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Abstract. In this paper we study a class of distributions related to the r.v.

Cn(t) = t tan
1
n Θ, for different distributions of Θ. The problem is related

to the hitting point of a randomly oriented ray and generalize the Cauchy
distribution in different directions. We show that the distribution of Cn(t)

solves the Laplace equation of order 2n, possesses even moments of order 2k <
2n−1, and has bimodal structure when Θ is uniform. We study also a number

of distributional properties of functionals of Cn(t), including those related to

the arcsine law. Finally we study the same problem in the Poincaré half-plane
and this leads to the hyperbolic distribution Pr {η ∈ dw} = dw

π coshw
of which

the main properties are explored. In particular we study the distribution of

hyperbolic functions of η, the law of sums of i.i.d. r.v.’s ηj and the distribution
of the area of random hyperbolic right triangles.

1. Introduction

In this paper we consider the random variables of the form

Cn(t) =

{
t tan

1
n Θ, Θ ∈

(
0, π2

)
,

−t tan
1
n |Θ| , Θ ∈

(
−π2 , 0

)
,

(1.1)

under different assumptions on the distribution of Θ.
First of all we consider the case where the random angle Θ has distribution

qn(θ) =
sin π

2n

π
cot

n−1
n |θ| , θ ∈

(
−π

2
,
π

2

)
, n ∈ N,(1.2)

and we show that in this case Cn(t) has probability density

pn(x, t) =

(
n sin π

2n

π

)
t2n−1

t2n + x2n
, x ∈ R, t > 0.(1.3)

We regard (1.3) as a generalization of the classical symmetric Cauchy law under
many viewpoints. First of all because, for n = 1, the angle has uniform distribution
and the law of C1(t) becomes

p1(x, t) =
1

π

t

t2 + x2
, x ∈ R, t > 0.(1.4)

Furthermore in this case C1(t) = t tan Θ represents the segment intersected by a
ray shooted from the point O against the parallel t units away.
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In the case n > 1 we mantain the same interpretation but here the angle has a
law which becomes increasingly concentrated around θ = 0 as n increases.

For x2 < t2 the cumulative distribution of (1.3) has the form

(1.5) Pr {Cn(t) < x} =
1

2
+
n sin π

2n

π

∞∑
k=0

(−1)k

2nk + 1

(x
t

)2nk+1

where

Oα(z) =

∞∑
k=0

(−1)k

2αk + 1
z2αk+1, z2 < 1, α > 0,(1.6)

represents a generalization of the arctan z function and reduces to it for α = 1.
The density (1.3) is a solution to the 2n-th order Laplace equation(

∂2n

∂t2n
+

∂2n

∂x2n

)
pn(x, t) = 0.(1.7)

However (1.3) differs from the classical Cauchy because even moments of order
2k < 2n−1 exist and is non longer infinitely divisible as the characteristic function
shows.

Some other properties of the Cauchy are lost but considering some other related
distributions we are able to give a picture of generalized higher-order Cauchy dis-
tributions with interesting interlaced distributional properties. In the case Θ is
uniform in

(
−π2 ,

π
2

)
the probability density of

Ĉn(t) =

{
t tan

1
n Θ, Θ ∈

(
0, π2

)
,

−t tan
1
n |Θ| , Θ ∈

(
−π2 , 0

)
,

(1.8)

reads

p̂n(x, t) =
n

π

(
|x|
t

)n−1
t2n−1

t2n + x2n
, x ∈ R, t > 0.(1.9)

The distribution has a bimodal structure and thus substantially differs from (1.3).

The maxima of (1.9) are located at x = ±t
(
n−1
n+1

) 1
2n

. For the r.v. Ĉn(t) the

following remarkable property holds

1

Ĉn
(

1
t

) i.d.
= Ĉn(t).(1.10)

In our view it is relevant that the probability law (1.9) shares with the classical
Cauchy also the property that

Ẑn(t) =
t

1 +
(
Ĉn(t)
t

)2n(1.11)

possesses arcsine distribution, that is

Pr
{
Ẑn(t) ∈ dw

}
=

dw

π
√
w(t− w)

, 0 < w < t.(1.12)
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Curiously enough the ratio of independent r.v.’s Ŵn(t) =
Ĉ1
n(t)

Ĉ2
n(t)

has a distribution

which generalizes that of the ratio of independent Cauchy r.v.’s; that is

Pr

{
Ĉ1
n(t)

Ĉ2
n(t)

∈ dw

}
=

dw

π2

ntn|w|n−1

(t2n − w2n)
log

(
t

w

)2n

, w ∈ R, t > 0.(1.13)

However the distribution (1.9) does not satisfy an higher-order Laplace equation as
(1.3) does.

The third r.v. considered below is

C̃n(t) = t tan Θ(1.14)

where Θ has distribution qn(θ), θ ∈
(
−π2 ,

π
2

)
. The distribution of (1.14) is unimodal

and has analytical form

p̃n(x, t) =
1

π
sin

π

2n

t

t2 + x2

(
t

|x|

)n−1
n

, x ∈ R, t > 0.(1.15)

We note that for (1.15) the r.v.

Z̃n(t) =
t

1 +
(
C̃n(t)
t

)2(1.16)

has Beta distribution with parameters
(

1
2n , 1−

1
2n

)
.

In the last section of the paper we consider the problem of shooting against a
geodesic line in the Poincaré half-plane H+

2 . We shoot from a point O of the x-axis,
representing the infinite in H+

2 against a half-circumference of radius t and center
O (see figure 6a below). The hyperbolic distance η between the points P and Q, is
given by

η =

{
− log tan θ

2 , θ ∈
(
0, π2

)
,

log tan θ
2 , θ ∈

(
π
2 , π

)
,

(1.17)

because the metric in H+
2 is

ds2 =
dx2 + dy2

y2
.(1.18)

Considering Θ uniformly distributed, the random variable (1.17) has probability
density

Pr {η ∈ dw} =
4

π

e−wdw

1 + e−2w
=

2

π

1

coshw
dw, w > 0.(1.19)

The symmetric r.v.

(1.20) η̂ = − log tan
Θ

2

has density

(1.21) Pr {η̂ ∈ dw} =
1

π

1

coshw
dw, w ∈ R,

and characteristic function

(1.22) Eeiβη̂ =
1

cosh βπ
2

, β ∈ R.
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The hyperbolic r.v. η̂ has the unusual property that its density and characteristic
function have the same analytic form. The even-order moments

(1.23) Eη̂2n =
(π

2

)2n

|E2n|

show an interesting relationship with the Euler numbers E2n. We produce a direct
derivation of the distribution

(1.24) Pr {η̂1 + η̂2 ∈ dw} =
2

π

w

sinhw
, w ∈ R,

by means of the Cauchy residue theorem and we give also the explicit distribution
of sums η̂n =

∑n
j=1 η̂j for any n ∈ N. We obtain the distribution of all hyperbolic

functions of η̂ and of other related functionals. For example, we prove that the law
of sinh η̂ coincides with the standard Cauchy and that

(1.25) Y =
1

cosh2 η̂
=

1

1 + sinh2 η̂

has arcsine distribution. In the last section of the paper we also derive the distri-
bution of the area K of the hyperbolic right triangle (see fig. 6a one side of which
has length η defined in (1.17). We show that the distribution of K is

(1.26) Pr {K ∈ dw} =
2

π

dw

1 + sinw
, w ∈

(
0,
π

2

)
,

with mean

(1.27) EK =
2

π
log 2.

2. The higher order Cauchy random variables

We consider the angular distribution

qn(θ) =
sin π

2n

π
cot

n−1
n |θ| θ ∈

(
−π

2
,
π

2

)
(2.1)

which for n = 1 coincides with the uniform law in
(
−π2 ,

π
2

)
. The distribution (2.1) is

concentrated around θ = 0 (see figure 1) and its spread around the mean decreases
as n increases. One expects that the shots must be concentrated around the target
and (2.1) satisfies this requirement. In order to check that (2.1) integrates to unity
we perform the following calculation∫ π

2

−π2
qn(θ)dθ =

2 sin π
2n

π

∫ π
2

0

cot
n−1
n |θ| dθ

sin θ=
√
y

=
1

π
sin

π

2n

∫ 1

0

y
1
2n−1 (1− y)

− 1
2n dy

=
1

π
sin
( π

2n

)
Γ

(
1

2n

)
Γ

(
1− 1

2n

)
= 1,(2.2)

because Γ
(

1
2n

)
Γ
(
1− 1

2n

)
= π

sin π
2n

for the reflection formula of the Gamma integral.

We note that the related random variable cos Θ with Θ distributed as (2.1) has
even-order moments equal to

E cosm Θ = 2

∫ π
2

0

cosm θqn(θ) dθ
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=
1

π
sin

π

2n

Γ
(

1
2n

)
Γ
(
m
2 + 1− 1

2n

)
Γ
(
m
2 + 1

) .(2.3)

The special case m = 2 yields to E cos2 Θ = 1− 1
2n .

We now pass to the derivation of the distribution of

(2.4) Cn(t) =

{
t tan

1
n Θ, Θ ∈

(
0, π2

)
,

−t tan
1
n |Θ| , Θ ∈

(
−π2 , 0

)
.

Theorem 2.1. The explicit law of Cn(t), where Θ possesses distribution (2.1),
reads

Pr {Cn(t) ∈ dx} =
n sin π

2n

π

t2n−1

t2n + x2n
dx x ∈ R, t > 0,(2.5)

and for x2 < t2

Pr {Cn(t) < x} =
1

2
+
n sin π

2n

π

∞∑
k=0

(−1)k

2nk + 1

(x
t

)2nk+1

.(2.6)

Proof. For x > 0, we have that

Pr {Cn(t) < x} = Pr
{
t tan

1
n Θ < x

}
=

1

2
+

sin π
2n

π

∫ arctan( xt )
n

0

cot
n−1
n θ dθ.(2.7)

On deriving (2.7) with respect to x we readily have the density (2.5). In the same
spirit of the previous calculation we obtain the result for x < 0. By means of the
substitution tan θ = y we reduce (2.7) to the form

Pr {Cn(t) < x} =
1

2
+

sin π
2n

π

∫ ( xt )
n

0

1

y
n−1
n

dy

1 + y2

=
1

2
+

sin π
2n

π

∞∑
k=0

(−1)k
∫ ( xt )

n

0

y2k−1+ 1
n dy

=
1

2
+
n sin π

2n

π

∞∑
k=0

(−1)k
(
x
t

)2nk+1

2nk + 1
, x2 < t2,(2.8)

which coincides with (2.6). The intermediate step shows why the cumulative func-
tion can be written as in (2.6) for x2 < t2. �

Remark 2.2. The density (2.5) has the alternative form

pn (x, t) =
n sin

(
π
2n

)
π

∫ ∞
0

e−ztE2n,1

(
−x2nz2n

)
dz,(2.9)

where

Eα,β(z) =

∞∑
k=0

zk

Γ (αk + β)
, z ∈ R, α > 0, β > 0,(2.10)
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Figure 1. The probabilty function (2.1) of the r.v. Θ (left col-
umn) and the related distribution of Cn(t) (right column). The
dotted lines represent the uniform law and the Cauchy density.

is the Mittag-Leffler function, see for example Haubold, Mathai and Saxena [7].
The representation (2.9) permits us to show that it satisfies the Laplace equation
of order 2n. Since

(2.11)
∂2n

∂x2n
E2n,1

(
−z2nx2n

)
= −z2nE2n,1

(
−z2nx2n

)
,

we have that

∂2n

∂x2n

∫ ∞
0

e−ztE2n,1

(
−x2nz2n

)
dz

= −
∫ ∞

0

e−ztz2nE2n,1

(
−x2nz2n

)
dz

= − ∂2n

∂t2n

∫ ∞
0

e−ztE2n,1

(
−x2nz2n

)
dz.(2.12)

The probability density (2.5) is an unimodal function which for n → ∞ converges
to the uniform law in (−t, t). For increasing values of n it takes the form of a
rectangular wave as figure 1 shows.

Remark 2.3. The distribution function of Cn(t), t > 0, can be represented in

terms of hypergeometric functions for all w ∈ R without the restriction
(
w
t

)2
< 1 .
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For w > 0 we have that

Pr {Cn(t) < w} =
1

2
+
n sin π

2n

π

∫ w

0

t2n−1

t2n + x2n

x=ty
=

1

2
+
n sin π

2n

π

∫ w
t

0

dy

∫ ∞
0

du e−u(1+y2n)

y=x
1
2n

=
1

2
+
n sin π

2n

π

∫ ∞
0

du e−u
∫ (wt )

2n

0

dx e−uxx
1
2n−1

=
1

2
+

sin π
2n

π

∫ ∞
0

e−u u−
1
2n γ

(
1

2n
, u
(w
t

)2n
)
du

=
1

2
+

sin π
2n

π

w
t Γ(1)

1
2n

((
w
t

)2n
+ 1
) F (1, 1;

1

2n
+ 1;

(
w
t

)2n(
w
t

)2n
+ 1

)

=
1

2
+
n sin π

2n

π

w t2n−1

w2n + t2n
F

(
1, 1;

1

2n
+ 1;

w2n

w2n + t2n

)
.(2.13)

In the above steps we denoted by

(2.14) γ (a, x) =

∫ x

0

e−tta−1 dt

the incomplete Gamma function. By

F (a, b; c; z) =

∞∑
k=0

(a)k (b)k
(c)k

zk

k!

=

∞∑
k=0

Γ (a+ k) Γ (b+ k)

Γ (c+ k)

1

B (a, b)

zk

k!
,(2.15)

we denote the hypergeometric function. In the last step we used formula 6.455,
page 657, of Gradshteyn and Ryzhik [5], that is

(2.16)

∫ ∞
0

xµ−1e−βx γ (ν, αx) dx =
ανΓ (µ+ ν)

ν (α+ β)
µ+ν F

(
1, µ+ ν; ν + 1;

α

α+ β

)
,

valid for < (α+ β) > 0, < (β) > 0, < (µ+ ν) > 0. With little changes we can see
that (2.13) holds also for w < 0. By means of formula (see [5], 9.131, page 1008),

(2.17) F (a, b; c; z) = (1− z)c−a−b F (c− a, c− b; c; z)

the cumulative function (2.13) can also be written as
(2.18)

Pr {Cn(t) < w} =
1

2
+
n sin π

2n

π

w

(w2n + t2n)
1
2n

F

(
1

2n
,

1

2n
;

1

2n
+ 1;

w2n

t2n + z2n

)
.

We note that, for n = 1, the function (2.18) coincides with the expansion of the
arctangent function,

Pr {C1(t) < w} =
1

2
+

1

π

w√
w2 + t2

F

(
1

2
,

1

2
;

3

2
;

w2

w2 + t2

)
see [5], 1.641, pag. 60

=
1

2
+

1

π
arctan

w

t
.(2.19)
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By applying the following formula

(2.20) F (a, b; c; z) = (1− z)−b F
(
b, c− a; c;

z

z − 1

)
,

∣∣∣∣ z

z − 1

∣∣∣∣ < 1,

we can rewrite the distribution function (2.13), for w2

t2 < 1, as

Pr {Cn(t) < w} =
1

2
+
n sin π

2n

π

w

t
F

(
1,

1

2n
,

1

2n
+ 1,−w

2n

t2n

)
=

n sin
(
π
2n

)
π

(
π

2n sin
(
π
2n

) +
w

t

∞∑
k=0

(−1)k
(1)k

(
1

2n

)
k(

1
2n + 1

)
k

1

k!

w2nk

t2nk

)

=
n sin

(
π
2n

)
π

(
π

2n sin
(
π
2n

) +

∞∑
k=0

(−1)k
(

1
2n

)
k(

2n+1
2n

)
k

w2nk+1

t2nk+1

)

=
n sin

(
π
2n

)
π

(
π

2n sin
(
π
2n

) +

∞∑
k=0

(−1)k

2nk + 1

w2nk+1

t2nk+1

)
.(2.21)

In (2.21) we retrive the result (2.8) which was obtained without resorting to the
hypergeometric functions.

Other useful representations of the cumulative function of Cn(t) can be given in
integral form as

Pr {Cn(t) < w} =
n sin

(
π
2n

)
π

(
π

2n sin
(
π
2n

) +

∞∑
k=0

(−1)k

2nk + 1

w2nk+1

t2nk+1

)

=
1

2
+
n sin π

2n

π

w

t

∞∑
k=0

(−1)k
(w
t

)2nk
∫ ∞

0

du e−u(2nk+1)

=
1

2
+
n sin

(
π
2n

)
π

∫ ∞
0

du e−u
w

t

∞∑
k=0

(
−e
−2nuw2n

t2n

)k
=

1

2
+
n sin

(
π
2n

)
π

w

∫ ∞
0

du e−u
t2n−1

t2n + w2ne−2nu
.(2.22)

Formula (2.22) can be also rewritten as

Pr {Cn(t) < w} =

=
1

2
+
n sin

(
π
2n

)
π

w

∫ ∞
0

du e−u
∫ ∞

0

dz e−ztE2n,1

(
−
(
we−u

)2n
z2n
)

=
1

2
+
n sin

(
π
2n

)
π

w

∞∑
k=0

(−1)kw2nk

Γ (2nk + 1)

∫ ∞
0

dz e−ztz2nk

∫ ∞
0

du e−u(1+2nk)

=
1

2
+
n sin

(
π
2n

)
π

w

∞∑
k=0

(−1)kw2nk

Γ (2nk + 1) (1 + 2nk)

∫ ∞
0

dz e−ztz1+2nk−1

=
1

2
+
n sin

(
π
2n

)
π

∞∑
k=0

(−1)k
(
w
t

)2nk+1

2nk + 1
,(2.23)

which coincides with (2.7).
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Remark 2.4. In force of formula 3.738 pag. 430 of Gradshteyn and Ryzhik [5],
we can give a representation of the characteristic function of (2.5) as follows∫ ∞

−∞
eiβxpn(x, t)dx =

2n sin π
2n

π
t2n−1

∫ ∞
0

cosβx

x2n + t2n
dx

= sin
π

2n

n∑
k=1

e−|β|t sin
(2k−1)π

2n sin

(
(2k − 1)π

2n
+ |β| t cos

(2k − 1)π

2n

)
,(2.24)

which coincides, for n = 1, with the characteristic function of the Cauchy distribu-
tion.

Remark 2.5. Other generalizations of the Cauchy are obtained by considering two
different types of r.v.’s. The first one is

Ĉn(t) =

{
t tan

1
n Θ, Θ ∈

(
0, π2

)
−t tan

1
n |Θ| Θ ∈

(
−π2 , 0

)
,

(2.25)

where Θ has uniform law. The distribution function of (2.25) is

Pr
{
Ĉn(t) < x

}
=

 1
2 + 1

π

∫ arctan( xt )
n

0 dθ, x > 0
1
π

∫ π
2

arctan(− xt )
n dθ, x < 0,

(2.26)

and thus the density reads

p̂n(x, t) =
n

π

(
|x|
t

)n−1
t2n−1

t2n + x2n
, x ∈ R, t > 0, n ∈ N,(2.27)

and possesses the following representation

p̂n (x, t) =
n

π

(
|x|
t

)n−1 ∫ ∞
0

e−ztE2n,1

(
−x2nz2n

)
dz.(2.28)

In Figure 2a we give a picture of density (2.27) for different values of n. It is
interesting to note that the distribution is bimodal with two symmetric maxima at

x = ±t
(
n− 1

n+ 1

) 1
2n

, n > 1.(2.29)

Furthermore, the characteristic function of the distribution (2.27), in force of for-
mula 3.738 of Gradshteyn and Ryzhik [5] pag 430, reads

∫ ∞
−∞

eiβxp̂n (x, t) dx =

n∑
k=1

e−|β|t sin
(2k−1)π

2n sin

(
(2k − 1)π

2
+ |β| t cos

(2k − 1)π

2n

)
.

(2.30)

For the r.v.

C̃n(t) = t tan Θ,(2.31)

with Θ endowed with the distribution qn (θ) given in (2.1), we have that

p̃n (x, t) =
d

dx
Pr {t tan Θ < x}

=
d

dx

[
1

2
+

sin π
2n

π

∫ arctan x
t

−π2
cot

n−1
n |θ| dθ

]
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=
sin π

2n

π

t

x2 + t2

(
t

|x|

)n−1
n

.(2.32)

(a) (b)

Figure 2. The probability density function of Ĉn(t), (A), and

C̃n(t), (B), for different values of n.

Remark 2.6. Since the following identity holds

n

π

(
|x|
t

)n−1
t2n−1

t2n + x2n
= n|x|n−1

∫ ∞
0

e−
x2n

2s

√
2πs

tn
e−

t2n

2s

√
2πs3

ds,(2.33)

for the hyperCauchy (2.27) a subordination similar to that of the classical Cauchy
law can be established and reads

Pr
{
Ĉn(t) ∈ dx

}
=

∫ ∞
0

Pr
{

B
1
n (s) ∈ dx

}
Pr {Ttn ∈ ds} ds,(2.34)

where

B(s) =

{
B(s), B(s) > 0,

−B(s), B(s) < 0.
(2.35)

With B(s) we denote a standard Brownian motion and Ttn is defined as

(2.36) Ttn = inf {s > 0 : B(s) = tn}

Now we pass to the derivation of the moments of (2.1).
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Theorem 2.7. For 2n > 2k + 1, k > 0, we have that

EC2k
n (t) =

sin π
2n

sin
(

2k+1
2n π

) t2k
=

t2k

cos kπn + cot π
2n sin kπ

n

.(2.37)

Proof.

EC2k
n (t) =

n

π
sin

π

2n
t2n−1

∫ ∞
−∞

x2k

x2n + t2n
dx

= 2
n

π
sin

π

2n
t2n−1

∫ ∞
0

x2k

∫ ∞
0

e−w(x2n+t2n) dw dx

x=y
1
2n

=
1

π
sin

π

2n
t2n−1

∫ ∞
0

e−wt
2n

dw

∫ ∞
0

e−wy y
2k+1
2n −1 dy

=
Γ
(

2k+1
2n

)
π

sin
π

2n
t2n−1

∫ ∞
0

e−wt
2n

w−
2k+1
2n dw

=
Γ
(

2k+1
2n

)
π

sin
π

2n
t2k
∫ ∞

0

e−y y−
2k+1
2n +1−1 dy

=
Γ
(

2k+1
2n

)
Γ
(
1− 2k+1

2n

)
π

sin
π

2n
t2k

=
sin π

2n

sin
(

2k+1
2n π

) t2k.(2.38)

�

Remark 2.8. For k = 1, formula (2.37) gives the variance of the hyperCauchy

EC2
n(t) = VarCn(t) =

sin π
2n

sin 3π
2n

t2 =
t2

1 + 2 cos πn
.(2.39)

The last expression shows that the variance is a decreasing function of n.
Furthermore we have the following interesting relationships:

EC2(n−1)
n (t) = t2n−2,

EC2(n−2)
n (t) =

sin π
2n

sin 3π
2n

t2(n−2) = Var (Cn(t)) t2n−4 =
t2n−2

1 + 2 cos πn
,

EC4
n(t) =

t4VarCn(t)

2t2 cos πn −VarCn(t)
.(2.40)

For the distribution (2.32) it is possible to evaluate only the moment E
∣∣∣C̃n(t)

∣∣∣
by performing the following calculation

E
∣∣∣C̃n(t)

∣∣∣ =
sin π

2n

π

∫ ∞
−∞
|x| t

x2 + t2

(
t

|x|

)n−1
n

dx

= 2
sin π

2n

π

∫ ∞
0

t2−
1
nx

1
n

x2 + t2
dx

x=ty
=

2 sin π
2n

π
t

∫ ∞
0

y
1
n

1 + y2
dy
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y=x
1
2

=
sin π

2n

π
t

∫ ∞
0

e−u
∫ ∞

0

x
1
2 + 1

2n−1e−uxdu dx

=
sin π

2n

π
Γ

(
1

2
+

1

2n

)
t

∫ ∞
0

e−u u1− 1
2−

1
2n−1 du

=
sin π

2n

π
Γ

(
1

2
+

1

2n

)
Γ

(
1− 1

2
− 1

2n

)
t

=
sin π

2n

sin
((

1
2 + 1

2n

)
π
) t = t tan

π

2n
.(2.41)

3. Distributional properties of the hyperCauchy

In this section we consider a number of r.v.’s related to the hyperCauchy pre-
viously introduced. We start by examining the properties of the reciprocal of the
hyperCauchy.

3.1. Distribution of the reciprocal. It is well known that the symmetrical
Cauchy r.v. C1(t), t > 0, has the property that

1

C1

(
1
t

) ∼ C1(t).(3.1)

For the hyperCauchy Cn(t), Ĉn(t) and C̃n(t) we have the following theorem

Theorem 3.1. We have that

i)

Pr

{
1

Cn
(

1
t

) ∈ dw} =
n sin π

2n

π

t2n−1

t2n + w2n

(w
t

)2n−2

dw

=
(w
t

)2n−2

Pr {Cn(t) ∈ dw} , w ∈ R, t > 0,(3.2)

ii)

Pr

{
1

Ĉn
(

1
t

) ∈ dw} = Pr
{
Ĉn(t) ∈ dw

}
, w ∈ R, t > 0,(3.3)

iii)

Pr

{
1

C̃n(t)
∈ dw

}
=

sin π
2n

π

t

t2 + w2

(
|w|
t

)n−1
n

dw

=

(
t

|x|

) 2n−2
n

Pr
{
C̃n(t) ∈ dw

}
, w ∈ R, t > 0.(3.4)

Proof. The density of

Vn(t) =
1

Cn
(

1
t

)(3.5)

reads

vn(w, t) =
d

dw

n sin π
2n

π

∫ ∞
1
w

(
1
t

)2n−1

1
t2n + x2n

dx



SHOOTING RANDOMLY AGAINST A LINE 13

=
n sin π

2n

π

t2n−1

t2n + w2n

(w
t

)2n−2

, w ∈ R, t > 0,(3.6)

and for n = 1 we retrive the previous result of the classical Cauchy r.v.. The density
(3.2) has a bimodal structure (with maxima at x = ±t) as illustrated in figure 3a.

(a) (b)

Figure 3. The probability density function (3.6), (A), and (3.10),
(B), for different values of n.

Instead, the r.v. Ĉn(t) preserves the fine property of the classical Cauchy distri-
bution because

Pr

{
1

Ĉn
(

1
t

) < w

}
=

n

π

∫ ∞
1
w

(t|x|)n−1

(
1
t

)2n−1

1
t2n + x2n

dx,(3.7)

and so, by taking the derivative with respect to w we get

Pr

{
1

Ĉn
(

1
t

) ∈ dw} =
n

π

(
|w|
t

)n−1
t2n−1

t2n + w2n
dw,(3.8)

which coincides with the law of Ĉn(t). For the law of the r.v. C̃n(t) we get that

Pr

{
1

C̃n
(

1
t

) < w

}
=

sin π
2n

π

∫ ∞
1
w

1
t

1
t2 + x2

( 1
t

|x|

)n−1
n

dx,(3.9)
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and thus

Pr

{
1

C̃n
(

1
t

) ∈ dw} =
sin π

2n

π

t

t2 + w2

(
|w|
t

)n−1
n

dw.(3.10)

�

Distributions (3.6) and (3.10) are presented respectively in fig 3a and 3b, for
different values of n and the dotted line represents the classical Cauchy density.

3.2. Distributions of the ratio. For the ratios of the three types of hyperCauchy
distributions dealt with so far we have the following theorem.

Theorem 3.2. In the following table we have the ratios of the r.v.’s and the cor-
responding densities

r.v. density for w ∈ R

Wn(t) = t
C1
n(t)

C2
n(t) wn(w, t) = n

2π tan π
2n t

t2n−2−w2n−2

t2n−w2n

Ŵn(t) = t
Ĉ1
n(t)

Ĉ2
n(t)

ŵn(w, t) = ntn|w|n−1

π2(t2n−w2n) log
(
t
w

)2n
W̃n(t) =

C̃1
n(t)

C̃2
n(t)

w̃n(w) = 1
2π tan π

2n
|w|

1
n
−1

1−w2

(
1− w2− 2

n

)
Proof. We give a hint of the derivation of the densities above. For w > 0,

Pr

{
t
C1
n(t)

C2
n(t)

<
w

t

}
=

1

2
+ 2n2 sin2

( π
2n

) 1

π2

∫ ∞
0

dx

∫ wx
t

0

dy
t2n−1

t2n + x2n

t2n−1

t2n + y2n
.

(3.11)

The density is therefore

wn(w, t) = 2n2 sin2
( π

2n

) 1

π2

∫ ∞
0

dx
x

t
t4n−2 1

t2n + x2n

2

t2n +
(
wx
t

)2n
=

2n2 sin2
(
π
2n

)
1
π2

t2n − w2n

t4n−2

t

[∫ ∞
0

x dx

t2n + x2n
− w2n

t2n

∫ ∞
0

x dx

t2n +
(
w2nx2n

t2n

)] ,(3.12)

and with the change of variable wx
t = y in the second integral of (3.12) we obtain

wn(w, t) =
2n2 sin2

(
π
2n

)
1
π2

t2n + w2n

t4n−2

t

(
1− w2n

t2n
t2

w2

)∫ ∞
0

dx
x

t2n + x2n

x=ty
=

2n2 sin2
(
π
2n

)
1
π2

t2n + w2n
t4n−3

(
1− w2n−2

t2n−2

)
t2

t2n

∫ ∞
0

dy
y

1 + y2n

=
2n2 sin2

(
π
2n

)
1
π2

t2n + w2n

(
t2n−2 − w2n−2

) t2n−1

t2n
t2
∫ ∞

0

dy
y

1 + y2n

= 2n2 sin2
( π

2n

) 1

π2

t2n−2 − w2n−2

t2n − w2n

t

2n
Γ

(
1

n

)
Γ

(
1− 1

n

)
=

n

2π
tan

π

2n
t
t2n−2 − w2n−2

t2n − w2n
.(3.13)
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For the r.v. Ŵn(t) the density reads

ŵn(w, t) =
2n2

π2

∫ ∞
0

x

t

t2n−1

t2n + x2n

(x
t

)n−1 t2n−1

t2n +
(
wx
t

)2n (wxt2 )n−1

dx

=
2n2t3nwn−1

π2

∫ ∞
0

x2n−1

t2n + x2n

dx

t4n + (wx)
2n

( xt )
2n

=y
=

2n2t3nwn−1

π2

1

t2n
1

2n

∫ ∞
0

1

1 + y

dy

t2n + w2ny
dy

=
ntnwn−1

π2 (t2n − w2n)

∫ ∞
0

(
1

1 + y
− w2n

t2n + w2ny

)
dy

=
ntnwn−1

π2 (t2n − w2n)
log

(
t

w

)2n

.(3.14)

For the r.v. W̃n(t) the density, not depending on t, has a structure different from
the previous ones and is obtained by means of the following calculation

w̃n(w) = 2

(
sin π

2n

π

)2 ∫ ∞
0

t

t2 + x2

(
t

x

)n−1
n t

t2 + w2 + x2

(
t

wx

)n−1
n

x dx

= 2

(
sin π

2n

π

)2
t2+2(n−1

n )

w
n−1
n

∫ ∞
0

x

x2 + t2
x−2(n−1

n )

t2 + w2x2
dx

= 2

(
sin π

2n

)2
π2

t2(
n−1
n )

w
n−1
n (1− w2)

(∫ ∞
0

x
2
n−1

x2 + t2
dx− w2

∫ ∞
0

x
2
n−1

t2 + w2x2
dx

)

= 2

(
sin π

2n

)2
π2

t2(
n−1
n )

w
n−1
n (1− w2)

(
π

2t2−
2
n sin π

n

− w2− 2
nπ

2t2−
2
n sin π

n

)

=
1

2π
tan

π

2n

w
1
n−1

(1− w2)

(
1− w2− 2

n

)
.(3.15)

Similar calculation performed for w < 0 yield the previous distributions for w ∈
R. �

Remark 3.3. We note that by setting n = 2 in the law wn(w, t) we retrive the
standard Cauchy density. Indeed

w2(w, t) =
1

π
tan

π

4
t
t2 − w2

t4 − w4

=
1

π

t

t2 + w2
.(3.16)

This means that if C1
2 (t) and C2

2 (t) are two independent random variables with law

p2(w, t) =
1√
2π

t3

t4 + w4
,(3.17)

the distribution of

W2(t) =
C1

2 (t)

C2
2 (t)

(3.18)

is a standard Cauchy.
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Furthermore we have that the distribution (3.14) coincides with formula (4.6) of
D’Ovidio and Orsingher [3] for n = 1. We can check that the r.v.(

1

t

C1
1 (t)

C2
1 (t)

) 1
n

,(3.19)

where C1
1 , C2

1 are two independent Cauchy r.v.’s, possesses distribution (3.14). In
other words we have the following equality in distribution

t
Ĉ1
n(t)

Ĉ2
n(t)

i.d.
=

(
1

t

C1
1 (t)

C2
1 (t)

) 1
n

.(3.20)

Remark 3.4. In order to check that the density (3.15) integrates to unity we
perform the following calculation∫ ∞
−∞

w̃n(w) dw =

=
tan π

2n

2π

∫ ∞
−∞

|w| 1n−1
(

1− w2− 2
n

)
dw

(1− w2)
=

tan π
2n

π

∫ ∞
0

w
1
n−1

(
1− w2− 2

n

)
dw

(1− w2)

=
1

π

∫ 1

0

w
1
n−1

(
1− w2− 2

n

)
1− w2

dw +
1

π
tan

π

2n

∫ ∞
1

w
1
n−1

(
1− w2− 2

n

)
1− w2

dw.

(3.21)

With the change of variable y = 1
w in the second integral of (3.21), we get

∫ ∞
−∞

w̃n(w) dw =
1

π
tan

π

2n

∫ 1

0

w
1
n−1

(
1− w2− 2

n

)
1− w2

dw+

+
1

π
tan

π

2n

∫ 1

0

(
1− y2− 2

n

)
y

1
n−1

1− y2
dy

=
2

π
tan

π

2n

∫ 1

0

w
1
n−1

(
1− w2− 2

n

)
1− w2

dw

=
2

π
tan

π

2n

∞∑
k=0

∫ 1

0

(
w

1
n−1 − w− 1

n+1
)
w2k

=
2

π
tan

π

2n

∞∑
k=0

[
w2k+ 1

n

2k + 1
n

− w2k− 1
n+2

2k − 1
n + 2

]1

0

=
2

π
tan

π

2n

∞∑
k=0

(
1

2k + 1
n

− 1

2(k + 1)− 1
n

)

=
2

π
tan

π

2n

∞∑
k=1

(
1

2k + 1
n

− 1

2k − 1
n

+ n

)

=
2

π
tan

π

2n

(
n−

∞∑
k=1

2
n

(2k)2 − 1
n2

)
.(3.22)
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(a) (b)

(c)

Figure 4. The probability density function wn(w, t), (A),
ŵn(w, t), (B), and w̃n(w), (C), for different values of n.

Considering the relationship (see Smirnov [11] pag 410)

z cot z = 1−
∞∑
k=1

2z2

k2π2 − z2
(3.23)
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and setting z = π
2n , we get

π

2n
cot

π

2n
= 1−

∞∑
k=1

2
(
π
2n

)2
k2π2 −

(
π
2n

)2
= 1−

∞∑
k=1

2
n2

(2k)2 − 1
n2

,(3.24)

and thus

π

2
cot

π

2n
= n− 2

n

∞∑
k=1

1

(2k)2 − 1
n2

.(3.25)

Considering (3.25) we can rewrite (3.22) as follows∫ ∞
−∞

w̃n(w) dw =
2

π
tan

π

2n

(
n−

∞∑
k=1

2
n

(2k)2 − 1
n2

)

=
2

π
tan

π

2n

(π
2

cot
π

2n

)
= 1.(3.26)

The previous calculation yields an interesting integral represention of the cotan-
gent function. Indeed, in light of (3.22) and (3.23) we can write

cot z =
1

z
−
∞∑
k=0

2z

(2k)2 − z2

=

∫ 1

0

wz−1

1− w2

(
1− w2(1−z)

)
dw

=
1

2

∫ ∞
0

wz−1

1− w2

(
1− w2(1−z)

)
dw.(3.27)

For a representation of (3.13), (3.14) and (3.15), see Fig. 4a, 4b and 4c.

3.3. The higher-order arcsine law. It is well-known that for the classical Cauchy
r.v., C1(t), holds the following relationship (see Chaumont and Yor [2] pag. 104)

Z1(t) =
t

1 + (C1(t))
2

i.d.
=

1

π

1√
w (t− w)

, 0 < w < t.(3.28)

which is known as the arcsine law. For the hyperCauchy we get similar relationships.

Theorem 3.5. We have the following distributions.

r.v. probability density for 0 < w < t

Zn(t) = t

1+( |Cn(t)|
t )

2n

sin π
2n

π (t− w)
1
2n−1

w−
1
2n

Ẑn(t) = t

1+

(
|Ĉn(t)|

t

)2n
1

π
√

(t−w)w

Z̃n(t) = t

1+

(
|C̃n(t)|

t

)2

sin π
2n

π (t− w)
1
2n−1

w−
1
2n
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Proof. We get for 0 < w < t,

Pr
{
Ẑn(t) < w

}
= 2

n

π

∫ ∞
t( t−ww )

1
2n

(
|x|
t

)n−1
t2n−1

t2n + x2n
dx(3.29)

and thus

ẑn(w, t) dw = Pr
{
Ẑn(t) ∈ dw

}
=

1

π

dw√
w(t− w)

.(3.30)

Figure 5

For the r.v. Cn(t) the distribution becomes

Pr {Zn(t) < w} 2
n sin π

2n

π

∫ ∞
t( t−ww )

1
2n

t2n−1

t2n + x2n
dx(3.31)

and

zn(w, t) dw = Pr {Zn(t) ∈ dw} =
sin π

2n

π
w−

1
2n (t− w)

1
2n−1

dw.(3.32)

Similar calculations for Z̃n(t) yield

(3.33) Pr
{
Z̃n(t) ∈ dw

}
=

sin π
2n

π
(t− w)

1
2n−1

w−
1
2n dw.

�

The density

(3.34) zn(w, t) = z̃n(w, t) =
sin π

2n

π
(t− w)

1
2n−1

w−
1
2n

is a Beta with parameters
(

1
2n − 1,− 1

2n

)
and for increasing values of n becomes

more asymmetric, as shown in Fig. 5 for t = 1 (the dotted line represents the
classical arcsine law).
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Table 1. In the following table we sum up our results on the
hyperCauchy functionals

Variable Law Transformation Law of the transformation

Cn(t)
n sin π

2n

π
t2n−1

t2n+x2n
1

Cn( 1
t )

n sin π
2n

π
t2n−1

t2n+w2n

(
w
t

)2n−2

t
C1
n(t)

C2
n(t)

n
2π tan π

2n

t(t2n−2−w2n−2)
t2n−w2n

t

1+( |Cn(t)|
t )

2n

sin π
2n

π (t− w)
1
2n−1

w−
1
2n ,

for 0 < w < t

Ĉn(t) n
π

t2n−1

t2n+x2n

(
|x|
t

)n−1
1

Ĉn( 1
t )

n
π

t2n−1

t2n+w2n

(
|w|
t

)n−1

t
Ĉ1
n(t)

Ĉ2
n(t)

ntnwn−1

π2(t2n−w2n) log
(
t
w

)2n
t

1+

(
|Ĉn(t)|

t

)2n
1
πw
− 1

2 (t− w)
− 1

2 ,

for 0 < w < t

C̃n(t)
sin π

2n

π
t

t2+x2

(
t
|x|

)n−1
n 1

C̃n( 1
t )

sin π
2n

π
t

t2+w2

(
|w|
t

)n−1
n

C̃1
n(t)

C̃2
n(t)

1
2π tan π

2n
|w|

1
n
−1

(1−w2)

(
1− w2− 2

n

)

t

1+

(
|C̃n(t)|

t

)2

sin π
2n

π (t− w)
1
2n−1

w−
1
2n ,

for 0 < w < t

4. The Hyperbolic case

Let us consider the Poincaré half-plane H+
2 = {x, y : x ∈ R, y > 0} (see for ex-

ample Gruet [6]; Lao and Orsingher [8]) endowed with the metric

(4.1) ds2 =
dx2 + dy2

y2
.
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We assume that a particle is shooted from the point O(0, 0), see figure 6a, on the
x-axis (representing the infinite of H+

2 ), and moves along the geodesic line joining
O with an arbitrary point P on the half-circle centered at O, denoted by CO, and
with arbitrary radius t. The hyperbolic distance η between P and Q (Q is the
intersection of the vertical geodesic line through O and the half-circle CO), does
not depend on t, because the half-circumferences centered at O form a system of
horocycles, and will be denoted by η. Thus the hyperbolic distance η is obtained
by evaluating the line integral

η =

∫ π
2

Θ

√
(x′(s))

2
+ (y′(s))

2

y(s)
ds, Θ ∈

(
0,
π

2

)
=

∫ π
2

Θ

ds

sin s
= − log tan

Θ

2
,(4.2)

where Θ is the random angle formed by OP and the x-line. Formula (4.2) can be
rewritten as

(4.3) e−η = tan
Θ

2
which is the celebrated Lobachevsky law for the angle of parallelism.

(a) (b)

Figure 6. The probability density function of Ĉn(t), (A), and

C̃n(t), (B), for different values of n.

If Θ is uniformly distributed in (0, π), the non-negative random variable η (rep-
resenting the hyperbolic distance of P from Q)

η =

{
− log tan Θ

2 , Θ ∈
(
0, π2

)
,

log tan Θ
2 , Θ ∈

(
π
2 , π

)
,

(4.4)

has distribution function

Pr {η < w} = 2 Pr

{
0 < − log tan

θ

2
< w

}
= 2 Pr

{
0 > log tan

θ

2
> −w

}
= 2 Pr

{
1 > tan

θ

2
> e−w

}
= 2 Pr

{π
2
> θ > 2 arctan e−w

}
= 2

∫ π
2

2 arctan e−w

dθ

π
= 1− 4

π
arctan e−w, w > 0.(4.5)
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The density related to (4.5) reads

(4.6) Pr {η ∈ dw} =
4

π

e−w

1 + e−2w
dw =

2

π

dw

coshw
, w > 0.

If we consider the symmetric r.v. (see fig 7)

(4.7) η̂ = − log tan
Θ

2
, Θ ∈ (0, π) ,

we obtain that

(4.8) Pr {η̂ ∈ dw} =
1

π

dw

coshw
, w ∈ R,

with distribution function

(4.9) Pr {η̂ < w} = 1− 2

π
arctan e−w.

The distribution (4.8) appears in Feller [4] pag. 503 and emerges in the analysis
of the successive overshoots by a Cauchy process in Pitman and Yor [10].

The r.v.’s η and η̂ can be also viewed on the Poincaré disc, where the shooting
point O is on the circumference and η represents the distance between Q and P
(see figure 6b).

Figure 7. The density of the hyperbolic r.v. (black line) is com-
pared with the standard normal (which has high concentration of
the probability around zero) and the Cauchy law.

We give a derivation of the characteristic function of (4.8) different from the
series expansion of Feller [4]. Our approach is based on the residue theorem.

Theorem 4.1. The characteristic function of (4.8) is written as

Eeiβη̂ =
1

cosh βπ
2

.(4.10)
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Proof. The integral (4.10) can be evaluated by means of the residue theorem applied
to the function

(4.11) f(z) =
eiβπz

coshπz
, z ∈ C,

By considering the contour of Fig. 8a we have that∫ r

−r

eiβπxdx

coshπx
+

∫ i

0

eiβπ(r+iy)dy

cosh(r + iy)
+

∫ −r
r

eiβπ(x+i)dx

coshπ(x+ i)
+

∫ 0

i

eiβπ(−r+iy)dy

coshπ(−r + iy)
=

= 2πi Resf(z)|z= i
2
,

(4.12)

where Resf(z)|z= i
2

is the residue of the pole at z = i
2 , the contour of integration

is represented in Fig. 8a. By taking the limit for r →∞ the second and the fourth
integral disappear and thus∫ ∞

−∞

eiβπxdx

coshπx
+

∫ ∞
−∞

eiβπx−βπdx

coshπx
= 2e−

βπ
2

(
1 + e−βπ

) ∫ ∞
−∞

eiβπx

coshπx
= 2e−

βπ
2 .(4.13)

In conclusion we have that∫ ∞
−∞

eiβπx

coshπx
dx =

2e−
βπ
2

1 + e−βπ
=

1

cosh βπ
2

,(4.14)

which is the desired result. �

From (4.10) we obtain that

(4.15) Var η̂ =
(π

2

)2

.

The even-order moments of η̂ can be expressed in terms of the Euler numbers E2n

(4.16) Eη̂2n =
(π

2

)2n

|E2n| ,

in view of formula 3.523 pag 376 of [5]. The Euler numbers have generating function

(4.17)
1

cosh t
=

∞∑
k=0

En
tn

n!
, |t| < π

2
.

Formula (4.17) gives, for |t| < π
2 , a possible representation of the density (4.8).

(a) (b)

Figure 8. The contours of integration for Theorems 4.1 and 4.2.
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4.1. Distributional Properties of the hyperbolic distribution.

Theorem 4.2. Let η1 and η2 be two independent copies of (4.7). Thus the distri-
bution of

(4.18) η̂2 = η̂1 + η̂2,

is given by

(4.19) Pr {η̂2 ∈ dx} =
2x

π2 sinhx
dx.

Proof. In view of (4.10) we have

(4.20) Pr {η̂2 ∈ dx} =
dx

2π

∫ ∞
−∞

e−izx

cosh2 zπ
2

dz.

The inverse Fourier transform appearing in the right-hand side of (4.20) can be
evaluated by means of the residue theorem, applied to the function

(4.21) f(z) =
e−ixz

cosh2 zπ
2

, z ∈ C,

along the contour of the form in Fig. 8b. In the same spirit of Theorem 4.1 we get

1

2π

[∫ r

−r

e−ixw

cosh2 wπ
2

dw +

∫ −r
r

e−ix(w+2i)

cosh2 π
2 (w + 2i)

dw +

∫ 2i

0

e−ix(r+iy)

cosh π(r+iy)
2

dy +

+

∫ 0

2i

e−ix(−r+iy)

cosh π(−r+iy)
2

dy

]
= i Resf(z)|z=i(4.22)

and taking the limit for r →∞ we obtain

(4.23)

∫ ∞
−∞

e−ixw

cosh2 wπ
2

dw =
i Resf(z)|z=i

1− e2x
= − i

2 sinhx
e−x Resf(z)|z=i .

The residue in z = i is given by

Resf(z)|z=i = lim
z→i

d

dz

[
(z − i)2 e−ixz

cosh2 zπ
2

]

= lim
z→i

d

dz

[
(z − i)2 e−ixz

1 + coshπz

]
= lim

z→i
e−ixz

[
−2 (z − i)2

ix+ 4 (z − i)
1 + coshπz

− 2π (z − i)2
sinh(πz)

(1 + coshπz)
2

]

=
22xi

π2
ex + lim

z→i
e−ixz

[
4 (z − i)

1 + coshπz
− 2π (z − i)2

sinhπz

(1 + cosh zπ)
2

]

Taylor
=

22xi

π2
ex + lim

z→i
e−ixz

 4 (z − i)
−π2

2 (z − i)2 +
2π2 (z − i)3(
−π2

2 (z − i)2
)2


=

22xi

π2
ex,(4.24)
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where, in the last step, we used the following Taylor’s series expansions in a neigh-
borhood of the point z = i

1 + coshπz = − (z − i)2

2
π2 + o

(
(z − i)2

)
sinhπz = − (z − i)π + o (z − i) .(4.25)

In conclusion, considering (4.23) and (4.24), we obtain

(4.26) Pr {η̂2 ∈ dx} =
2x

π2 sinhx
dx.

�

Remark 4.3. In order to check that (4.26) integrates to unity we refer to formula
3.521 pag. 375 of Gradshteyn and Ryzhik [5] obtaining

(4.27)

∫ ∞
−∞

2x

π2 sinhx
dx = 1.

For a picture of distribution (4.19) see Fig. 9.

Figure 9. The dotted line represents the hyperbolic distribution
(4.8) and the bold one represents the density (4.26) of the sum
η1 + η2.

In general, for

(4.28) η̂n = η̂1 + η̂2 + · · ·+ η̂n, n ∈ N,
we have, in force of formula 3.985 pag 512 of [5],

Pr {η̂n ∈ dw} =


4kw

2(2k−1)!π2 sinhw

∏k−1
r=1

(
w2

π2 + r2
)
dw, n = 2k, 2 ≤ k ∈ N

22k

(2k)!π coshw

∏k
r=1

[
w2

π2 +
(

2r−1
2

)2]
dw, n = 2k + 1, k ∈ N.

(4.29)
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The proof of (4.29) is based on the evaluation of the integral

(4.30)

∫
Γ

f(z) dz, z ∈ C,

where

(4.31) f(z) =
e−ixz

coshn πz
2

, z ∈ C,

and the contour Γ is that of figure 8b. The proof follows the same line of Theorem
4.2 and we arrive at

(4.32)

∫ ∞
−∞

e−iwx

cosh wπ
2

dw − e2x

(−1)n

∫ ∞
−∞

e−iwx

coshn wπ
2

dw = 2πi Resf(z)|z=i

where Resf(z)|z=i is the residue of f(z) at z = i. The inverse Fourier transform is
therefore

(4.33)
1

2π

∫ ∞
−∞

e−iwx

coshn wπ
2

dw =
i

1 + (−1)
n+1

e2x
Resf(z)|z=i .

The evaluation of Resf(z)|z=i leads to (4.29). For n = 2 we clearly retrive the
result of Theorem 4.2.

A particle performing a random walk on the geodesic line QP of figure 6a, after n
steps occupies the position η̃n with distribution (4.29) and characteristic function

(4.34) Eeiβη̂ =
1

coshn βπ
2

.

We present now some transformation of the hyperbolic distribution of η̂. We
start by showing that sinh η̂ has Cauchy distribution. We have for the r.v.

O (η) = sinh η(4.35)

that

Pr {sinh η < y} = Pr {η < arg sinh y} = Pr
{
η < log

(
y +

√
y2 + 1

)}
=

∫ log
(
y+
√

1+y2
)

−∞

dx

π coshx
.(4.36)

and thus

Pr {O (η) ∈ dy}
dy

=
1

π

1

y +
√

1 + y2

(
1 +

y√
1 + y2

)
2

e
log

(
y+
√

1+y2
)

+ e
− log

(
y+
√

1+y2
)

=
1

π

y +
√

1 + y2

y2 + 1 + y
√

1 + y2

1√
1 + y2

=
1

π (1 + y2)
.(4.37)

Furthermore, considering the r.v. cosh η we get, for w > 1

Pr {1 < cosh η < w} =
2

π

∫ arg coshw

0

dx

coshx

=
2

π

∫ log(w+
√
w2−1)

0

dx

coshx
,(4.38)
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and thus the density reads

Pr {cosh η ∈ dw} =
2

π

dw

w
√
w2 − 1

, w > 1.(4.39)

The distribution (4.39) integrates to unity since

2

π

∫ ∞
1

dw

w
√
w2 − 1

1
w2 =y

=
1

π

∫ 1

0

dy√
y(1− y)

= 1.(4.40)

The last step suggests a relationship between the r.v. cosh η and the arcsine law.
The r.v.

Y =
1

cosh2 η
(4.41)

possesses arcsine distribution, as the following detailed calculation shows

Pr {Y < w} = Pr

{
η > arg cosh

1√
w

}
=

2

π

∫ ∞
log

(
1√
w

+ 1√
w

√
1−w

) dx

coshx

=
2

π

∫ ∞
− 1

2 logw+log(1+
√

1−w)

dx

coshx
,(4.42)

and thus

Pr {Y ∈ dw}
dw

=
1

π

[
1

w
+

1√
1− w

[
1 +
√

1− w
]] 2

1√
w

(
1 +
√

1− w
)

+
√
w 1

1+
√

1−w

=
2√
π

√
1− w(1 +

√
1− w + w

w
√

1− w(1 +
√

1− w)

√
w(1 +

√
1− w)

(1 +
√

1− w)2 + w

=
1

π

1 +
√

1− w
√
w
√

1− w
1(√

1− w + 1
) =

1

π

1
√
w
√

1− w
, 0 < w < 1.(4.43)

Remark 4.4. Result (4.43) can be also obtained observing that

(4.44) Y =
1

cosh2 η
=

1

1 + sinh2 η
=

1

1 +O (η)
2 ,

and we have shown that O possesses Cauchy distribution. The transformation
(4.44) is the classical way to obtain the arcsine law from the Cauchy distribution.

Remark 4.5. Let us recall the hyperbolic version of the Pythagorean theorem
which reads

(4.45) cosh a cosh b = cosh c,

where c is the hypotenuse of the right triangle with sides a and b. Considering
a and b distributed as (4.8) their hyperbolic cosine has law (4.39). The random
length of the hypotenuse is therefore written as

Pr {cosh η1 cosh η2 ∈ dw} = dw

(
2

π

)2
1

w

∫ w

1

dx√
x2 − 1

√
w2 − x2

dx

x= cosh y
= dw

∫ log(w+
√
w2−1)

0

1√
w2 − cosh2 y

dy.(4.46)
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Table 2. For the hyperbolic r.v. η̂ we have the following table of
distributional relationships for the related hyperbolic function.

Variable sinh η̂ cosh η̂ tanh η̂ tanh2 η̂

Density 1
π(1+z2)

2
πz
√
z2−1

1
π
√

1−z2
1

π
√
z(1−z)

z ∈ R z > 1 −1 < z < 1 0 < z < 1

Reciprocal 1
sinh η̂

1
cosh η̂ coth η̂ coth2 η̂

Density 1
π(1+z2)

2
π
√

1−z2
1

π|z|
√
z2−1

1
πz
√
z−1

z ∈ R 0 < z < 1 z ∈ R\ [−1, 1] z > 1

Remark 4.6. Considering the r.v.

(4.47) η̃ = − log tanα
Θ

2
, α > 0,

with Θ uniformly distributed in (0, π) we get

(4.48) Pr {η̃ ∈ dw} =
2

απ

e−
w
α dw

1 + e−
2w
α

=
1

πα

dw

cosh w
α

, w ∈ R.

The density (4.48) is a generalization with paramater α of (4.8).

4.2. The area of hyperbolic random triangles. It is well known that the area
A of an hyperbolic triangle is given by

(4.49) A = π − (α+ β + γ)

where α, β and γ are the angles pertaining to vertices not lying on the (x-axis). A
triangle which has three vertices on the x-axis has area A = π.

Let us consider the triangle with vertices O, P , and Q in Fig. 6a or 6b, thus the
area K is given by K = π

2 − α where α is the angle of the vertex ˆOPQ, formally

we have K ∈
(
0, π2

)
.

Theorem 4.7. For the random area K of the hyperbolic triangle OPQ where PQ
has length η with distribution (4.8), we have that

(4.50) Pr {K ∈ dw} =
2

π

dw

1 + sinw
, w ∈

(
0,
π

2

)
.

Proof. In view of formula

(4.51) tan
A

2
= tanh

a

2
tanh

b

2
where a, b are the sides of an hyperbolic right triangle of area A, we have

(4.52) tan
K

2
= tanh

η

2
.

For w > 0

Pr {K < w} = Pr
{
η < 2 arctanh tan

w

2

}
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=
2

π

∫ log 1+sinw
cosw

0

1

coshx
dx

= 1− 4

π
arctan

cosw

1 + sinw
,(4.53)

and thus

(4.54) Pr {K ∈ dw} =
2

π

dw

1 + sinw
.

�

Figure 10. The distribution (4.50) of the random area K.

In view of formula 3.791 pag. 448 of [5] we have

(4.55) EK =
2

π

∫ π
2

0

x

1 + sinx
dx =

2

π
log 2.
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