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Abstract

In our previous works a new regression model for imprecise random vari-
ables has been introduced. The imprecision of a random element has been
formalized by means of the fuzzy random variable (FRV). In details, a par-
ticular case of FRVs characterized by a center, a left and a right spread, the
LR family (LR FRV), has been considered. The idea is to jointly consider
three regression models in which the response variables are the center, and
two transforms of the left and the right spreads in order to overcome the
non-negativity conditions of the spreads. Response transformations could be
fixed, as we have done so far, but all inferential procedures, such as estima-
tion, hypothesis tests on the regression parameters, linearity test etc., could
be affected by this choice. For this reason in this work we consider a family of
parametric link functions, based on the Box-Cox transforms, and by means
of a computational procedure we will look for the transformation parameters
that minimize the prediction error of the model.

Keywords: LR fuzzy random variable, linear regression model, prediction
error, Box-Cox transforms

1. Introduction and motivation

In many contexts the statistical information might be imprecise. In or-
der to manage it the fuzzy sets could be used (see, for more details, Zadeh,
1965). In literature there are different statistical procedures for imprecise
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information. In this paper we restrict our attention to a family of regres-
sion models with imprecise information previously introduced: Ferraro et al.
(2010a, 2011) and Ferraro & Giordani (2011). In those works the imprecise
elements have been represented by means of a particular kind of fuzzy sets,
the LR family, determined by means of three parameters, the center, the left
and the right spread, and a particular kind of membership function. The
main difficulty when we treat with these data is the non-negativity condition
of the spreads. The new family of regression models considers jointly three
classical regression models whose responses are, respectively, the center and
the transforms of the left and the right spread of the fuzzy response variable,
and the explanatory variables are the center, the left and the right spread
of each fuzzy explanatory variable. By introducing the transforms we have
avoided a restricted procedure and we have obtained analytical solutions.
Response transformation is a usual approach used in the linear regression
context (see, for example, Atkinson & Riani, 2000). In practice, the para-
metric power transform proposed by Box & Cox (1964) is the most used in
the linear regression model context. In literature there are many works deal-
ing with this kind of problem (see, for example, Scallan et al., 1984, Edwards
& Hamilton, 1995, Foster et al., 2001, Marazzi & Yohai, 2006, Hamasaki &
Kim, 2007). This approach is used in order to adjust data to a linear regres-
sion model. Response transformations could be fixed, as we have done in our
previous works, but all inferential procedures, such as estimation, hypothe-
sis tests on the regression parameters, linearity test etc., could be affected
by this choice. For this reason this paper arises in order to overcome this
problem. A computational procedure will be introduced by means of a grid
search method in order to look for the transformation of the parameters that
minimizes the prediction error of the model.
The paper is organized in the following way. In the next section some pre-
liminaries are recalled, in details, the space of fuzzy sets, the concept of fuzzy
random variable, an appropriate distance and the basis of this work: a linear
regression model for imprecise random variables. In Section 3 the estima-
tion problem and hypothesis testing procedure without fixing transformation
functions are described. Section 4 contains some simulation studies that mo-
tivate the introduction of a procedure to obtain the transformation functions
parameters. A prediction error for a model with imprecise elements and a
cross validation procedure to estimate it are introduced and discussed in Sec-
tion 5. Section 6 focuses on the new computational procedure, described also
by means of an algorithm. In order to illustrate the empirical behaviour of
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this method, simulation and real case studies are reported, respectively, in
Section 6.1 and Section 6.2. Finally, in Section 7 there are some concluding
remarks.

2. Preliminaries

2.1. Fuzzy sets and fuzzy random variables

A fuzzy set Ã is a subset of the universe U defined through the so-called
membership function µÃ (x), ∀x ∈ U , expressing the extent to which x be-

longs to Ã. Such a degree ranges from 0 (complete non-membership) to
1 (complete membership). A particular class of fuzzy sets is the LR fam-
ily, whose members are the so-called LR fuzzy numbers. The space of the
LR fuzzy numbers is denoted by FLR. A nice property of the LR family
is that its elements can be determined uniquely in terms of the mapping
s : FLR → R3, i.e., s(Ã) = sÃ = (Am, Al, Ar). This implies that Ã can be
expressed by means of three real-valued parameters, namely, the center (Am)
and the (non-negative) left and right spreads (Al and Ar, respectively). In

what follows it is indistinctly used Ã ∈ FLR or (Am, Al, Ar).
The arithmetics considered in FLR are the natural extensions of the Minkowski
sum and the product by a positive scalar for interval. Going into detail, the
sum of Ã and B̃ in FLR is the LR fuzzy number Ã+ B̃ so that

(Am, Al, Ar) + (Bm, Bl, Br) = (Am +Bm, Al +Bl, Ar +Br)

and the product of Ã ∈ FLR by a scalar γ > 0 is

γ(Am, Al, Ar) = (γAm, γAl, γAr).

The membership function of Ã ∈ FLR can be written as

µÃ(x) =


L
(
Am−x
Al

)
x ≤ Am, Al > 0,

1{Am}(x) x ≤ Am, Al = 0,
R
(
x−Am

Ar

)
x > Am, Ar > 0,

0 x > Am, Ar = 0,

(1)

where the functions L, R : R → [0, 1] are convex upper semi-continuous
functions so that L(0) = R(0) = 1 and L(z) = R(z) = 0, for all z ∈ R\ [0, 1],
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and 1I is the indicator function of a set I.
Ã is a triangular fuzzy number if (1) takes the form

µÃ (x) =


0 x ≤ Am − Al,

1− Am−x
Al Am − Al ≤ x ≤ Am,

1− x−Am

Ar Am ≤ x ≤ Am + Ar,
0 x ≥ Am + Ar.

(2)

The α-level set (0 < α ≤ 1) of Ã can be defined as the non-empty compact
convex subset of R, Aα, such that Aα =

{
x ∈ U : µÃ(x) ≥ α

}
. If α = 0, A0 =

cl({x ∈ R : µÃ(x) > 0}). For more details one can refer to Zimmermann
(2001).
A distance for LR fuzzy numbers has been introduced by Yang & Ko (1996).
It is

D2
LR(Ã, B̃) = (Am −Bm)2 + [(Am − λAl)− (Bm − λBl)]2

+ [(Am + ρAr)− (Bm + ρBr)]2. (3)

In (3), the parameters λ =
∫ 1

0
L−1(ω)dω and ρ =

∫ 1

0
R−1(ω)dω play the role

of taking into account the shape of the membership function. For instance, if
the membership function takes the form reported in (2), it is λ = ρ = 1

2
. As

it will be clear, for what follows it is necessary to embed the space FLR into
R3 by preserving the metric. For this reason a generalization of the Yang and
Ko metric has been derived (see Ferraro et al. 2010a). Given a = (a1, a2, a3)
and b = (b1, b2, b3) ∈ R3, it is

D2
λρ(a, b) = (a1 − b1)2 + ((a1 − λa2)− (b1 − λb2))2

+ ((a1 + ρa3)− (b1 + ρb3))
2, (4)

where λ, ρ ∈ R+. The distance in (4) will be used in the following as a tool
for quantifying errors in the regression model we are going to introduce.
In order to jointly consider two kinds of uncertainty, randomness and impre-
cision, the concept of of fuzzy random variable (FRV) arises. In what follow
we limit our attention to FRVs of LR type (in brief LR FRV). Let (Ω, A, P )

be a probability space, an LR FRV is a mapping X̃ : Ω → FLR such that
the α-level set Xα is a random compact convex set for any α ∈ [0, 1] (see,
for further details, Puri & Ralescu, 1985, 1986). As for non-fuzzy random
variables, it is possible to determine the moments of a FRV. The expectation
of an LR FRV X̃, E(X̃), is the fuzzy set in FLR (EXm, EX l, EXr). With

respect to (3) the variance of X̃ is σ2
X̃

= var(X̃) = E[(D2
LR(X̃, E(X̃))] (see

Ferraro et al., 2010a).
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2.2. Linear regression model for fuzzy random variables

In our previous works, Ferraro et al. (2010a, 2011) and Ferraro & Gior-
dani (2011), we introduced a linear regression model for imprecise informa-

tion. In the general case an LR fuzzy response variable Ỹ and p LR fuzzy
explanatory variables X̃1, X̃2, ..., X̃p observed on a random sample of n sta-

tistical units, {Ỹi, X̃1i, X̃2i, ..., X̃pi}i=1,...,n, have been taken into account. We
consider the shape of the membership functions as fixed, so the fuzzy re-
sponse and the fuzzy explanatory variables are determined only by means of
three parameters, namely the center and the left and right spreads. We faced
the non-negativity constraints of the spreads of the response variable by in-
troducing two invertible functions g : (0,+∞) −→ R and h : (0,+∞) −→ R,
in order to make the spreads assuming all the real values. In that way we
didn’t solve a numerical procedure, we formalized a theoretical model and we
got a complete solution for the model parameters. The model is formalized
as 

Y m = X a
′
m + bm + εm,

g(Y l) = X a
′

l + bl + εl,
h(Y r) = X a

′
r + br + εr,

(5)

where X = (Xm
1 , X

l
1, X

r
1 , ..., X

m
p , X

l
p, X

r
p) is the row-vector of length 3p of

all the components of the explanatory variables, εm, εl and εr are real-
valued random variables with E(εm|X) = E(εl|X) = E(εr|X) = 0, am =
(a1mm, a

1
ml, a

1
mr, ..., a

p
mm, a

p
ml, a

p
mr), al = (a1lm, a

1
ll, a

1
lr, ..., a

p
lm, a

p
ll, a

p
lr) and ar =

(a1rm, a
1
rl, a

1
rr, ..., a

p
rm, a

p
rl, a

p
rr) are row-vectors of length 3p of the parameters

related to X. The generic atjj′ is the regression coefficient between the com-

ponent j ∈ {m, l, r} of Ỹ (where m, l and r refer to the center Y m and the
transforms of the spreads g(Y l) and h(Y r), respectively) and the component

j′ ∈ {m, l, r} of the explanatory variables X̃ t, t = 1, ..., p, (where m, l and r
refer to the corresponding center, left spread and right spread). For exam-
ple, a2ml represents the relationship between the center of the response, Y m,

and the left spread of the explanatory variable X̃2 (X l
2). Finally, bm, bl, br

denote the intercepts. Therefore, by means of (5), we aim at studying the
relationship between the response and the explanatory variables taking into
account not only the randomness due to the data generation process, but
also the information provided by the spreads of the explanatory variables
(the imprecision of the data), which are usually arbitrarily ignored.
The covariance matrix of X is denoted by ΣX = E

[
(X − EX)

′
(X − EX)

]
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and Σ stands for the covariance matrix of (εm, εl, εr), with variances, σ2
εm ,

σ2
εl

and σ2
εr , strictly positive and finite.

In this context the dependence relationship is strictly related to the shape
of the functions g and h, so we aim at studying the gh-linear dependence
between the fuzzy response and the fuzzy explanatory variables. In this
connection we defined a determination coefficient taking into account the de-
composition of the total variation. By indicating Y T = (Y m, g(Y l), h(Y r)),
we obtain

R2 =
E
[
D2
λρ(E(Y T |X), E(Y T ))

]
E
[
D2
λρ(Y

T , E(Y T ))
] = 1−

E
[
D2
λρ(Y

T , E(Y T |X))
]

E
[
D2
λρ(Y

T , E(Y T ))
] . (6)

It represents the part of total variation of the gh-scale transformation of Ỹ
explained by the model. This coefficient measures the degree of gh-linear
relationship. As in the classical case, it takes values in [0, 1] (see, for more
details, Ferraro et al., 2011, and Ferraro & Giordani, 2011). In the sequel,
when referring to gh-linear independence we will drop the prefix gh for the
sake of brevity.

3. Estimation problem and hypothesis testing procedure without
fixing transformation functions

In Ferraro et al. (2010a, 2011) and Ferraro & Giordani (2011) we have
fixed the transformation functions f and g and then we have estimated the
regression parameters and the determination coefficient. In this paper the
aim is considering a family of transforms, the Box-Cox transformation model
(see, for more details, Box and Cox, 1964). The idea is to not fix a priori the
transforms fitting instead, by means of an algorithm, the optimal parameters
of the family. In general, the transformed spreads, g(Y l) and h(Y r) in model
(5), could be expressed as

g(Y l) =


(Y l)k1−1

k1
, k1 6= 0

log(Y l), k1 = 0

(7)

and

h(Y r) =


(Y r)k2−1

k2
, k2 6= 0

log(Y r), k2 = 0

(8)
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(see, for more details, Box & Cox, 1964).
In order to estimate the regression parameters we consider a least squares
criterion and we obtain the following solution

â
′

m = (Xc′Xc)−1Xc′Y mc,

â
′

l(k1) = (Xc′Xc)−1Xc′g(Y l)c,

â
′

r(k2) = (Xc′Xc)−1Xc′h(Y r)c,

b̂m = Y m −X â
′

m,

b̂l(k1) = g(Y l)−X â
′

l,

b̂r(k2) = h(Y r)−X â
′

r,

where

Y mc = Y m − 1Y m,

g(Y l)c = g(Y l)− 1g(Y l),

h(Y r)c = h(Y r)− 1h(Y r)

are the centered values of the response variables,

Xc = X− 1X

is the centered matrix of the explanatory variables and, Y m, g(Y l), h(Y r)
and X denote, respectively, the sample means of Y m, g(Y l), h(Y r) and X.

In details, â
′

l(k1) and b̂l(k1) are functions of the transformation parameter

k1, and â
′

r(k2) and b̂r(k2) of the parameter k2.
By taking into account the decomposition of the total sum of squares (SST),

an estimator of the determination coefficient, R̂2(k1, k2), which is function of
k1 and k2, can be defined as

R̂2(k1, k2) = 1− SSE(k1, k2)

SST (k1, k2)
=
SSR(k1, k2)

SST (k1, k2)
,

where

SST (k1, k2) =
∥∥Y m − 1Y m

∥∥2 +
∥∥∥(Y m − λg(Y l)

)
−
(

1Y m − λ1 g(Y l)
)∥∥∥2

+
∥∥∥(Y m + ρh(Y r))−

(
1Y m + ρ1h(Y r)

)∥∥∥2 ,
7



is the total sum of squares,

SSE(k1, k2) =
∥∥∥Y m − Ŷ m

∥∥∥2 +
∥∥∥(Y m − λg(Y l)

)
−
(
Ŷ m − λĝ(Y l)

)∥∥∥2
+

∥∥∥(Y m + ρh(Y r))−
(
Ŷ m + ρĥ(Y r)

)∥∥∥2 ,
is the residual sum of squares,

SSR(k1, k2) =
∥∥∥Ŷ m − 1Y m

∥∥∥2 +
∥∥∥(Ŷ m − λĝ(Y l)

)
−
(

1Y m − λ1 g(Y l)
)∥∥∥2

+
∥∥∥(Ŷ m + ρĥ(Y r)

)
−
(

1Y m + ρ1h(Y r)
)∥∥∥2 ,

is the regression sum of squares, with Ŷ m, ĝ(Y l), ĥ(Y r) being the vectors of
the estimated values, that is,

Ŷ m = Xâ
′

m + 1 b̂m, ĝ(Y l) = Xâ
′

l(k1) + 1 b̂l(k1), ĥ(Y r) = Xâ
′

r(k2) + 1 b̂r(k2).

R̂2 represents the part of the total sum of squares explained by the regression
model, so it can be considered as a goodness-of-fit measure, taking values in
[0, 1].

For model (5) we have introduced different inferential procedures, in particu-
lar, a linear independence test has been analyzed in Ferraro et al. (2011) and
in Ferraro & Giordani (2011), and a linearity test in Ferraro et al. (2010b). In
order to test the null hypothesis of linear independence, H0 : R2 = 0, against
the alternative H1 : R2 > 0, the test statistic Tn = nR̂2(k1, k2) is used. A
bootstrap algorithm can be adopted. In order to obtain a bootstrap popu-
lation fulfilling the null hypothesis, the residual variables Zm = Y m −X â

′

m,

Z l = g(Y l) − X â
′

l(k1) and Zr = h(Y r) − X â
′

r(k2) must be considered.
A sample of size n with replacement

{
(X∗i , Z

m
i
∗, Z l

i
∗
, Zr

i
∗)
}
i=1,...,n

from the

bootstrap population is drawn and the bootstrap statistic to be used is

T ∗n(k1, k2) = n

n∑
i=1

D2
λρ(Ẑ

∗
i
T , Z∗T )

σ2
Y T

,

where Z∗Ti = (Zm
i
∗, Z l

i
∗
, Zr

i
∗). The non-parametric bootstrap test is based

on the following algorithm:
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Algorithm

Step 1: Compute the estimates âm, âl(k1), âr(k2) and the value of the statis-
tic Tn(k1, k2)

Step 2: Compute the bootstrap population fulfilling the null hypothesis,{
(X i, Z

m
i , Z

l
i , Z

r
i )
}
i=1,...,n

, (9)

Step 3: Draw a sample of size n with replacement{
(X∗i , Z

m
i
∗, Z l

i

∗
, Zr

i
∗)
}
i=1,...,n

,

from the bootstrap population (9).

Step 4: Compute the bootstrap estimates â∗m, â∗l (k1), â
∗
r(k2) and the value

of the bootstrap statistic T ∗n(k1, k2)

Step 5: Repeat Steps 3 and 4 a large number B of times to get a set of B
estimators, denoted by {T ∗n1(k1, k2), ..., T ∗nB(k1, k2)}.

Step 6: Compute the bootstrap p-value as the proportion of values in the
sequence {T ∗n1(k1, k2), ..., T ∗nB(k1, k2)} being greater than Tn(k1, k2).

4. Synthetic example

In this section we consider synthetic data in order to show the influence
of the shape of the transformation functions on some inferential procedures.
Both in the context of hypothesis test procedures and in the analysis of the
power function, we refer to a specific class of dependence model (borrowed
from the shape of the Box-Cox transform).
The choice of the transformation parameters could affect the results of an
hypothesis test. Consider the following variables: an LR fuzzy response
variable Ỹ , a real explanatory variable X1 and an LR fuzzy explanatory
variable X̃2. In details, we deal with the following real random variables:
X1, behaving as Unif(−2, 2) random variable, Xm

2 behaving as Unif(−1, 1)
random variable, X l

2 and Xr
2 as χ2

1, and ε behaving as a N(0, 0.2), and we
construct the center, the left and the right spreads as

Y m = X1 +Xm
2 +X l

2 +Xr
2 + ε

Y l =
[
2
(
X1 +Xm

2 +X l
2 +Xr

2 + ε
)

+ 1
] 1

2

Y r =
[
−2
(
X1 +Xm

2 +X l
2 +Xr

2 + ε
)

+ 1
] 1
−2
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A sample of n = 50 units is drawn from the above variables. If we fix the
following transforms

g(Y l) =
(Y l)2 − 1

2

and

h(Y r) =
(Y r)−2 − 1

−2

by means of a bootstrap linear independence testing procedure (see, for more
details, Ferraro et al., 2011, and Ferraro & Giordani, 2011), we obtain a p-
value equal to 0, hence we should reject the null hypothesis of linear inde-
pendence. For different parameters of the Box-Cox transform we could reach
the same conclusions but, if for example we use the following parameters

g(Y l) =
(Y l)−2 − 1

−2

and

h(Y r) =
(Y r)2 − 1

2

we obtain a bootstrap p-value equal to .4520, hence in this case the null
hypothesis could not be rejected.
We analyze now the power of the linear independence test. We have drawn
a sample of size 50 from the following real random variables: X, behaving as
N(0, 1) random variable, εm behaving as N(0, 1) random variable, εl and εr
as N(0, 0.5). We construct the center, the left and the right spreads in the
following way:

Y m = amX + εm

Y l = [2 (alX + εl) + 1]
1
2

Y r = [−2 (arX + εr) + 1]−
1
2

(10)

As the values of the parameters am, al and ar get large the models tend to
the alternative hypothesis so the percentages of rejection approximate the
power of the test. According to the way we have constructed the data the
logical choices of the parameters of the Box-Cox transforms are, respectively,
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Table 1: Empirical percentages of rejection (n = 50).

am al ar situation A situation B
0 0 0 6.08 6.20
0 .1 0 6.44 6.41
0 .2 0 7.17 7.09
0 .3 0 8.88 8.17
0 .4 0 11.19 9.51
0 .5 0 14.94 10.45
0 .6 0 19.96 11.24
0 .7 0 26.70 12.41
0 .8 0 36.67 13.36
0 .9 0 46.97 14.07
0 1.0 0 58.73 14.41
0 1.1 0 70.69 15.27
0 1.2 0 80.69 15.88
0 1.3 0 87.74 15.41
0 1.4 0 93.06 16.17
0 1.5 0 96.04 16.48
0 1.6 0 97.96 16.97
0 1.7 0 99.17 16.56
0 1.8 0 99.56 17.29
0 1.9 0 99.85 17.19
0 2.0 0 99.92 18.52
0 2.1 0 99.97 17.10
0 2.2 0 100 17.80
0 2.3 0 100 18.03

k1 = 2 and k2 = −2. We consider two situations: situation A with k1 = 2 and
k2 = −2 and situation B with k1 = 0 and k2 = 0 (usual choice in our previous
works). The values of the percentages of rejection when am = ar = 0 and for
increasing values of al are reported in table 1. Furthermore, from Figure 1 it is
evident that the choice of k1 and k2 affects the power of the test. In particular,
the power function tends quickly to 1 when the appropriate transforms are
used. It seems to slowly increase to 1 with logarithmic transforms.
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Figure 1: Empirical percentages of rejection for increasing values of al in situation A and
situation B
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5. Prediction error

In a regression context there are two viewpoints: the structural and the
predictive one. From a predictive point of view to check the adequacy
of our model it is important to introduce a prediction error. We should
have a training set to estimate the regression parameters and a test set
to evaluate the regression model by means of the prediction error. We in-

dicate with
{
Ỹ TR
i , X̃TR

1i , X̃
TR
2i , ..., X̃

TR
pi

}
i=1,...,nTR

the training set and with

{Ỹ TS
i , X̃TS

1i , X̃
TS
2i , ..., X̃

TS
pi }i=1,...,nTS

the test set. By means of the distance
D2
λρ, the prediction error is defined as the expected value of the distance be-

tween the observed values of the fuzzy response in the test set and the fitted
values of the response constructed by means of the estimators obtained in
the training set and the explanatory variables observed in the test set. In
details,

PE(k1, k2) = E

(∥∥∥Y mTS −
(
XTS âTRm

′
+ 1 b̂TRm

)∥∥∥2 (11)

+
∥∥∥(Y mTS − λg(Y lTS)

)
−
(
XTS âTRm

′
+ 1 b̂TRm − λ

(
XTS âTRl

′
(k1) + 1 b̂TRl (k1)

))∥∥∥2
+
∥∥∥(Y mTS + ρh(Y rTS)

)
−
(
XTS âTRm

′
+ 1 b̂TRm + ρ

(
XTS âTRr

′
(k2) + 1 b̂TRr (k2)

))∥∥∥2) ,
where aTRm , aTRl (k1), a

TR
r (k2), b

TR
m , bTRl (k1) and bTRr (k2) are the estimators of

the regression parameters obtained in the training set.
In practice, there are different approaches to estimate the prediction error. In
this work the K-fold cross-validation procedure is performed (see, for more
details, Hastie et al., 2009). It consists in splitting the data into K roughly
equal-sized parts. For the k-th part we calculate the predicted/fitted values
of the response considering the regression parameters estimated by using the
remaining K − 1 parts. That is, the k-th part is considered as test set and
the remaining K − 1 parts are the training set. We repeat this procedure
K times. In details, the estimated prediction error by means of a cross
validation procedure is

P̂ECV (k1, k2) =
1

K

K∑
k=1

Errk, (12)
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where

Errk =

(∥∥∥Y m
k
TS −

(
XTS
k âTR−km

′
+ 1 b̂TR−km

)∥∥∥2 (13)

+
∥∥∥(Y m

k
TS − λg(Y l

k

TS
)
)
−
(
XTS
k âTR−km

′
+ 1 b̂TR−km − λ

(
XTS
k âTR−kl

′
+ 1 b̂TR−kl

))∥∥∥2
+
∥∥∥(Y m

k
TS + ρh(Y r

k
TS)
)
−
(
XTS
k âTR−km

′
+ 1 b̂TR−km + ρ

(
XTS
k âTR−kr

′
+ 1 b̂TR−kr

))∥∥∥2) ,
with âTR−km , âTR−kl (k1), â

TR−k
r (k2), b̂

TR−k
m , b̂TR−kl (k1), b̂

TR−k
r (k2) that are the

regression parameters estimated on the training set obtained by removing

the k-th part and {Y m
k
TS, Y l

k

TS
, Y r

k
TS,XTS

k } is the test set obtained by con-
sidering the k-th part.

6. Fitting the parameters of the Box-Cox transformations

All the inferential procedures related to model (5) could be influenced
by the choice of the transforms. For this reason it is important to take into
account the choice of these functions. That is, it should be introduced a
procedure for looking for the transformation parameters. In this work the
idea is to get the transformations in the Box-Cox family that minimize the
prediction error of the model.
We introduce a standard grid search method in this context (see, for example,
Foster et al., 2001). The grid is usually defined by a multidimensional array
(in our case we use two dimensions). Each dimension has a range of values.
Each range is divided into a set of equal-valued intervals. In our case, the two
dimensions are represented by the transformation parameters, k1 and k2. For
different values of k1 and k2 we obtain the estimated regression parameters,
âm, b̂m, âl(k1), b̂l(k1), âr(k2) and b̂r(k2), and the prediction error estimated

by means of cross validation P̂ECV (k1, k2) reported in a matrix/grid whose
rows and columns represent the values of the parameters k1 and k2. In prac-
tice, we consider a specific range of the values of the parameters. Suitable
values for k1 and k2 are in the compact interval [−2, 2] (see, for more details,
Carroll, 1982). The aim is checking the minimum values in the grid/matrix
that represent the minimum prediction error.
In order to obtain the expected results we consider the following algorithm
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Algorithm

Step 1: For k1 = −2 and k2 = −2 compute the transformed spreads g(Y l)

and h(Y r), the estimates âm, âl(k1), âr(k2), b̂m, b̂l(k1), b̂r(k2) and the

value of P̂ECV (k1, k2)

Step 2: Repeat Step 1 for k1 and k2 from −2 to 2 with increments of 0.1 and
obtain a grid/matrix of size 41× 41, where the rows represent different
values of k1 and the columns different values of k2.

Step 3: Choose the minimum in the matrix obtained in Step 2

Step 4: Select the row and the column of the minimum obtained in Step 3.
These represent the optimal values of the parameters k1 and k2 of the
Box-Cox family

6.1. Empirical results

In order to illustrate the empirical behaviour of the algorithm we have
analyzed a Monte Carlo simulation. We have created a data set in which the
spreads of the fuzzy response are linearly related with the explanatory ones
by means of specific transforms. We have generated the following variables:
an LR fuzzy response variable Ỹ , a real explanatory variable X1 and an
LR fuzzy explanatory variable X̃2. We deal with the following real random
variables: X1, behaving as Unif(−2, 2) random variable, Xm

2 behaving as
Unif(−1, 1) random variable, X l

2 and Xr
2 as χ2

1, and εm, εl, εr behaving as
a N(0, 0.2). We construct the center, the left and the right spreads in the
following way:

Y m = X1 + 1.2Xm
2 + 0.3X l

2 + 0.5Xr
2 + εm

Y l =
[
1.2
(
0.7X1 +Xm

2 + 0.4X l
2 + 0.3Xr

2 + εl
)

+ 1
] 1

1.2

Y r =
[
−1
(
−0.8X1 + 1.3Xm

2 +X l
2 + 0.4Xr

2 + εr
)

+ 1
]−1 (14)

We draw N random samples of size n and for each one we estimate the
parameters k1 and k2 of the transforms by means of the introduced com-
putational procedure. By considering the sequence of N values of the es-
timated parameters, that is an empirical distribution, we compute the es-
timated mean and mean squared error for different sample sizes n. In de-
tails, for each estimated parameter, we compute Ê(k̂) =

∑N
j=1 k̂j/N and

M̂SE(k̂) =
∑N

j=1

(
k̂j − k

)2
/N .
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Table 2: Estimated mean and mean square error for the estimated transformation param-
eters k̂1 and k̂3 for different sample sizes.

n Ê(k̂1) M̂SE(k̂1) Ê(k̂2) M̂SE(k̂2)

30 1.1681 .0651 -.9959 .0025
50 1.1778 .0221 -.9962 .0012
100 1.1804 .0180 -.9966 .0009
200
300

As reported in Table 2, the estimated means tend to the real values of the
parameters and the estimated mean square errors tend to 0 as n increases.

6.2. Real case studies

We consider two examples analyzed in two previous work in which the
transforms have been considered as fixed. The first one concerns a study
about a reforestation in a given area of Asturias (Spain), carried out in
the INDUROT institute (University of Oviedo), in which the quality of the
trees has been analyzed (see, for more details, Colubi, 2009, and Ferraro et
al., 2011). This characteristic has been determined on the basis of subjec-
tive judgments/perceptions, through the observation of some characteristics
of the trees related to the quality (the leaf structure, the root system, the
relationship height/diameter, and so on). The experts perceptions are rep-
resented by means of a fuzzy-valued scale, in particular, by means of LR
triangular fuzzy numbers. In order to analyze the linear relationship be-
tween this characteristic and the height (X1) and the diameter (X2)of the
trees, the values related to 238 trees have been observed. By means of the
new procedure we obtain k1 = 1.9 e k2 = −2 as optimal parameters of
Box-Cox family and the corresponding estimated prediction error is equal to
154.3763.
The second example is about the students’ satisfaction of a course. In or-
der to evaluate it, their subjective judgments/ perceptions are observed on
a sample of n = 64 students (see, for more details, Ferraro & Giordani,
2011). For any student, four characteristics are observed: the overall assess-
ment of the course, the assessment of the teaching staff, the assessment of
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the course content and the average mark (single-valued variable). We man-
aged them in terms of fuzzy variables, in particular of triangular type (hence
λ = ρ = 1/2). For analyzing the linear relationship of the overall assessment

of the course (Ỹ ) on the assessment of the teaching staff (X̃1), the assess-

ment of the course contents (X̃2) and the average mark (X3), the proposed
linear regression model is employed based on a sample of 64 students. By
means of the introduced fitting parameters procedure it results that the opti-
mal parameters k1 and k2 are, respectively, 1 and −2 and the corresponding
estimated prediction error is 41.7363.

7. Concluding remarks

In this paper we have introduced a computational procedure in order to
optimize the behaviour of a linear regression model with LR fuzzy elements
from a structural and predictive point of view. We have referred to a fam-
ily of transforms of the left and the right spread of the fuzzy response, the
Box-Cox family, we have reported the estimation problem and the hypoth-
esis test procedure without fixing a specific transformation function and we
have analyzed and discussed the influence of this choice on some inferential
procedures. From this analysis, the necessity of introduced a procedure in
order to choose the transformation parameters arises. In order to construct
it, a prediction error has been defined. The results obtained seem to be ap-
propriate in this context.
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