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Abstract

The R package ThreeWay is presented and its main features are illustrated. The aim
of ThreeWay is to offer a suit of functions for handling three-way arrays. In particular,
the most relevant available functions are T3 and CP, which implement, respectively, the
Tucker3 and Candecomp/Parafac methods. They are the two most popular tools for sum-
marizing three-way arrays in terms of components. After briefly recalling both techniques
from a theoretical point of view, the functions T3 and CP are described by considering two
real life examples.
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1. Introduction

In statistics, data generally refer to the observations of some variables on a set of units and are
stored in a (two-way) matrix, say X of order (I×J), where I and J denote the numbers of units
and variables, respectively. The generic element of X is xij and, therefore, data are indexed
by i ∈ {1, . . . , I} and j ∈ {1, . . . , J} concerning the unit and variable modes, respectively.
Here, we use the term ’mode’ to refer to a set of entities. However, in several situations, the
available data can be indexed by i ∈ {1, . . . , I}, j ∈ {1, . . . , J} and k ∈ {1, . . . , K} where
K denotes the number of occasions. In this case, the available information consists of some
variables collected on a set of units on different occasions and is usually stored in a (three-
way) array, say X of order (I × J × K), with generic element xijk. The array can then be
seen as a box in which the ways (or indices) correspond to the vertical, horizontal and depth
axis. For the sake of generality, in the following we decided not to refer to unit, variable and
occasions modes. Rather, we refer to, respectively, the A-mode (with I entities), B-mode
(with J entities) and C-mode (with K entities).
Multiway data analysis concerns the cases in which the number of indices is higher than two
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(three-way data analysis when the number of indices is three). In this paper we shall limit our
attention to the three-way case. In the literature there exist several proposals for performing
component models on three-way data. The two probably most popular techniques are the
Tucker3 (T3) model (Tucker 1966) and the Candecomp/Parafac (CP) model (independently
proposed by Carroll and Chang 1970; Harshman 1970). The aim of this work is to illustrate
the R package ThreeWay for performing such methods. For this purpose, in the next section,
we provide some preliminary notions on three-way data and we introduce the T3 and CP
models. Then, Sections 3 and 4 are devoted to the main features of ThreeWay with particular
reference to the implementations of CP and T3 considering two benchmark data sets. Finally,
in Section 5 some concluding remarks are given.

2. Methodological background

The data array X can be seen as a collection of K matrices of order (I × J). It can be
convenient to explicitly take into account this by expressing the available information in
terms of a new matrix, which we may call supermatrix, containing such a collection. This
can be done for instance as XA = [X··1 . . .X··k . . .X··K ], where X··k stands for the matrix
of order (I × J) concerning the k-th entity of the C-mode. X··k is usually called the k-th
frontal slab or slice of X. In other words, XA is the matrix with I rows (corresponding to
the A-mode entities) and JK columns (corresponding to all the combinations of the B- and
C-mode entities) obtained juxtaposing next to each other the frontal slabs of X (A-mode
matricization of X). The process of transforming a three-way array into a two-way matrix
is usually denoted as matricization or, especially in chemometrics, unfolding. It must be
noted that there exist several ways to matricize an array (see, for more details, Kiers 2000).
However, in this context, it is sufficient to consider XA for describing the T3 and CP models.
In principle standard Principal Component Analysis (PCA) applied to XA or to the matrix
containing the mean values of the X··k’s can be used for summarizing the data in X. The
former, sometimes called PCA on supermatrices (PCA-SUP) and the latter are available in
the functions pcasup3 and pcamean of ThreeWay. Their outputs give a preliminary insight
in the data. However, these tools offer information which is incomplete at best because the
three-way interactions among the data are arbitrarily ignored. Ad.hoc methods, such as T3
and CP, should be thus considered. In the remaining part of this section, they will be briefly
recalled. Refer to Bro (1998), Kroonenberg (1983, 2008), Smilde et al. (2004) for extensive
monographs on T3 and CP and, in general, on multiway analysis with applications in several
domains.

2.1. The Tucker3 model

The Tucker3 (T3) model (Tucker 1966) is a multi-linear model summarizing X by extracting
different components for every mode. The Tucker3 model with P components for the A-mode
mode, Q for the B-mode and R for the C-mode, can be formalized as

XA = AGA(C′ ⊗ B′) + EA, (1)

where A, B and C are the component matrices for the A-, B- and C-modes, respectively, the
generic elements of which are aip, bjq and ckr expressing the component scores of the i-th entity
on the p-th component for the A-mode, of the j-th entity on the q-th component for the B-
mode and of the k-th entity on the r-th component for the C-mode, respectively. Furthermore,
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GA is the matricized version of the so-called core array G of order (P × Q × R). Its generic
element gpqr gives the interaction among the components of the three modes. Finally EA

denotes the matricized array of the errors. The symbol ⊗ is the Kronecker product between

two matrices (given two matrices U and V, it is U ⊗ V =

⎡
⎢⎣

u11V · · · u1JV
...

. . .
...

uI1V · · · uIJV

⎤
⎥⎦). A scalar

formulation of the T3 model equivalent to (1) can also be provided:

xijk =
P∑

p=1

Q∑
q=1

R∑
r=1

aipbjqckrgpqr + eijk. (2)

In the T3 model, limited numbers of components for all the three modes are sought. However,
it can be useful to reduce only two modes or just one mode. In these cases, the Tucker2 (T2)
or Tucker1 (T1) models can be introduced, respectively. Reducing without loss of generality
the A- and B- modes, the T2 model (T2-AB) can be written as

xijk =
P∑

p=1

Q∑
q=1

aipbjqgpqk + eijk. (3)

If, without loss of generality, our interest relies in reducing the A-mode, we obtain the T1
model (T1-A):

xijk =
P∑

p=1

aipgpjk + eijk. (4)

The optimal parameter matrices of the T3, T2 and T1 models are found by minimizing

‖EA‖2 =
I∑

i=1

J∑
j=1

K∑
k=1

e2
ijk. For the T3 and T2 models, this can be done implementing an Alter-

nating Least Squares (ALS) algorithm, which alternatingly updates every parameter matrix
keeping fixed the remaining ones upon convergence. It is assumed that an algorithm con-
verges when the values of the loss function in two consecutive iterations differ less than a
pre-specified threshold. It can be shown that these algorithms converge to at least a local
minimum in a limited number of iterations. To limit the risk of hitting local optima, more
than one start is recommended. Since T1 is equivalent to a PCA on XA, the T1 solution can
be obtained by the SVD of XA. Different variants of T1 can be obtained by choosing different
matricizations.
It can be shown that the obtained solution in terms of A, B, C and G is not unique. In fact,
equally well-fitting solutions can be obtained considering Ã = AS, B̃ = BT, C̃ = CU and
G̃A = S−1GA(U′−1 ⊗ T′−1), where S, T and U are rotation matrices of appropriate order.
Such a rotational freedom holds provided that the rotations of the component matrices are
compensated in the core. Although it might represent a limit of the analysis, the indeter-
minacy of the solution can be used in order to obtain simple structure solutions. See, for
instance, Kiers (1998) in which the procedure called orthomax for jointly rotating to simple
structure the component matrices and the core is proposed. The estimation of the T3 model
parameters can be carried out using the function T3 of the R package ThreeWay. Its main
features shall be illustrated in Section 3.
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2.2. The Candecomp/Parafac model

The Candecomp/Parafac (CP) model (Carroll and Chang 1970; Harshman 1970) aims at
reducing X by extracting the same number of components, say S, for every mode. In scalar
notation the CP model can be written as

xijk =
S∑

s=1

aisbjscks + eijk, (5)

with obvious notation. Although the CP model is rather different from T3 and satisfies
different properties, it can be seen as a constrained version of T3 with P = Q = R = S and
gpqr = 1, if p = q = r, and gpqr = 0, otherwise. The matrix formulation of CP helps to
highlight such a relationship. In fact, it is

XA = AIA(C′ ⊗ B′) + EA, (6)

where IA is the matricized version of the three-way identity array I (ipqr = 1 if p = q = r and
0 otherwise).
By comparing (1) and (6) we can conclude that the CP model can be seen as a T3 model with
GA = IA. The most relevant difference between CP and T3 concerns the so-called intrinsic
axis property. By this, under mild conditions, the CP solution is unique up to rescaling and
permutation of the columns of the component matrices. It is easy to see that uniqueness holds
because rotations of the component matrices cannot be compensated into the core which is
constrained to be equal to I. A nice property of the CP model is that its solution with S
components is the best S-rank approximation of X, where the rank of an array is defined
according to Kruskal (1977). It follows that the rank of X is equal to the smallest number
of components for which a perfect fit CP solution is obtained.
A suitable ALS algorithm can be adopted for obtaining the optimal CP solution. Again the
optimal parameter matrices are found such that the residual sum of squares is minimized.
In order to apply the CP model, the function CP of the R package ThreeWay can be considered
and its main features will be described in Section 4.

3. The Function T3 of the R package ThreeWay

We now apply the T3 model to the ‘Learning to read’ data (Bus, 1982). The data set refers
to the process of learning to read of seven pupils (I = 7). Five tests (J = 5) are used to
evaluate the learning process: each test measures different reading aspects. The tests are
‘Letter knowledge’ (L), the ability to read ‘Regular orthographic short words’ (P), ‘Regular
orthographic long words’ (Q), ‘Regular orthographic long and short words within context’
(S), ‘Irregular orthographic long and short words’ (R). The pupils are tested weekly from
week 3 to week 47 except for ten holidays weeks, hence K = 37. The aim of the study is to
investigate the learning process and whether the performances of the pupils are equal over
time.
Of course, the first step of the analysis consists of loading the data.

R> library(ThreeWay)
R> data(Bus)
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The function T3 requires the data set to be analyzed and, if available, the labels laba, labb
and labc for the entities of the three modes (if not available, T3 first asks to the users for
adding them by keyboard and then generates them automatically when the user decides not
to add them). or generate them automatically). The data set can be an object of class array,
data.frame or matrix. In the latter two cases, the A-mode matricization of the original array
must be given as input and the numbers of entities of the A-, B- and C-modes must be given
interactively by the user. Bus is an object of class matrix with the names of the rows corre-
sponding to the labels of the A-mode (pupils) and the names of the columns corresponding
to a combination of the labels of the B- and C-modes (tests and time occasions, respectively).

R> laba=rownames(Bus)
R> labb=substr(colnames(Bus)[1:5],1,1)
R> labc=substr(colnames(Bus)[seq(1,ncol(Bus),5)],3,8)

A relevant point to be addressed concerns preprocessing. In fact, prior to fitting a model
to the data, it is fundamental to decide how to preprocess the data. Preprocessing can be
done by centering within a mode or a combination of modes and normalizing across a mode.
Differently from a two-way analysis in which data are usually centered and/or normalized
across the rows, in a three-way context, it is not straightforward how to preprocess the data
since different options are available. We can say that the main aim of the preprocessing step
is to eliminate artificial differences in levels and scales. Centering is helpful in order to get
ratio-scale (rather than interval-scale) data, i.e. the observed values must be proportional
and a zero value denotes a lack of the property being measured. Note that the CP and T3
(and its variants) models require ratio-scale data. The normalization step does not make
the data consistent with the model but allows us to avoid that the results are affected by
differences in range among entities of one or more modes. In the package ThreeWay centering
and normalization are done according to Kiers (2000) and can be performed using functions
cent3 and norm3, respectively, specifying the mode(s) within or across we want to center or
normalize the data. These functions are automatically implemented when launching T3. For
a deeper insight into preprocessing in three-way analysis see Harshman and Lundy (1984)
and Bro and Smilde (2003).
In norm3, data are normalized to sum of squares equal to product of size of other modes.
Alternatively, one can scale the data so that they range from 0 to 1. Since the five tests have
different score ranges, we decide to rescaling them as was done by Kroonenberg (1983) and
Timmerman (2001), who already analyzed the data using T3.

R> max.scale=c(47,10,10,15,15)
R> maxBus=rep(max.scale,37)
R> BusN=t(t(Bus)/maxBus)

Here, max.scale contains the maximum value for every test (the minimum value is 0). We
have not centered the data because they have a meaningful zero point in 0. In fact, when
the score of the pupil i on the test j at the occasion k is 0, we can conclude that the reading
ability of such a pupil is absent.
The preprocessed data set is available in BusN and the function T3 can be run.
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R> t3bus=T3(BusN,laba,labb,labc)

In the following, we are going to summarize the most relevant steps for carrying out a three-
way analysis process. Thus, some steps are omitted for the sake of brevity.
Prior to choosing the numbers of components, T3 gives a suggestion based on the generalized
scree test (Timmerman and Kiers 2000; Kiers and der Kinderen 2003) according to the
Convex Hull procedure (Ceulemans and Kiers 2006). The corresponding functions called in
T3 are T3runsApproxFit and DimSelector

R> You are now about to do a Tucker3 analysis.
R>
R> You have to specify the dimensionalities to use.
R> To search these, you are advised to first run PCASUP analyses.
R> (PCASUP analyses are PCA’s of supermatrices with slices of the 3way array

next to each other,
R> thus 3 supermatrices are analyed by PCA, and for each we get a component

matrix, and eigenvalues.
R> The eigenvalues may give an indication as to the required number of

components for each mode.)
R> The results can next be used to find useful dimensionalities by the

generalized scree test
R> If you want to do the PCASUPs for choosing your dimensionality, specify ’1’:
R> 1: 0
R> Read 1 item

In our analysis we decide to operate as in Timmerman (2001) summarizing the data using
two components for the A-mode (P = 2), one for the B-mode (Q = 1) and two for the C-mode
(R = 2).

R> How many A-mode components do you want to use?
R> 1: 2
R> Read 1 item
R> How many B-mode components do you want to use?
R> 1: 1
R> Read 1 item
R> How many C-mode components do you want to use?
R> 1: 2
R> Read 1 item

In this way the fit of the model is very high (96.26%) as one can see inspecting the following
output obtained considering two additional random starts. Note that the T3 solution is ob-
tained in T3 calling the function T3func.

R> By default, only a rationally started analysis run will be carried out.
R> To decrease the chance of missing the optimal solution, you may use
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additional, randomly started runs.
R> If you want additional runs, specify how many (e.g., 4):
R> 1: 2
R> Read 1 item
R> Run no. 1
R> Rational ORTHONORMALIZED start
R> Tucker3 function value at start is 26.5805045184081
R> Tucker3 function value is 25.7735931853048 after 4 iterations
R> Fit percentage is 96.26469729604 %
R> Procedure used 0.03 seconds
R> Run no. 2
R> Random ORTHONORMALIZED starts
R> Tucker3 function value at start is 688.092368487312
R> Tucker3 function value is 25.7735931724334 after 6 iterations
R> Fit percentage is 96.2646972979055 %
R> Procedure used 0.03 seconds
R> Run no. 3
R> Random ORTHONORMALIZED starts
R> Tucker3 function value at start is 689.615935107658
R> Tucker3 function value is 25.7735931361569 after 5 iterations
R> Fit percentage is 96.264697303163 %
R> Procedure used 0.03 seconds
R>
R> Fit (%) values from all runs:
R> Start n.1 Start n.2 Start n.3
R> 96.26 96.26 96.26
R>
R> Tucker3 analysis with 2 x 1 x 2 components, gave a fit of 96.26 %

The next step of T3 is about simple structure rotation by Orthomax (Kiers 1998) implemented
in the function varimcoco. However, in the current analysis this rotation is not carried out
because when P = QR we can rotate to simple structure by simply transforming GA of order
(2 × 2) into the identity matrix of order two using the rotational freedom and compensating
the transformation in the component matrices. Therefore, we ignore the Orthomax rotation
by choosing relative weights equal to 0 (this does not rotate the current solution).

R> Find useful simple structure rotation of core and components
R> You can now carry out SIMPLE STRUCTURE rotations with varying weights.
R> If desired, you can specify a range of different weights for each mode.
R> You can also specify a single weight (e.g., just 1).
R> Analyses will be carried out with all combinations of relative weights.
R> Specify (range of) relative weight(s) for A (default=0):
R> 1:
R> Read 0 items
R>
R> Warning: as the number of B-mode components is 1, no simple structure for B
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will be sought (relative weight=0)
R>
R> Specify (range of) relative weight(s) for C (default=0):
R> 1:
R> Read 0 items

Prior to transforming GA into the identity matrix, we permute and reflect the solution in
such a way that the results are coincident with those in Timmerman (2001).

R> You can now manually PERMUTE and REFLECT columns/rows of solution
R> If you want to reflect/permute columns/rows, specify ’1’:
R> 1: 1
R> Read 1 item
R> Give a vector for reflection of columns of A (e.g., 1 -1 -1 1 ..)
R> 1: -1 1
R> Read 2 items
R> Give a vector with new order of columns of A (e.g., 3 1 4 2 ..)
R> 1: 2 1
R> Read 2 items
R> Give a vector for reflection of columns of B (e.g., 1 -1 -1 1 ..)
R> 1:
R> Read 0 items
R>
R> Warning: the columns of B will not be reflected
R>
R> Give a vector for reflection of columns of C (e.g., 1 -1 -1 1 ..)
R> 1:
R> Read 0 items
R>
R> Warning: the columns of C will not be reflected
R>
R> Give a vector with new order of columns of C (e.g., 3 1 4 2 ..)
R> 1: 2 1
R> Read 2 items

We then exit from T3. The resulting output is an object of class list called t3bus. The
transformation of GA (denoted by t3bus$core) is compensated in A (t3bus$A):

R> t3bus$A=t3bus$A%*%t3bus$core
R> t3bus$core=solve(t3bus$core)%*%t3bus$core

Just as in Timmerman (2001) we rescale the component matrices so that the maximum value
of the second A-mode component, of the B-mode component and of the first C-mode compo-
nent is equal to 1. The last three rescalings are compensated in the first A-mode component
and in the second C-mode component.
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R> t3bus$A=t3bus$A%*%t3bus$core
R> colnames(t3bus$A)=c("A1","A2")
R> t3bus$core=solve(t3bus$core)%*%t3bus$core
R> maxA2=max(t3bus$A[,2])
R> t3bus$A[,2]=t3bus$A[,2]/maxA2
R> maxB=max(t3bus$B)
R> t3bus$B=t3bus$B/maxB
R> maxC1=max(t3bus$C[,1])
R> t3bus$C[,1]=t3bus$C[,1]/maxC1
R> t3bus$A[,1]=t3bus$A[,1]*maxB*maxC1
R> t3bus$C[,2]=t3bus$C[,2]*maxA2*maxB

The so-obtained solution is very easy to interpret. To analyze the dynamics of the occasion
component scores, we represent them in Figure 1.

R> plot(t3bus$C[,1],type="n",xlab="Time occasion",
ylab="Component score",ylim=c(min(t3bus$C)-.1,max(t3bus$C)+.1))

R> points(t3bus$C[,1],pch=16)
R> points(t3bus$C[,2],pch=17)
R> legend(3,1,legend=c("C1","C2"), pch=c(16,17))

The first C-mode component can be interpreted as the ‘General performance level’ because
the scores are close to 0 in the beginning and close to 1 at the end of the testing time. The
second C-mode component is more complex due to the negative scores in the second half of
the occasions. It is interpreted approximately as the ‘Learning rate’ but the negative values
do not indicate that the learning rate decreases in the end: it is due only to the rescaling pro-
cedure. The B-mode component (see printed values below) is connected with the ‘Difficulties
of the items’. Since P (score 1.00) and S (score 0.99) have the highest scores, the judgments
of these tests became positive faster than the other tests. The most difficult test is R with a
component score equal to 0.58.

R> print(round(t3bus$B,2))
R> B1
R> L 0.91
R> P 1.00
R> Q 0.87
R> S 0.99
R> R 0.58

Taking into account that the core is an identity matrix, we can deduce that the first and
second C-mode components are related, respectively, to the first and second A-mode compo-
nents. The above connection helps us in the interpretation of the components A1 and A2 (see
printed values below). Therefore, the pupils whose component scores are high are those who
have a performance level (with respect to A1) and a learning rate (with respect to A2) above
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Figure 1: Component scores for the C-mode from T3 applied to the Bus data

average. We can conclude that Pupil 4 is the best one: his (her) scores are the highest (scores
1.28 and 1.00). Pupil 5 follows. In fact, his (her) scores are the highest after the previous
pupil. After them, Pupils 6 and 1 have almost the same high scores on the first component,
but Pupil 1 has a very low score (the last but one) on the learning rate component. At last, in
order, Pupils 3, 2 and 7 appear. Pupil 7 is the worst having the lowest scores (0.89 and -0.42).

R> print(round(t3bus$A,2))
R> A1 A2
R> n.1 1.06 -0.42
R> n.2 0.96 -0.30
R> n.3 0.99 -0.38
R> n.4 1.28 1.00
R> n.5 1.16 0.19
R> n.6 1.09 -0.01
R> n.7 0.89 -0.42

Finally, we are interested in assessing the statistical validity of the obtained component matri-
ces. In fact, T3 allows us to carry out a bootstrap procedure for computing confidence intervals
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for the current solution (Kiers 2004) by automatically calling the function bootstrapT3. As
we are outside from T3, it is sufficient to write

R> t3busBoot=bootstrapT3(BusN,t3bus$A,t3bus$B,t3bus$C,t3bus$core,
7,5,37,2,1,2,1e-6,0,0,1,laba,labb,labc)

The analysis is based on 1000 (default value, but the user can make a different choice) boot-
strap samples and matching via optimal transformation towards full solutions. Despite the
very small sample size, the sample solution is a good estimate of the population parameters
except for the second C-mode component. The bounds of the confidence intervals are given
below (only the first ten rows are reported for the C-mode component matrix and details
about the core are not reported because the transform to the identity matrix can always be
done).

R> print(round(t3busBoot$fpint,2))
R> LB Fit (%) UB Fit (%)
R> 95.31 97.63
R> print(round(t3busBoot$B,2))
R> LB B1 UB B1
R> L 0.88 0.95
R> P 0.97 1.03
R> Q 0.84 0.90
R> S 0.97 1.02
R> R 0.47 0.65
R> print(round(t3busBoot$C[1:10,],2))
R> LB C1 UB C1 LB C2 UB C2
R> Occ.1 0.05 0.13 0.05 0.29
R> Occ.2 0.05 0.13 -0.02 0.19
R> Occ.3 0.06 0.22 -0.06 0.41
R> Occ.4 0.11 0.22 0.05 0.37
R> Occ.5 0.16 0.29 0.00 0.40
R> Occ.6 0.20 0.35 -0.01 0.45
R> Occ.7 0.16 0.33 0.07 0.51
R> Occ.8 0.28 0.42 0.08 0.43
R> Occ.9 0.29 0.42 0.09 0.43
R> Occ.10 0.40 0.48 0.13 0.39

4. The Function CP of the R package ThreeWay

This section is devoted to the function CP implementing CP applied to the so-called TV data
(Lundy et al. 1989). The data (contained in TV) refer to the ratings on 15 American TV
programs with respect to 16 bipolar scales given by a group of 30 students at the Ontario
University. TV is an object of class list holding the data and the labels of the three modes.
Lundy et al. (1989) analyzed the data by means of CP with three components. Here, we
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report the results found using CP. As we are interested in carrying out a stability check of
the obtained solution, we need to rearrange the data so that the A-mode corresponds to the
students, who are the C-mode. This is required because in the routines, if necessary, the
random sample is assumed to be formed by the A-mode entities. It can be done using the
function permnew.

R> library("ThreeWay")
R> data(TV)
R> TVdata=TV[[1]]
R> labSCALE=TV[[2]]
R> labPROGRAM=TV[[3]]
R> labSTUDENT=TV[[4]]
R> TVdata=permnew(TVdata,16,15,30)
R> TVdata=permnew(TVdata,15,30,16)

In this way the object of class data.frame called TVdata is such that the entities of the A-,
B- and C-modes are, respectively, the students, the scales and the TV programs. We can now
run CP.

R> TVcp=CP(TVdata,labSTUDENT,labSCALE,labPROGRAM)
R> Specify the number of A-mode entities
R> 1: 30
R> Read 1 item
R> Specify the number of B-mode entities
R> 1: 16
R> Read 1 item
R> Specify the number of C-mode entities
R> 1: 15
R> Read 1 item

Note that prior to fitting the model to the data, these are centered across TV programs and
scales and normalized within the scales.

R> How do you want to center your array?
R> 0 = none (default)
R> 1 = across A-mode
R> 2 = across B-mode
R> 3 = across C-mode
R> 12 = across A-mode and across B-mode
R> 13 = across A-mode and across C-mode
R> 23 = across B-mode and across C-mode
R> 1: 23
R> Read 1 item
R> Data have been centered across B-mode
R> Data have been centered across C-mode
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R>
R> How do you want to normalize your array?
R> 0 = none (default)
R> 1 = within A-mode
R> 2 = within B-mode
R> 3 = within C-mode
R> 1: 2
R> Read 1 item
R> Data have been normalized within B-mode

In order to compare the goodness of fits resulting from all the three-way methods, the convex
hull is computed also for CP although the fit percentages for different values of R give essen-
tially the same information. By inspecting the output of the convex hull (not reported here)
we can see that the use of two components is suggested, but also extracting three components
seems to be a reasonable choice. This is consistent with Lundy et al. (1989), who realize
that the increase of fit passing from two to three components is not remarkable, but, at the
same time, believe that a third, small but real, component exists. See also Bro and Kiers
(2003).

R> How many components do you want to use?
R> 1: 3
R> Read 1 item
R>
R> Do you want to use constraints? If so, enter ’1’:
R> 1:
R> Read 0 items
R> No constraints imposed
R>
R> Specify convergence criterion (default=1e-6)
R> 1: 1e-9
R> Read 1 item
R>
R> By default, only a rationally started analysis run will be carried out.
R> To decrease the chance of missing the optimal solution, you may use

additional, randomly started runs.
R> If you want additional runs, specify how many (e.g., 4):
R> 1: 2
R> Read 1 item
R>
R> Specify the maximum number of iterations you allow (default=10000).
R> 1: 50000
R> Read 1 item

The details about the algorithm (function CPfunc) for all the three runs can be found below.

R> Run no. 1
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R> Candecomp/Parafac function value at Start is 7131.60689021309
R> Candecomp/Parafac function value is 3749.03626036695 after 6389 iterations
R> Fit percentage is 47.930051939348 %
R> Procedure used 35.89 seconds
R> Run no. 2
R> Candecomp/Parafac function value at Start is 7202.18335296148
R> Candecomp/Parafac function value is 3749.0362612989 after 6440 iterations
R> Fit percentage is 47.9300519264042 %
R> Procedure used 36.2 seconds
R> Run no. 3
R> Candecomp/Parafac function value at Start is 7208.70115055083
R> Candecomp/Parafac function value is 3749.03626116656 after 7521 iterations
R> Fit percentage is 47.9300519282422 %
R> Procedure used 42.31 seconds
R>
R> Fit (%) values from all runs:
R> Start n.1 Start n.2 Start n.3
R> 47.93 47.93 47.93
R>
R> Candecomp/Parafac analysis with 3 components, gave a fit of 47.93 %
R> Simple check on degeneracy: inspect matrix of triple congruences
R> Comp.1 Comp.2 Comp.3
R> Comp.1 1.0000 0.0521 -0.9645
R> Comp.2 0.0521 1.0000 -0.1222
R> Comp.3 -0.9645 -0.1222 1.0000

The analysis of the results highlights that the algorithm always attains the purported global
optimum, but takes a very long time to converge. Furthermore, the matrix of triple congru-
ences shows that factors 1 and 3 are highly collinear. If we inspected the component matrices,
we could see that the elements of columns 1 and 3 are diverging. This is a typical pattern of
CP degeneracy (see, for instance, Harshman and Lundy 1984; Stegeman 2006, 2007; De Silva
and Lim 2008; Rocci and Giordani 2010). If so, the computational burden can be extremely
high even if the data size is small. For this reason, the allowed maximum numbers of iteration
must be given by the user (otherwise, default is 10,000). Degeneracies only occur with CP.
T3 usually converges very quickly, as one can for instance realize inspecting the output of T3
in the previous section.
A useful and recognized remedy to degeneracy is to considering a CP model with orthogo-
nality constraints on one of the component matrices (Harshman and Lundy 1984). Here, we
re-run CP with the same choices as described above and constraining the component matrix
for the B-mode to be orthogonal.

R> Do you want to use constraints? If so, enter ’1’:
R> 1: 1
R> Read 1 item
R> Digit:
R> 1 = No constraints (default)
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R> 2 = Orthogonality constraints
R> 3 = Zero correlations constraints
R> Specify the A-mode constraints:
R> 1: 1
R> Read 1 item
R> Specify the B-mode constraints:
R> 1: 2
R> Read 1 item
R> Specify the C-mode constraints:
R> 1: 1
R> Read 1 item

The summary about the performance of the algorithm shows that the purported global opti-
mum is always attained and the computation time dramatically decreases. Furthermore, the
fit of the constrained CP model slightly decreases if compared with that of the unconstrained
solution and all the obtained components are orthogonal.

R> Run no. 1
R> Candecomp/Parafac function value at Start is 7131.60689021309
R> Candecomp/Parafac function value is 3796.89450346562 after 230 iterations
R> Fit percentage is 47.265354118533 %
R> Procedure used 1.29 seconds
R> Run no. 2
R> Candecomp/Parafac function value at Start is 7198.76728242366
R> Candecomp/Parafac function value is 3796.89449182879 after 215 iterations
R> Fit percentage is 47.2653542801556 %
R> Procedure used 1.17 seconds
R> Run no. 3
R> Candecomp/Parafac function value at Start is 7200.20256213156
R> Candecomp/Parafac function value is 3796.89450650374 after 349 iterations
R> Fit percentage is 47.265354076337 %
R> Procedure used 1.97 seconds
R>
R> Fit (%) values from all runs:
R> Start n.1 Start n.2 Start n.3
R> 47.27 47.27 47.27
R>
R> Candecomp/Parafac analysis with 3 components, gave a fit of 47.27 %
R> Simple check on degeneracy: inspect matrix of triple congruences
R> Comp.1 Comp.2 Comp.3
R> Comp.1 1 0 0
R> Comp.2 0 1 0
R> Comp.3 0 0 1

The solution is then normalized in such a way that the columns of the component matrices
for the B- and C-modes have unit sum of squares (by means of the function renormsolCP).
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R> It is sometimes useful to SCALE solution, e.g., scale two matrices so that
R> they have unit sum of squares compensating this scale in remaining matrix.
R> If you want to scale components, specify ’1’:
R> 1: 1
R> Read 1 item
R> What modes do you want to scale?
R> 1 = B- and C-modes (scaling compensated in A)
R> 2 = A- and C-modes (scaling compensated in B)
R> 3 = A- and B-modes (scaling compensated in C)
R> 1: 1
R> Read 1 item

As in T3, we can permute and reflect the solution. Here, we decide to permute the first two
A-mode components allowing us to obtain a final component matrix for the C-mode with all
positive score (we omit the details about the script). The resulting solution for the B- and
C-mode component matrices is given below (negative scores of B pertain to the left side of
the bipolar scale).

R> Solution for A, B and C after permutation and reflection.
R> B
R> Comp.1 Comp.2 Comp.3
R> Thrilling-Boring -0.09 0.29 -0.12
R> Intelligent-Idiotic 0.30 0.17 0.12
R> Erotic-Not Erotic -0.25 -0.06 -0.27
R> Sensitive-Insensitive 0.03 -0.43 0.12
R> Interesting-Uninteresting 0.00 0.37 0.26
R> Fast-Slow -0.08 0.19 -0.29
R> Intellectually Stimulating-Intellectually Dull 0.27 0.20 0.25
R> Violent-Peaceful 0.08 0.04 -0.68
R> Caring-Callous 0.04 -0.47 0.02
R> Satirical-Not Satirical -0.46 0.09 0.18
R> Informative-Uninformative 0.31 0.20 0.19
R> Touching-Leave Me Cold -0.07 -0.31 0.15
R> Deep-Shallow 0.21 -0.14 0.16
R> Tasteful-Crude 0.19 -0.31 0.02
R> Real-Fantasy 0.38 0.06 -0.06
R> Funny-Not Funny -0.46 0.06 0.30
R> C
R> Comp.1 Comp.2 Comp.3
R> Mash 0.14 0.03 -0.11
R> Charlie’s angels 0.21 0.13 0.54
R> All in the family 0.20 0.04 -0.18
R> 60 minutes -0.35 -0.19 -0.18
R> The tonight show 0.16 -0.23 -0.19
R> Let’s make a deal 0.19 0.00 0.25
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R> The Waltons -0.13 0.55 -0.23
R> Saturday night live 0.35 -0.31 0.11
R> News -0.39 -0.27 0.00
R> Kojak 0.09 -0.04 0.37
R> Mork and mindy 0.38 0.12 -0.10
R> Jacques Cousteau -0.40 -0.10 -0.29
R> Football -0.07 -0.32 0.39
R> Little house on the prairie -0.06 0.54 -0.18
R> Wild kingdom -0.31 0.04 -0.21

By inspecting the component matrices and following Lundy et al. (1989) we can interpret
components 1, 2 and 3 as ‘Humor’, ‘Sensitivity’ and ‘Violence’, respectively.
We conclude our analysis by a stability check of the selected solution based on split-half anal-
ysis (function splithalfCP). It should be noted that CP offers the possibility to perform a
bootstrap analysis calling function bootstrapCP, which is the CP counterpart of bootstrapT3
described in the previous section. Since in the CP case a bootstrap analysis can be very time
consuming, we prefer to consider a split-half analysis. Thus, two equally sized random (or
based on odd vs. even sequence numbers) subsamples are drawn and two separate CP analy-
ses using the same set-up considered for the full data are applied to these halves. Comparisons
between the two solutions and with the full data solution are carried out. If the obtained
components are stable, then the two solutions should give approximately the same results.
Note that the function splithalfCP allows us to run a split-half analysis on the current so-
lution or on a different one, specifying different choices with respect to those previously made.

R> If you want to carry out a STABILITY CHECK on current or different
solution, specify ’1’:

R> 1: 1
R> Read 1 item This procedure performs a SPLIT-HALF analysis on X
R> NOTE:
R> In SPLIT-HALF analysis, the A-mode is taken as ’replication mode’ (which

means that A-mode entities are considered a random sample
R> if this does not make sense, you should rearrange your data so that the

A-mode is a replication mode)
R> The splitting into two halves can be done randomly (default), or into odd

vs. even sequence numbers
R> If you prefer odd/even split, specify ’1’:
R> 1: 1
R> Read 1 item
R> Splitting has been done into odd vs. even sequence numbers
R> You will now enter the split half procedure with the options specified so far
R> However, you may want to modify certain choices here (rather than rerunning

the full Candecomp/Parafac)
R> Do you want to modify certain choices? If so, specify ’1’:
R> 1:
R> Read 0 items
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The output of the split-half procedure reports the component matrices resulting from the three
analyses and the correlation and congruence (Tucker 1951) coefficients between correspond-
ing columns of component matrices. For the sake of brevity, only the latter indices are given
below from which we can state that especially the estimates of components 1 and 2 are stable.

Congruences for A in splits and in appropriate part of Afull
SPL1 SPL2

Comp.1 1 1.00
Comp.2 1 0.99
Comp.3 1 0.99
Correlations for A in splits and in appropriate part of Afull

SPL1 SPL2
Comp.1 1.00 0.96
Comp.2 1.00 0.96
Comp.3 0.94 0.84
Congruence values for B-mode component matrix
Comp.1 Comp.2 Comp.3
0.87 0.82 0.68

Congruence values for C-mode component matrix
Comp.1 Comp.2 Comp.3
0.96 0.89 0.42

5. Final remarks

The most relevant features of the R package ThreeWay have been introduced by examples.
ThreeWay offers a suite of about fifty functions for handling three-way arrays. Among them,
emphasis has been paid to the most two famous techniques for summarizing three-way data,
namely the CP and T3 methods, implemented in the functions CP and T3, respectively. Such
functions carry out an interactive three-way analysis calling several additional functions to
further extract relevant information from the data under investigation. The need for an
interactive analysis arises because all the steps of a three-way analysis should not be done
automatically. The process requires that the user inspects step-by-step the outputs of the
functions and decides how to proceed accordingly. Nonetheless, if one is interested in running
CP and T3 for simulation experiments, the package contains the functions T3funcrep and
CPfuncrep which compute the solutions of the two methods in a single step. Finally, also note
that ThreeWay offers the T2 and T1 methods (functions T2 and T1, respectively) in addition
to the T3 method.
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