repulsion term in the
loss function is negligible (if γ = 0, the repulsion term vanishes) and the
algorithm produces coincident clusters unless well-separated clusters exist.
When we increased γ, for instance choosing γ = 20, an abnormal role of
the repulsion term can be observed. In this case, the estimated prototypes
tend to be located outside from the two clouds of objects belonging to Clus-
ters 1 and 2, respectively. It occurs because the repulsion term plays a very
relevant role in the loss and the algorithm attains the minimum trying to
minimize mainly the repulsion term by finding prototypes very far from each
other regardless the observed data. This usually implies that the objects are
far from all the prototypes and, therefore, the membership degrees in all the
clusters go to zero. Summing up, the choice of γ should be such that the
prototypes are representative of the objects assigned to the corresponding
clusters and such that neither coincident clusters occur nor the membership
degrees of the objects in all the clusters tend to zero.

5.2 Students data

We consider now the Students data in [4]. The data are the answers of a set
of undergraduate students attending the Course of Statistics at the Faculty
of Political Sciences of Sapienza University of Rome in the academic year
2009-2010 to a questionnaire about the the global economic and financial
crisis. Every student gave his/her opinion and perception about six specific
questions concerning the influence of financial speculation on the crisis (Q1),
the opinion about the utility of a new regolarization of financial markets
(Q2), the feeling about the need for a drastic change of the economic system
(Q3), the opinion on the adequacy of the EU economic measures to handle
the crisis (Q4), the opinion about the Italian economic measures (Q5) and,
finally, the perception about the trend of the Italian economy during the
following three years (Q6). The responses are fuzzified following the scheme
explained in [4].
In order to compare the results with those obtained by means of PkM-F
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we have set m = 1.5 and k = 3. Setting γ = 2 the prototypes and the
membership degrees obtained from PkM-RF are reported, respectively, in
Table 2 and Table 3.

Table 2: Prototypes from PkM-RF (data take the form (center, spread)).
Cluster Q1 Q2 Q3 Q4 Q5 Q6

Cluster 1 (0.89, 0.06) (0.73, 0.12) (0.69, 0.12) (0.58, 0.12) (0.29, 0.11) (0.40, 0.12)
Cluster 2 (0.95, 0.04) (0.06, 0.04) (0.98, 0.02) (0.09, 0.06) (0.05, 0.04) (0.03, 0.03)
Cluster 3 (0.61, 0.12) (0.51, 0.12) (0.51, 0.12) (0.45, 0.12) (0.54, 0.12) (0.51, 0.12)

The prototypes reported in Table 2 are more or less the same obtained
from PkM-F. The students belonging to Cluster 1 are anxious for the crisis
and have a quite good opinion on the adequacy of the EU economic measures
to face up it, better than the Italian measures. Cluster 2 is characterized by
students with a radical position, that is, they are worried about the crisis
and think the the EU and Italian economic measures are not appropriate,
requiring a drastic change of the economic systems. Students belonging to
Cluster 3 are not particularly anxious for the crisis and are satisfied with the
EU and Italian economic measure to handle it. By inspecting the membership
degrees, we can conclude that PkM-RF and PkM-F detect the same outliers.
Moreover, differently from PkM-F, the proposed method assigns a larger
number of non-outlier students to the clusters in the hard clustering sense.
Also we note that the average membership degrees of the non-outlier students
in the clusters resulting from PkM-RF are higher than those from PkM-F.

6 Concluding remarks

A Possiblistic k-Means clustering model with Repulsion constraints for Fuzzy
data (PkM-RF) has been proposed. Its peculiarities involve the use of a suit-
able distance measure for fuzzy data allowing us to detect clusters of homo-
geneous objects in terms of the location and the size of the hyperrectangles
associated with the objects. To solve the well-known coincident cluster prob-
lem, a repulsion term among prototypes has been considered and extended
to the fuzzy data case. We provided the iterative solution of the algorithm by
means of the Newton algorithm since a non-linear problem for updating the
prototypes of the clusters must be solved. The applicability of the proposed
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Table 3: Membership degrees from PkM-RF.

Student (n.) Cluster 1 Cluster 2 Cluster 3
1 0.03 0.15 0.01
2 0.02 0.98 0.01
3 0.16 0.00 0.85
4 0.82 0.00 0.36
5 0.25 0.00 0.05
6 0.03 0.71 0.01
7 0.02 0.89 0.01
8 0.92 0.01 0.13
9 0.04 0.00 0.21
10 0.01 0.94 0.01
11 0.22 0.00 0.98
12 0.33 0.00 0.86
13 0.45 0.01 0.05
14 0.75 0.01 0.05
15 0.88 0.01 0.24
16 0.63 0.01 0.10
17 0.60 0.00 0.07
18 0.94 0.01 0.15
19 0.22 0.01 0.91
20 0.09 0.00 0.70
21 0.06 0.00 0.59
22 0.05 0.02 0.12
23 0.02 0.00 0.02
24 0.03 0.49 0.02
25 0.03 0.61 0.01
26 0.10 0.00 0.09
27 0.02 0.75 0.02

technique has been analyzed by means of two examples, which showed the
usefulness of PkM-RF.
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Numerical Optimization, Theoretical and Practical Aspects. Springer-
Verlag Berlin Heidelberg.

[4] Coppi, R., D’Urso, P., Giordani, P., (in press). Fuzzy and possibilistic
clustering for fuzzy data. Computational Statistics and Data Analysis,
doi: 10.1016/j.csda.2010.09.013.
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