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Abstract

A standard Bayesian stopping rule for sequential trials is based on the posterior

probability that a treatment effect exceeds a minimum relevant clinical threshold.

In this paper we consider a robust version of this criterion by replacing the single

prior distribution with a class of prior distributions. We compare the average

sample sizes of the robust sequential approach both with the sample sizes of the

non robust approach and of the non sequential approach. A surprising result is

that, in some cases, the average sample sizes of the robust sequential approach

are smaller than the non sequential sample sizes.

Keywords: Clinical trials, ε−contamination priors, Robustness, Sample size

determination, Sequential analysis.

1 Introduction

In clinical trials data are often collected gradually. Starting from the inclusion date,

the follow-up period can last several months or years. Hence, results from patients

recruited at the beginning of the trial become available for analysis and interpretation

when enrolment of later subjects is still ongoing. It is common practice that the analysis

is performed at the end of the trial when the preplanned total number of patients

has been observed. However, the mechanism of data accumulation would make natural

successive examinations (interim analysis) and the use of stopping rules with the purpose

of early terminating the trial in case there is evidence of treatment efficacy (or, conversely,

futility). In this sense, the conduct of the so-called sequential clinical trials, as defined by

[1], “at any stage depends on the results so far obtained”. The main ideas and methods
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concerning the design and the analysis of the sequential clinical trials are reviewed in

[2] which constitutes a fundamental reference in the frequentist context, together with

[3] and [4]. As pointed out in [2], sequential methods are not as popular as one could

figure out, due to some technical difficulties involved in their application, with respect

to the fixed-sample techniques, much more popular in the standard analysis of clinical

trials. These complications basically concern the adjustment for multiplicity when (one

or more) interim looks at the data are scheduled (see for instance [5] and the references

therein). In the present paper we adopt a Bayesian approach that allows us to avoid the

typical drawbacks of frequentist methods related to multiplicity, as discussed by [6]. The

application of Bayes theorem makes the information updating mechanism straightforward

while data are sequentially accumulated. Several authors have dealt with the use of

interim analyses in clinical trials and, more specifically, with sequential studies from this

point of view (see for a comprehensive outlook [7], [8], [9] and [10]).

In this work we consider Bayesian methods for the monitoring of sequential trials. In

particular, we restrict ourselves to phase II single-arm trials, such as efficacy trials, and we

are only interested in the total study dimension. Although the general framework could be

adopted for two arms randomized trials, the issue of patients allocation goes beyond the

scope of this paper. As mentioned before, the main feature of sequential trials is that the

total sample size (i.e. number of patients) is not fixed in advance. Hence, the number

of observations progressively increases until the requirement of a predefined stopping

rule is fulfilled. The main advantage of sequential procedures is that, in general, they

require on average a smaller number of patients with respect to non sequential criteria.

Specifically we consider a Bayesian method for the monitoring of sequential trials based

on the posterior probability that a treatment effect exceeds a minimum relevant clinical

threshold (as in [10]). We compare the sequential expected sample sizes with the optimal

sample size of non sequential methods in a simulation study. Moreover, our purpose is to

extend the robust (non sequential) sample size determination criteria presented in [11],

[12] and [13] in a sequential direction. These papers deal with the issue of sensitivity

to the prior choice, that is addresses by replacing a single prior distribution with a class

of priors. The aim is to assess the impact of prior information on pre-posterior analysis

and, consequently, on the choice of the optimal number of observations. We here adopt

the same approach and we introduce a sequential robust criterion. The performance of

this criterion is evaluated in terms of expected number of observations, that is compared

via simulation to the optimal sample sizes of (sequential and non sequential) non robust

methods.

The outline of this paper is as follows. In Section 2 we describe the general set up and
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we introduce notation. In Section 3.1 we provide details of the sequential method and

we derive its robust version in Section 3.2, after pointing out the differences between the

conditional approach and the sequential approach (Section 3.1.1). Comparisons between

the sample sizes obtained using sequential and non sequential, robust and non robust

criteria are discussed in Section 3.3 and further illustrated by a simulation study in Section

4.2, that is based on a real application regarding an efficacy trial on hypercholesterolemia.

Finally, Section 5 contains some concluding remarks.

2 Preliminaries

Let us consider a phase II trial with the objective of establishing the efficacy of a new

experimental treatment effect over a standard intervention (superiority trial). Let us

assume that the parameter of interest θ represents a real-valued measure of treatment

efficacy, large values of θ denoting superiority of the new treatment.

We assume that groups of patients are sequentially accrued and evaluated for

response. In order to terminate the trial, a stopping rule is defined according to the

study objective. Hence, instead of prefixing an optimal sample size n∗ using a specified

criterion, we assume to observe an increasing number of individuals denoted by nj , where

j = 1, ... , J is the group index. For practical reasons, we fix a maximum total sample size

Nmax . Let nj+1 = nj +kj , with kj ≥ 1 the size of the j -th group and nJ = Nmax . Without

loss of generality in the following we take kj = 1 for all j = 1, ... , J , which simply means

we consider each single patient sequentially. Let us denote by Ynj
a measure of treatment

response based on the first nj patients that is supposed to be normally distributed with

mean θ and variance σ2/nj , with a prefixed value for σ2. Furthermore, let ynj
and f (ynj

; θ)

denote the observed data and the corresponding likelihood respectively, j = 1, ... , J .

In a Bayesian perspective, we can formalize pre-experimental knowledge on the

phenomenon of interest by considering a prior distribution on θ, πA(θ). For

computational convenience, the most natural choice is a conjugate prior distribution

with respect to the normal model. Hence, we assume for θ a normal density of mean

θA and known variance σ2/nA, where, following the notation of [10], nA (prior sample

size) expresses the “weight” of prior information. From Bayes theorem the posterior

distribution of θ given the j -th observed response is

πA(θ|ynj
) = N

(
θ
∣∣Enj

, Vnj

)
, (1)
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where N(·|a, b) denotes a normal density of mean a and variance b and

Enj
=

nAθA + njynj

nA + nj
and Vnj

=
σ2

nA + nj
,

are the posterior expectation and the posterior variance of θ. Using iteratively (1) we

update the information on θ as each value of the response ynj
is observed, for j = 1, ... , J ,

and we use the posterior distribution to establish a stopping rule as proposed in the next

section.

3 Bayesian stopping rules for sequential trials

3.1 Sequential criterion

In this section we first recall the sequential criterion described in [10]. Given the observed

data ynj
, let

PπA,nj
(θ > δ|ynj

) = 1− Φ

(
δ − Enj√

Vnj

)
(2)

be the posterior probability that θ exceeds a minimally relevant clinical value δ, where

Φ(·) denotes the c.d.f. of the standard Normal random variable. The treatment is

declared successful if the experiment shows sufficiently strong evidence that probability

(2) is larger than a given threshold γ ∈ (0, 1). Hence, we proceed according to the

following stopping rule: if

PπA,nj
(θ > δ|ynj

) > γ (3)

the trial stops with success, otherwise the procedure is repeated for the (j +1)-th patient.

It may happen that condition (3) is not fulfilled before the maximum preplanned number

of patients Nmax is reached; in this case, the trial is terminated without success.

By adopting this sequential procedure, let N denote the random number of

observations collected up to fulfilment of condition (3), i.e.

N = min
{

nj ∈ N : PπA,nj
(θ > δ|Ynj

) > γ, j = 1, · · · , J
}

. (4)

Since it is not possible to derive the distribution of N analytically, to provide numerical

examples in Section 4.2 we resort to simulation. In particular, we are interested in

comparing the expected value of N with the optimal sample size that is obtained by the

corresponding non-sequential criterion introduced in [11, 13], i.e.

n∗ = min {n ∈ N : E (PπA
(θ > δ|Yn)) > γ} , (5)
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where E(·) is the expected value computed with respect to the distribution of Yn

(see Section 3.1.1 for details on the distribution of the data). According to [10], we

expect that the sequential procedure allows one to save observations with respect to the

corresponding non sequential criterion, that is E(N) ≤ n∗. This aspect will be further

commented in Section 3.3.

3.1.1 Conditional approach or Predictive approach?

Before introducing a robust version of the sequential criterion of Section 3.1, a

clarification is in order about the data drawing mechanism for simulating the distribution

of N. Two alternative approaches are briefly described below.

• Conditional approach. Data can be drawn sequentially from the sampling

distribution f (·; θD), where θD is a design target value for treatment effect. For

instance, in superiority trials, θD is chosen among those values of the parameter

denoting an effective treatment (i.e. values larger than δ).

• Predictive approach. Data can be drawn sequentially from the marginal

distribution, i.e.

mD(yn) =

∫
Θ

f (yn; θD)πD(θ)dθ,

where the prior distribution πD on θ (design prior) accounts for additional

uncertainty involved in the choice of the design value θD . Notice that πD must be a

proper distribution in order to have mD well defined. Moreover, in the special case

in which πD is a point-mass distribution centred on θD , we retrieve the sampling

distribution f (·; θD) and we actually go back to the conditional approach.

We refer to [11], [14], [15] for more detailed discussion on these approaches. Before

ending this section we now illustrate the possible distinction between the analysis prior

πA and the design prior πD . Although most of Bayesian sample size determination

methods make use of one prior distribution for computing both the posterior distribution

and the marginal distribution, in general πD and πA can be differently specified, as

argued by several authors (see for instance, [11], [14], [15], [16], [17]). Here, we just

recall the main distinctions between the two distributions, justified by their different role

in pre-posterior analysis.

• The analysis prior (πA) models pre-experimental information on θ that one wants

to account for in determining the posterior distribution. One of the most common

choices is to base prior elicitation on previous studies results, but it is also possible
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to use the analysis prior to formalize the subjective opinion of experts on the

phenomenon of interest. However, incorporation of “external” evidence on final

inference has been often criticized. The most straightforward solution is that of

using noninformative analysis priors (see, for instance [15]). Alternatively, one

can resort to a robust approach, as we suggest in next section, following [11].

Specifically, we consider classes of priors instead of single prior distributions for θ.

• The design prior distribution (πD) models uncertainty on the design value for

θ and is used to obtain the marginal predictive distribution for pre-posterior

computations. πD represents the design scenario we assume when planning the

trial and it is required to be a proper distribution, otherwise mD is not well specified.

Indeed, it is convenient to specify the design prior so that it is concentrated on the

values of θ representing the goal of the trial, as suggested in [15]. For instance,

in superiority trials the design prior assigns large probability to values of θ larger

than δ.

For further discussion on the distinction between the two prior distributions we refer

to [11] and [13] and the references therein. In the present paper, we will consider

the predictive approach: specifically in Section 4.2 we adopt a normal design prior,

namely πD(θ) = N(θ|θD ,σ2/nD), which yields as a marginal distribution of the data

mD(·) = N(·|θD ,σ2
(
n−1 + n−1

D

)
).

3.2 Robust Sequential Criterion

The use of a robust approach is motivated by one of the most criticized features of

Bayesian methods, that is the necessity of eliciting a specific prior distribution for

posterior analysis. Then in order to assess the impact of the choice of the prior

distribution we proceed as follows: (i) we replace the single prior by a class of distributions

that gives a more flexible and realistic representation of pre-experimental knowledge, (ii)

we study changes in posterior inference as the prior varies over the class. General

principles of the robust Bayesian approach are discussed in [18, 19, 20, 21]. Applications

to clinical trials are in [22, 23, 24, 25], while [11, 12, 13] are specifically centred on robust

sample size determination. We recall here the general idea of the robust approach: if the

range of posterior quantities of interest is small with respect to the various priors in the

class, then one can use the single prior, relying on the robustness of the final conclusions.

Conversely, if differences between the various priors in the class are relevant, one should
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be aware of the sensitivity of the posterior results to the prior choice and consequently

refine prior knowledge.

As mentioned above, in order to take into account the uncertainty involved in the

specification of the prior distribution, we consider a class of prior distributions ΓA instead

of a single prior πA. In this way, we can derive a robust version of the sequential criterion

of Section 3.1. The stopping rule based on condition (3) is extended as follows: we stop

the trial at step j if

inf
πA∈ΓA

Pπ,nj
(θ > δ|ynj

) > γ, j = 1, ... , J (6)

otherwise the recruitment proceeds to the (j + 1)-th patient and so on. If criterion (6)

is never fulfilled the trial stops after Nmax observations and the treatment is declared

ineffective. Now, let us denote by NΓ the random number of patients associated to the

stopping rule in (6), i.e.

NΓ = min

{
n ∈ N : inf

πA∈ΓA

Pπ,nj
(θ > δ|Ynj

) > γ, j = 1, ... , J

}
. (7)

This robust sequential criterion yields sample sizes that are uniformly larger than those

determined with the non robust sequential procedure. Moreover we recall that the robust

version of the non sequential criterion (5) is given by

n∗Γ = min

{
n ∈ N : E

(
inf

πA∈ΓA

PπA
(θ > δ|Yn)

)
> γ

}
, (8)

In Section 3.3 we discuss the relationships between sequential and non sequential, robust

and non robust sample sizes, whereas in Section 4.2 we illustrate the comparison by

simulation results. In the next paragraph we consider a specific choice for the class ΓA,

i.e. the class of ε-contamination prior distributions. This class has been widely studied

in the literature on Bayesian robustness. See among others [26, 27, 13].

The class of ε-contamination prior distributions is defined as follows

Γε = {π : π(θ) = (1− ε)πA + εq; q ∈ Q}

where πA is a base prior distribution, ε ∈ [0, 1] is the level of contamination and Q is a

conveniently chosen class of distributions. In the most general case, Q can be the class of

all distributions. Of course, other choices could be reasonable. However, as discussed in

[13] in the specific context of sample size determination, small differences with respect to
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the non robust case have been encountered when considering other contaminant classes,

such as unimodal distributions or unimodal symmetric distributions, which would make

the comparison with the fixed prior approach less interesting. Moreover, in general Q

can be regarded as a worst case. In order to calculate the inferior bound of the posterior

probability involved in criterion (6), the results of [26] can be exploited, as discussed in

details in [13].

3.3 Comparisons

In this section we compare the sample sizes obtained using sequential and non sequential,

robust and non robust criteria. The main relationships are summarizes in Figure 1. First

of all, let us focus on the vertical direction. As anticipated in Section 3.1, if we adopt

a sequential procedure the study dimension is on average smaller than the optimal non

sequential sample size, i.e. E(N) ≤ n∗. A similar relationship holds for robust criteria,

that is E(NΓ) ≤ n∗Γ. Let us look now at each row of the scheme: the robust approach

yields larger values of the sample size, regardless of the criterion being sequential or not.

Indeed, as discussed in [13], when planning a non sequential trial, using a robust approach

we actually account for additional uncertainty in the analysis prior specification and this

implies an increase in the number of required observations, that is n∗ ≤ n∗Γ. Moreover,

by considering increasingly wide classes of prior distribution we obtain larger values for

the corresponding optimal robust sample sizes. As we will show by simulation in Section

4 analogous considerations also apply to the sequential case, i.e. E(N) ≤ E(NΓ).

non sequential non robust robust

non sequential

sequential

n∗ < n∗Γ

∨ ↖↘ ∨

E(N) < E(NΓ)

Figure 1: The chart summarizes the relationships between sequential and non sequential,

robust and non robust sample sizes.

However, notice that previous remarks do not describe exhaustively all the possible
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comparisons displayed in Figure 1. It is interesting to investigate, in fact, the relationship

between the non sequential non robust sample size, n∗, and the expected number of

observations required by the sequential robust criterion, E(NΓ). Depending on the

choice of the class of prior distributions the latter can even entail an advantage in

terms of observations saving with respect to the former. This will be illustrated by the

example of Section 4.2. In particular, working with ε−contamination classes offer an

interesting key to analyse this comparison: we can assess the amount of contamination

to be introduced when applying the sequential robust procedure, such that the number

of observations is smaller than the non sequential non robust optimal sample size. In

order to formalize this comparison, we define

K (ε) =
n∗

E(NΓε)

and study its behaviour as a function of ε. Since, as argued before, E(NΓ) is larger

for wider classes of prior distributions Γε, K (ε) decreases for increasing levels of

contamination ε (see for instance Figure 5 in Section 4.2). In particular, we are interested

in determining the critical level ε̃, such that K (ε̃) = 1 or, equivalently, E(NΓ) = n∗, i.e.

the level of contamination that makes the two criteria equivalent in terms of required

number of patients. In summary, the interpretation of K (ε) is straightforward: if ε < ε̃,

then K (ε) > 1 and we conclude that using a sequential procedure allows us to keep the

average required number of observations smaller than n∗, even if we are introducing in

the analysis prior specification a certain amount of uncertainty (that is quantified by ε).

4 Example: efficacy trial on hypercholesterolemia

4.1 Monitoring a sequential trial

In this section, we show an example of an hypothetical efficacy trial based on [28] and

[29] in which a new experimental treatment against hypercholesterolemia is considered.

Let us suppose that treatment response is the reduction in total serum cholesterol in 4

weeks with respect to a baseline value (measured in 10−1 mmol/litre): the larger the

reduction the more effective the treatment. Let us assume a normal distribution for

the reduction. Let us also set the minimally clinical relevant reduction δ equal to 3,

according to clinical experience.

In practice, in the following we consider a fictitious dataset of observed responses

for 50 patients and we assume the data to be collected sequentially. Moreover, based

on the results of previous studies, we elicit a normal prior distribution of parameters
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θA = 2.5, σ2 = 4, nA = 10 and we set a threshold on the posterior probability scale

equal to γ = 0.8. Now we can proceed as described in Section 3.1: the trial stops as

soon as we have evidence of efficacy, otherwise we continue up to the maximum number

of patients, Nmax = 50. Results are presented in Figure 2: the posterior probability that

θ > δ (black circles) is sequentially updated until it exceeds the threshold γ, that is after

the 16-th patient is examined. Since condition (3) is fulfilled, the trial reaches success

and is terminated. Adopting the robust version (6) of the sequential criterion, using a

class Γε with ε = (0.1, 0.3, 0.5), the required number of patients to satisfy the stopping

rule increases to (17, 25, 35) respectively, as shown in the three panels of Figure 2 from

top to bottom.

In Figure 3 we display the predictive expectation of the posterior probability as a

function of n. Given a threshold γ = 0.8, we obtain n∗ = 25. Therefore, in this case

the sequentially selected sample size (16) is smaller than n∗. Moreover, as expected

using a robust approach increases the required number of observations: in this example

n∗Γ = (39, 73) for ε = (0.1, 0.3) and the optimal robust sample size even exceeds 100

units for ε = 0.5. In the next section we show by simulation that these relationships

hold in general, regardless of the criterion being sequential or not.

4.2 Simulation study

In this section we illustrate by simulation the comparisons between the sample sizes

obtained using sequential and non sequential, robust and non robust criteria. Let us

consider a simulation study under the setting described in Section 4.1. As pointed

out in Section 3.1, data are drawn from the marginal distribution mD . First of all we

need to specify a design prior: for illustrative purposes let us consider a normal density

with θD = 4, σ2 = 4, nD = 8. Hence, we simulate a large number of datasets, say

M = 10000, and for each given dataset we apply the previously described sequential

procedure. This yields M simulated values of N and NΓ depending on the stopping

rule (3) and on its robust version (6) respectively. The simulated distributions of the

random variables N (light grey) and NΓ (dark grey) are represented in Figure 4, for

different choices of the level of contamination. As expected, we have E(N) < E(NΓ):

for instance, when ε = 0.1 (panel (a)) the simulated expected values is E(N) = 15

for the non robust criterion and E(NΓ) = 20 for the robust criterion. Moreover, we

notice that, by increasing the level of contamination ε, the histogram of NΓ tends to

move towards larger values. In fact we obtain the values of E(NΓ) reported in Table

1 for increasing levels of contamination ε. From the histograms we also notice that, as
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(c) ε = 0.5
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Figure 2: Posterior probability PπA
(θ > δ|ynj ) (circles) and inferior bound of the posterior

probability infπA∈ΓA
PπA

(θ > δ|ynj ) (squares) w.r.t. the sequentially increasing number of

patients for (a) ε = 0.1, (b) ε = 0.3, (c) ε = 0.5.
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(a) ε = 0.1
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(b) ε = 0.3
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(c) ε = 0.5
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Figure 3: Predictive expected posterior probability as a function of the sample size using both

the non robust criterion (circles) and the robust criterion (squares) respectively, with Γε, for

(a) ε = 0.1, (b) ε = 0.3, (c) ε = 0.5.
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ε increases, the variability of the distribution is inflated. Hence the wider Γε (namely

the larger its contamination level ε), the larger the value of E(NΓ) is. As discussed

in Section 3.3, this behaviour is consistent with the result highlighted in [13] for non

sequential criteria. Table 1 also compares the values of E(NΓ) with the corresponding

optimal non sequential sample sizes n∗Γ.

n
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Figure 4: The simulated distribution of N (light grey) is compared with the simulated

distribution of NΓ (dark grey), with Γ = Γε for several choices of ε.

Up to this point we have retrieved in the example the main four relationships
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ε

E(NΓ)

n∗Γ

0 0.1 0.3 0.5 0.7 0.9

15 20 29 37 46 55

25 39 73 > 100 > 100 > 100

Table 1: Optimal sample sizes for increasing levels of contamination using sequential and non

sequential robust criteria, with θD = 4, nD = 8, σ2 = 4, θA = 2.5, nA = 10, γ = 0.8.

summarized in Figure 1. The last but most interesting comparison is the one between

the non sequential non robust sample size, n∗, and the sequential robust sample size,

E(NΓ). Analysing Table 1 we see that for instance for ε = 0.3 we have E(NΓ) = 29

that is larger than n∗ = 25 (corresponding to ε = 0 in the table). But for a smaller

level of contamination, for instance ε = 0.1, the sequential robust expected sample size

turns out to be smaller, E(NΓ) = 20. This provides an example of the idea introduced

in Section 3.3: when the class of priors Γε is sufficiently small, the robust sequential

criterion allows one to save observations (on average) with respect to the non robust

and non sequential optimal sample size.
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Figure 5: K (ε) is plotted with respect to ε. The critical level of contamination is ε̃ = 0.43.

Figure 5 shows the behaviour of K (ε) as a function of ε: for those values of ε

such that K (ε) > 1 the robust sequential sample size is smaller than n∗, whereas for

increasingly wide classes Γε, K (ε) decreases up to values smaller than 1. Now, we are

interested in determining the critical level of contamination ε̃, that is the amount of
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contamination such that E(NΓ) = n∗. Here we have ε̃ = 0.24: this value determines the

largest class of ε−contamination prior distributions yielding a robust sequential sample

size as small as the non robust non sequential one. In practice, this means that for levels

of contamination smaller than ε̃, working sequentially we can afford a robust procedure,

that is to say we pay the same price in terms of required observations. In other words,

with the sequential approach introducing a degree of uncertainty on the prior, until the

level ε̃, that does not imply a larger number of observations with respect to the non

sequential single-prior approach.

5 Conclusions

In this paper we have shown how a sequential procedure allows early termination when

there is evidence of treatment efficacy and enables the experimenter to reach a much

earlier conclusion than in a typical study with fixed sample size. This is very natural in a

Bayesian context, since updating information on the parameter of interest as patients are

enrolled, treated and evaluated for response, just translates in a sequential application of

Bayes theorem and in a straightforward condition on a quantity of interest to be checked.

An interesting extension of the proposed methodology could be a slight complication of

the stopping rule, to include the possibility of early stopping for futility. This would allow

to anticipate trial termination in case the ongoing results already indicate a negative

course that cannot be reverted even with extremely positive outcomes (see [10] for

details).

In summary, the main focus of this work is the introduction of a sequential procedure

adopting a robust approach, in order to control the impact of the prior specification

on the conclusions in terms of the required number of observations. However, the

preplanned optimal sample size turns out to be inflated with respect to the non robust

one and it sometimes becomes huge and therefore unreasonable (see [13] for discussion).

Here comes the advantage of using a sequential procedure that at the same time allows

one to deal with the issue of robustness, keeping the required number of observations

feasible, indeed sparing experimental units with respect to the non sequential non robust

method.
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