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Abstract Confidence intervals for the parameters of a linear regression model with
a fuzzy response variable and a set of real and/or fuzzy explanatory variables are
investigated. The family of LR fuzzy random variables is considered and an appro-
priate metric is suggested for coping with this type of variables. A class of linear
regression models is then proposed for the center and for suitable transforms of the
spreads in order to satisfy the non-negativity conditions for the latter ones. In or-
der to estimate the regression parameters confidence intervals are introduced and
discussed. Since there are no parametric models for the imprecise variables, a boot-
strap approach has been used. The empirical behavior of the procedure is analyzed
by means of simulated data and a real-case study.

Key words: Fuzzy random variables, Linear regression analysis, Confidence re-
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1 Introduction

The study of relationships between variables is a crucial point in the investigation
of natural and social phenomena. A particular relevance, in this connection, must be
given to the analysis of the link between a “response” variable, say Y , and a set of
“explanatory” variables, say X1, X2,...,Xp.
When approaching this problem from a statistical viewpoint, we realize that sev-
eral sources of uncertainty may affect the analysis. These concern: a)sampling vari-
ability; b)partial or total ignorance about the kind of relationship between Y and
(X1, ...,Xp); c)imprecision/vagueness in the way statistical data concerning these
variables are measured (see, for instance, Coppi, 2008, for a detailed examination
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of the various sources of uncertainty in Regression Analysis).
In the present paper we focus our attention on sources a) and c). To this purpose
the notion of Fuzzy Random Variable (FRV) is utilized (Puri & Ralescu, 1986).
By means of it, we take simultaneously into account the uncertainty due to the
randomness and that pertaining to the imprecision/vagueness of the observed data.
A regression model, in this context, aims at establishing a link between a random
fuzzy response variable, say Ỹ , and a set of random fuzzy explanatory variables, say
X̃1,...,X̃p. When this link is expressed in functional terms, the model may be written
in the following way:

Ẽ
(

Ỹ
)
= f̃

(
X̃1, ..., X̃p

)
,

where both Ẽ (·) and f̃ (·) are fuzzy sets.
A complete treatment of the above model in the framework of parametric inference
would require the explicitation of the family of joint densities

p
(

Ỹ , X̃1, ..., X̃p/θ

)
,

where θ is a vector of parameters, or at least of the conditional densities

p
(

Ỹ/X̃1, ..., X̃p,θ
)
.

An attempt in this direction has been made by Näther and co-authors (Näther, 2000,
2006; Wünsche & Näther, 2002). Unfortunately several limitations have been found,
when trying to extend the classical theory of linear models to the case of fuzzy vari-
ables. One of the causes of these limitations consists in the lack of an appropriate
family of sampling models for FRVs supporting the development of a complete in-
ferential theory (consider, for example, the difficulty in defining a suitable notion of
Normal FRVs).
In the present paper a different approach is adopted. First, the membership functions
of the involved variables are formalized in terms of LR fuzzy numbers (in particular
triangular fuzzy numbers characterized by three quantities: center, left spread, right
spread). Then an appropriate distance between triangular fuzzy numbers is intro-
duced and an isometry is found between the space of triangular fuzzy numbers and
R3. This allows the construction of a parametric regression model linking respec-
tively the center, left spread and right spread of the response variable to the centers
and spreads of the explanatory variables. Suitable transforms of the spreads of the
response variable are utilized in order to ensure the non-negativity of the estimated
spreads.
While the point estimation problem concerning this model has been dealt with in
previous works (see Ferraro et al., 2010, 2011; Ferraro & Giordani, 2011), the main
objective of the present paper consists in the evaluation of the sampling variation of
the estimated regression parameters. This is achieved by means of confidence inter-
vals, which are constructed by applying an appropriate bootstrap procedure.
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The work is organized as follows. In Section 2 some preliminary notions concern-
ing fuzzy sets, LR fuzzy numbers and their distance, the definition of FRVs and their
properties are briefly recalled. In Section 3 the linear regression model for LR fuzzy
variables is introduced along with the procedure for estimating its parameters. The
construction of bootstrap confidence intervals is illustrated in Section 4. A simu-
lation study and a real-case analysis are described in Section 5, while concluding
remarks are made in Section 6.

2 Preliminaries

Given a universe U of elements, a fuzzy set Ã is defined through the so-called mem-
bership function µÃ : U → [0,1]. For a generic x ∈U , the membership function ex-
presses the extent to which x belongs to Ã. Such a degree ranges from 0 (complete
non-membership) to 1 (complete membership).

A particular class of fuzzy sets is the LR family, whose members are the so-called
LR fuzzy numbers. The space of the LR fuzzy numbers is denoted by FLR. A nice
property of the LR family is that its elements can be determined uniquely in terms
of the mapping s : FLR→R3, i.e., s(Ã) = sÃ = (Am,Al ,Ar). This implies that Ã can
be expressed by means of three real-valued parameters, namely, the center (Am) and
the (non-negative) left and right spreads (Al and Ar, respectively). In what follows it
is indistinctly used Ã ∈FLR or (Am,Al ,Ar). The membership function of Ã ∈FLR
can be written as

µÃ(x) =


L
(

Am−x
Al

)
x≤ Am, Al > 0,

1{Am}(x) x≤ Am, Al = 0,

R
(

x−Am

Ar

)
x > Am, Ar > 0,

0 x > Am, Ar = 0,

(1)

where the functions L and R are particular decreasing shape functions from R+ to
[0,1] such that L(0) = R(0) = 1 and L(x) = R(x) = 0,∀x ∈ R \ [0,1], and 1I is the
indicator function of a set I. Ã is a triangular fuzzy number if L(z) = R(z) = 1− z,
for 0≤ z≤ 1.

The operations considered in FLR are the natural extensions of the Minkowski
sum and the product by a positive scalar for intervals. Going into detail, the sum of
Ã and B̃ in FLR is the LR fuzzy number Ã+ B̃ so that

(Am,Al ,Ar)+(Bm,Bl ,Br) = (Am +Bm,Al +Bl ,Ar +Br),

and the product of Ã ∈FLR by a positive scalar γ is

γ(Am,Al ,Ar) = (γAm,γAl ,γAr).
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Yang & Ko [13] defined a distance between two LR fuzzy numbers X̃ and Ỹ as
follows

D2
LR(X̃ ,Ỹ )=(Xm−Y m)2+[(Xm−λX l)−(Y m−λY l)]2+[(Xm +ρX r)−(Y m +ρY r)]2,

where the parameters λ =
∫ 1

0 L−1(ω)dω and ρ =
∫ 1

0 R−1(ω)dω play the role of
taking into account the shape of the membership function. For instance, in the tri-
angular case, it is λ = ρ = 1

2 . For what follows it is necessary to embed the space
FLR into R3 by preserving the metric. For this reason a generalization of the Yang
and Ko metric can be derived [6]. Given a = (a1,a2,a3) and b = (b1,b2,b3) ∈ R3,
it is

D2
λρ

(a,b) =(a1−b1)
2+((a1−λa2)−(b1−λb2))

2+((a1 +ρa3)−(b1 +ρb3))
2,

where λ , ρ ∈ R+. D2
λρ

will be used in the sequel as a tool for quantifying errors in
the regression models we are going to introduce.

Let (Ω ,A ,P) be a probability space. In this context, a mapping X̃ : Ω →FLR
is an LR FRV if the s-representation of X̃ , (Xm,X l ,X r) : Ω → R×R+×R+ is a
random vector [11]. As for non-fuzzy random variables, it is possible to determine
the moments for an LR FRV. The expectation of an LR FRV X̃ is the unique fuzzy
set E(X̃) (∈FLR) such that (E(X̃))α = E(Xα) provided that E‖X̃‖2

DLR
= E(Xm)2 +

E(Xm−λX l)2+E(Xm+ρX r)2 < ∞, where Xα is the α-level of fuzzy set X̃ , that is,
Xα =

{
x ∈ R|µX̃ (x)≥ α

}
, for α ∈ (0,1], and X0 = cl(

{
x ∈ R|µX̃ ≥ 0

}
). Moreover,

on the basis of the mapping s, we can observe that sE(X̃) = (E(Xm),E(X l),E(X r)).

3 A linear regression model with LR fuzzy variables

In our previous works, Ferraro et al. (2010a, 2011) and Ferraro & Giordani (2011),
we introduced a linear regression model for imprecise information. In the gen-
eral case an LR fuzzy response variable Ỹ and p LR fuzzy explanatory variables
X̃1, X̃2, ..., X̃p observed on a random sample of n statistical units, {Ỹi, X̃1i, X̃2i, ..., X̃pi}i=1,...,n,
have been taken into account. We consider the shape of the membership functions
as fixed, so the fuzzy response and the fuzzy explanatory variables are determined
only by means of three parameters, namely the center and the left and right spreads.
We faced the non-negativity constraints of the spreads of the response variable by
introducing two invertible functions g : (0,+∞) −→ R and h : (0,+∞) −→ R, in
order to make the spreads assuming all the real values. In that way we didn’t solve
a numerical procedure, we formalized a theoretical model and we got a complete
solution for the model parameters. The model is formalized as

Y m = X a
′
m +bm + εm,

g(Y l) = X a
′
l +bl + εl ,

h(Y r) = X a
′
r +br + εr,

(2)
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where X = (Xm
1 ,X l

1,X
r
1 , ...,X

m
p ,X

l
p,X

r
p) is the row-vector of length 3p of all the com-

ponents of the explanatory variables, εm, εl and εr are real-valued random variables
with E(εm|X) =E(εl |X) =E(εr|X) = 0, am = (a1

mm,a
1
ml ,a

1
mr, ...,a

p
mm,a

p
ml ,a

p
mr), al =

(a1
lm,a

1
ll ,a

1
lr, ...,a

p
lm,a

p
ll ,a

p
lr) and ar =(a1

rm,a
1
rl ,a

1
rr, ...,a

p
rm,a

p
rl ,a

p
rr) are row-vectors of

length 3p of the parameters related to X . The generic at
j j′ is the regression coeffi-

cient between the component j ∈ {m, l,r} of Ỹ (where m, l and r refer to the center
Y m and the transforms of the spreads g(Y l) and h(Y r), respectively) and the compo-
nent j′ ∈ {m, l,r} of the explanatory variables X̃ t , t = 1, ..., p, (where m, l and r refer
to the corresponding center, left spread and right spread). For example, a2

ml repre-
sents the relationship between the center of the response, Y m, and the left spread of
the explanatory variable X̃2 (X l

2). Finally, bm, bl , br denote the intercepts. Therefore,
by means of (2), we aim at studying the relationship between the response and the
explanatory variables taking into account not only the randomness due to the data
generation process, but also the information provided by the spreads of the explana-
tory variables (the imprecision of the data), which are usually arbitrarily ignored.
The covariance matrix of X is denoted by ΣX = E

[
(X−EX)

′
(X−EX)

]
and Σ

stands for the covariance matrix of (εm,εl ,εr), with variances, σ2
εm , σ2

εl
and σ2

εr ,
strictly positive and finite.

3.1 Estimation problem

The estimation problem of the regression parameters is faced by means of the Least
Squares (LS) criterion. Accordingly, the parameters of model (2) are estimated by
minimizing the sum of the squared distances between the observed and theoretical
values of the response variable. However, as already noted, suitable transforms of
the spreads are considered in (2). This allows us to use of the generalized metric
D2

λρ
in the objective function of the problem. Therefore, the LS problem consists in

looking for âm, âl , âr, b̂m, b̂l and b̂r minimizing

∆ 2
λρ

= D2
λρ

((Y m,g(Y l),h(Y r)),((Y m)∗,g(Y l)∗,h(Y r)∗))

=
n
∑

i=1
D2

λρ
((Y m

i ,g(Y l
i ),h(Y

r
i )),((Y

m
i )∗,g(Y l

i )
∗,h(Y r

i )
∗))

(3)

In order to estimate the regression parameters we consider a least squares criterion
and we obtain the following solution
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â
′
m = (Xc ′Xc)−1Xc ′Y mc,

â
′
l = (Xc ′Xc)−1Xc ′g(Y l)c,

â
′
r = (Xc ′Xc)−1Xc ′h(Y r)c,

b̂m = Y m−X â
′
m,

b̂l = g(Y l)−X â
′
l ,

b̂r = h(Y r)−X â
′
r,

where

Y mc = Y m−1Y m,

g(Y l)c = g(Y l)−1g(Y l),

h(Y r)c = h(Y r)−1h(Y r)

are the centered values of the response variables,

Xc = X−1X

is the centered matrix of the explanatory variables and, Y m, g(Y l), h(Y r) and X de-
note, respectively, the sample means of Y m, g(Y l), h(Y r) and X .

4 Bootstrap confidence intervals

As in classical Statistics, in this case it is useful to estimate the regression param-
eters not only by a single value but by a confidence interval too. These intervals
represent the reliability of the estimates. How likely the interval is to contain the
parameter is determined by the confidence level 1−α .
Since in the context of FRVs there are not realistic parametric models, we intro-
duce a bootstrap approach. Different approach could be used to construct bootstrap
confidence intervals. In this work, we consider confidence intervals based on boot-
strap percentiles (see, for more details, Efron & Tibshirani, 1993, and Blanco et al.,
2010).
We consider B bootstrap samples drawn with replacement from the observed sam-
ple {Ỹi, X̃1i, X̃2i, ..., X̃pi}i=1,...,n. For each sample we compute the estimators of the
regression parameters. In this way we obtain sequences of B bootstrap estimators,
that represent the empirical distributions of the estimators. Let F̂ be the cumulative
distribution function of the bootstrap replications of each estimator. The 1−α per-
centile interval is defined by means of the percentiles of F̂ . For example, for the
estimator a1

ml , F̂−1(α/2) is equal to â1∗(α/2)
ml , that is, the 100 · (α/2)th percentile of

the bootstrap distribution. In details, â1∗(α/2)
ml is the B · (α/2)th value in the ordered
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list of the B bootstrap estimators
(

â1∗(1)
ml , â1∗(2)

ml , ..., â1∗(B)
ml

)
. The bootstrap percentile

interval for a1
ml is defined as:

CIP(a1
ml) =

[
F̂−1(α/2), F̂−1(1−α/2)

]
=
[
â1∗(α/2)

ml , â1∗(1−α/2)
ml

]
The bootstrap percentile confidence interval for a1

ml is obtained by means of the fol-
lowing algorithm

Algorithm

Step 1: Draw a sample of size n with replacement{
(X∗i ,Y

m
i
∗,Y l

i
∗
,Y r

i
∗)
}

i=1,...,n
,

from the original sample
{
(X i,Y

m
i ,Y l

i ,Y
r
i )
}

i=1,...,n.
Step 2: Compute the bootstrap estimate â1

ml
∗.

Step 3: Repeat Steps 3 and 4 a large number B of times to get sets of B estimators
for the regression parameter.

Step 4: Approximate the lower and upper limits of the interval by means the quan-
tiles of the empirical distribution obtained at Step3. That is, the values in position
[(α/2)B]+1 and [(1−α/2)B] of the ordered empirical distribution. We indicate
those values as â1

ml
∗
L and â1

ml
∗
U . Thus the percentile confidence interval for a1

ml at
the confidence level 1−α is

CIP(a1
ml) =

[
â1

ml
∗
L, â

1
ml
∗
U
]

An analogous algorithm could be used to construct the bootstrap percentile con-
fidence intervals for all the regression parameters.

5 Empirical results

In order to check the empirical behaviour of the bootstrap approach to construct
confidence intervals for the regression parameters some simulation studies and a
real-case example have been developed.

5.1 Simulation studies

We consider a theoretical situation in which an LR fuzzy response Ỹ , an LR fuzzy
explanatory variable X̃1 and a real explanatory variable X2 are taken into account. We
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deal with the following real random variables: Xm
1 behaving as Norm(0,1) random

variable, X l
1 and X r

1 as χ2
1 and χ2

2 , respectively, X2 as U(−2,2), εm as Norm(0,1),
εl and εr as Norm(0,0.5). The response variables are constructed in the following
way: 

Y m = 2Xm
1 +0.5X l

1 +0.4X r
1 +X2 + εm,

Y 2 = g(Y l) =−1Xm
1 +0.3X l

1−0.4X r
1 +2X2 ++εl ,

Y 3 = h(Y r) = 1.2Xm
1 +X l

1−0.7X r
1 −X2 ++εr,

During the experiment we employ B = 1000 replications of the bootstrap estimator
and we carry out N = 10.000 iterations of the bootstrap algorithm with the con-
fidence level α = 0.95 for different sample sizes (n = 30,50,100,200,300). We
compute the empirical confidence levels as the proportion of bootstrap confidence
intervals that include the theoretical parameter (on N). The empirical values are
reported in Table 1. Since the values gathered in Table 1 tend to the nominal con-

Table 1 Empirical confidence level of the bootstrap CIs for the regression parameters.

n 30 50 100 200 300
CI(a1

mm) .9440 .9352 .9410 .9390 .9475
CI(a1

ml) .9381 .9378 .9351 .9382 .9443
CI(a1

mr) .9384 .9392 .9410 .9408 .9463
CI(a2

m) .9408 .9411 .9431 .9469 .9464
CI(a1

lm) .9427 .9348 .9407 .9429 .9484
CI(a1

ll) .9363 .9377 .9330 .9394 .9444
CI(a1

lr) .9361 .9341 .9400 .9410 .9413
CI(a2

l ) .9357 .9397 .9551 .9485 .9489
CI(a1

rm) .9401 .9364 .9383 .9466 .9466
CI(a1

rl) .9371 .9324 .9344 .9405 .9404
CI(a1

rr) .9375 .9383 .9403 .9425 .9430
CI(a2

r ) .9365 .9479 .9450 .9456 .9457
CI(bm) .9444 .9405 .9467 .9450 .9517
CI(bl) .9424 .9421 .9475 .9479 .9486
CI(br) .9409 .9435 .9471 .9469 .9453

fidence level, as n increases, we can conclude that the bootstrap algorithm perform
well in this context.

5.2 A real-case study

We consider the students’ satisfaction of a course. In order to evaluate it, their sub-
jective judgments/ perceptions are observed on a sample of n = 64 students (see, for
more details, Ferraro & Giordani, 2011). For any student, four characteristics are
observed: the overall assessment of the course, the assessment of the teaching staff,
the assessment of the course content and the average mark (single-valued variable).
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We managed them in terms of fuzzy variables, in particular of triangular type (hence
λ = ρ = 1/2). For analyzing the linear relationship of the overall assessment of the
course (Ỹ ) on the assessment of the teaching staff (X̃1), the assessment of the course
contents (X̃2) and the average mark (X3), the proposed linear regression model is em-
ployed based on a sample of 64 students. In order to overcome the problem about
the non-negativity of spreads estimates, we fix the logarithmic transformation (that
is, g = h = ln). Through the LS procedure we obtain the following estimated model

Ŷ m = 1.08Xm
1 +0.13X l

1−0.07X r
1

−0.17Xm
2 −0.89X l

2 +0.66X r
2 −1.12X3 +34.06

Ŷ l = exp(0.01Xm
1 +0.02X l

1 +0.02X r
1

+0.00Xm
2 +0.03X l

2 +0.01X r
2 −0.00X3 +0.67)

Ŷ r = exp(0.00Xm
1 +0.03X l

1−0.02X r
1

−0.01Xm
2 +0.03X l

2 +0.01X r
2 +0.04X3 +1.01)

For each regression parameters we obtain the bootstrap percentile confidence inter-
vals reported in Table 2.

Table 2 Bootstrap percentile CIs for the regression parameters at a confidence level equal to 0.95.

CI(a1
mm) [.7888,1.3403] CI(a1

lm) [−.0018, .0199] CI(a1
rm) [−.0086, .0142]

CI(a1
ml) [−.6060, .8087] CI(a1

ll) [−.0314, .0556] CI(a1
rl) [−.0161, .0633]

CI(a1
mr) [−.4848, .5013] CI(a1

lr) [−.0052, .0358] CI(a1
rr) [−.0487, .0101]

CI(a2
mm) [−.2878, .0324] CI(a2

lm) [−.0069, .0071] CI(a2
rm) [−.0154,−.0004]

CI(a2
ml) [−1.4890,−.4884] CI(a2

ll) [.0092, .0579] CI(a2
rl) [.0021, .0688]

CI(a2
mr) [.3474, .9626] CI(a2

lr) [−.0021, .0249] CI(a2
rr) [−.0002, .0330]

CI(a3
m) [−4.3814, .4688] CI(a3

l ) [−.0962, .0953] CI(a3
r ) [−.0473, .1964]

CI(bm) [5.1405,121.9076] CI(bl) [−2.0829,3.16179] CI(br) [−3.7414,3.5874]

It could be noted from Table 2 that the parameters that are significant are the
same obtained by means of a bootstrap test on the regression parameters in Ferraro
& Giordani (2011). In details, these are: a1

mm, a2
ml , a2

mr, a2
ll , a2

rm and a2
rl .

6 Concluding remarks

In this paper a linear regression model for LR fuzzy variables has been addressed.
Along with the least squares estimators, confidence intervals have been introduced
and discussed. The results obtained by means of a bootstrap approach are those ex-
pected in this context. In details, a bootstrap algorithm to approximate the bootstrap
percentile confidence intervals of the parameters has been described and employed
to simulated and real data.
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Acknowledgements The research in this paper has been partially supported by the Spanish
Ministry of Education and Science Grant MTM2009-09440-C02-02 and the COST Action IC0702.
Their financial support is gratefully acknowledged.

References
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