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Abstract

When a large amount of spatial data is available computational and modeling challenges arise and
they are often labeled as “big n problem”. In this work we present a brief review of the literature. Then
we focus on two approaches, respectively based on Stochastic Partial Differential Equations and INLA,
and on the tapering of the spatial covariance matrix. The fitting and predictive abilities of using the two
methods in conjunction with Kriging interpolation are compared in a simulation study.
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1 Introduction

In geophysical and environmental sciences massive amounts of data are increasingly available at a large

number of spatial locations and Kriging-based spatial interpolation with parametric covariance functions

is often required. For example temperature surface estimation in the context of global warming studies im-

plies the consideration of spatial fields of huge size. In Climatology as well as in Ecology and other fields,

linear spatial interpolation can successfully address spatial misalignment of available data, a serious issue

that arises quite often. For instance when studying commercial fish populations, satellite data of marine

physical parameters (temperature, salinity etc.) are often easily available with a spatial resolution that does

not match the one of fishery data. Notwithstanding the all-time high computational power, calculations

can still be an issue in these cases: the exact computation of the likelihood of a Gaussian random field

observed at n spatial locations or the solution of the Kriging equations require O(n3) operations (Cressie

and Johannesson (2008); Stein et al. (2004)). Evidence of an even more serious computational burden

arises when multiple observations are available at every spatial location, as in spatiotemporal problems,

or when computational expensive techniques are needed, as Markov chain Monte Carlo (McMC) methods

for hierarchical model estimation and prediction in the Bayesian framework. In the Gaussian setting, the

main issue is the computation of quadratic forms involving the inversion of covariance matrices that has to

be repeated over and over in McMC based estimation. As clearly illustrated in Banerjee et al. (2004) (ap-

pendix A.5), even if we do not need the inverse of the covariance matrix in order to compute the quadratic

form p′A−1p, the burden of large n is still there: though we can obtain A1/2 and solve p = A1/2v for v, then

v′v = p′A−1p, still computation with associated n×n matrices can be unstable and repeated computation

can be extremely slow.

In recent years computational issues giving rise to the so called “big n problem” were approached

by the proposal of a number of statistical methods to improve the computational efficiency and make the

analysis of large spatial datasets feasible (Banerjee et al., 2004). Sun et al. (2012) pointed out that there is a

growing need of works that compare different methods for handling large spatial datasets with simulation

studies and based on real data examples. In this work we first review the main approaches in a unified

framework in section 2, highlighting pro’s and con’s and giving pointers to the relevant literature. Sections

3 and 4 are focused on two approaches to Kriging-based interpolation with parametric spatial covariance

functions. In section 3 we summarize the key findings proposed by Lindgren et al. (2011) and briefly

illustrate the SPDE/INLA approach. In section 4 we describe the tapering approach and some relevant

results. Section 5 is devoted to two simulation experiments comparing the fitting and predictive ability of

the two approaches, and section 6 contains some concluding remarks.

2 Review of some relevant literature on the “big n problem”

In the last two decades the “big n problem” was addressed by several approaches including subsampling,

spectral methods, likelihood and covariance function approximations, process convolutions, Markov ran-

dom field representations, solutions to a class of stochastic partial differential equations (SPDE’s), projec-

tions in a subspace of reduced dimension and non-parametric methods. None of the proposed approaches

fits all the possible situations and problems can arise even when the assumptions underling a specific

methodology are fully satisfied.
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The use of an appropriate subsample of the observed locations can be considered as a first attempt

to approach the “big n problem”. Though ignoring some of the available data might look unattractive,

Banerjee et al. (2004) argue that a clever subset of the sampling locations may allow better inferences than

the use of all data. In the complete data set the possible presence of locations very close to one another with

strong spatial dependence leads to a nearly singular covariance matrix for a purely spatial model (without

nugget effect). Then working with a subsample can ease estimation of model parameters and reduce the

general impact of numerical stability problems. Ad hoc methods of subsetting the data were formalized as

in the moving window approach by Haas (1995), although it appeared that the local covariance functions

fitted within the windows yielded incompatible covariances at larger spatial lags.

Large spatial data sets not only rise computational issues, but are also challenging from a modeling

point of view. Such datasets are often defined on a large spatial domain and the spatial processes of interest

typically exhibit a non-stationary behavior. An approach to deal with the “big n problem” in this case,

limited by the requirement of multiple observations at every site, is given in Sampson and Guttorp (1992).

Their deformation method for non-stationary spatial data maps the original process into a new space where

the covariance is a function of the distances between sites (the process is stationary). With large spatial

domains, the transition from a non-stationary to a stationary isotropic spatial covariance usually increases

the number of elements of the covariance matrix small enough to be considered negligible and set to

zero. Then if the number of zeros is large enough (covariance with a small practical range), sparse matrix

algorithms can be used to enhance the computational speed.

An alternative class of methods is based on the representation of the n-dimensional spatial process by

a lower-dimensional latent process. One of the first proposals along these lines combines the Kalman filter

and Kriging in a spatio-temporal model (Mardia et al., 1998), where the latent spatial process at time t

is obtained by the low-dimensional state vector of the Kalman filter multiplied by a vector of parameters.

More recently, Cressie and Johannesson (2008) used a low-rank representation to obtain a dimensional

reduction of the covariance matrix in a Kriging framework. Their fixed rank Kriging model maps the orig-

inal process into a new lower-dimensional process through the definition of a specific class of covariance

functions C defined as the product of basis functions and an m×m positive definite matrix D, with m� n,

i.e. C(si,s j) = S(si)
′DS(s j), where S(·) is a m×1 vector of basis functions and si ∈R2 with i, j = 1, . . . ,n.

Matrix D is estimated by a method based on minimizing a weighted Frobenius norm and the quality of

the fixed rank Kriging approximation depends on m and on the choice of the basis functions. The authors

propose to choose among spline, wavelet and radial basis functions, adding as a general recommendation

the use of multi-resolution basis functions.

The idea of using a low-dimensional representation of the process to decrease the computational burden

is also the baseline of the kernel convolution methods that express a stationary Gaussian process z(·) as

a function of a two dimensional Brownian motion b and a bivariate kernel k. While kernel convolution

was originally used to represent stationary processes, Higdon et al. (1998) proposed a kernel convolution

model with kernel depending on the spatial location and the following discrete representation:

z(si) =
∫
R2

ki (si− t)b(t)dt =
m

∑
j=1

ki (si− t j)b(t j).

A computational gain is obtained when the dimensional reduction is such that m� n. Inferences with the

kernel convolution methods are influenced by the set T = (t1, t2, ..., tm), though literature does not provide
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any advice for the choice.

In the same spirit the knot model proposed by Banerjee et al. (2008) achieves the dimensional reduction

with the choice of a specified set of m� n locations (knots). The resulting class of models essentially falls

under the generalized linear mixed model framework and includes kernel convolution methods as a special

case. The original process is projected onto a subspace generated by realizations of the process at the

knots. Approximation properties are highly sensitive to the number and location of the knots: the value m

has to assure feasible computational times, while knot location is addressed using a regular grid over the

domain or alternatively by placing more knots where there are more observations. Further improvements

on the knot model are given in Finley et al. (2009).

For stationary Gaussian data on a regular lattice, Whittle (1954) proposed a method to estimate the

spectrum of the spatial process and to approximate the log-likelihood using the spectral density and the

periodogram. The fast Fourier transform is used to obtain the approximation, with order O(n log2 n) com-

putational complexity. As the regular lattice is a strong restriction, there were proposals to use the Whittle

approximation with irregularly spaced spatial data. Fuentes (2007) and Matsuda and Yajima (2009) pro-

posed parametric and non-parametric methods to estimate the process likelihood in the spectral domain;

the major difference between the two approaches is that the first assumes the spatial locations to be fixed

and possibly missing at random, while the second considers them realizations of a random variable with

known distribution.

Another possible way to deal with the “big n problem” is to approximate a Gaussian field (GF) with

a Gaussian Markov random field (GMRF) for which more computationally feasible algorithms for sparse

matrices can be used. Initially GMRF approximations were heavily criticized for several reasons: they

don’t allow a direct modeling of spatial associations, precluding the consideration of specific correlation

behaviors; we cannot write down the distribution at a selected location, but rather determine a conditional

distribution given a prespecified set of locations; introduction of nonspatial error is confusing (see Banerjee

et al., 2004, and references therein). The above criticisms were recently overcome by Lindgren et al.

(2011) who introduced the GMRF approximation of a GF with Matérn covariance function as a solution

of a Stochastic Partial Differential Equation (SPDE). The SPDE approach allows a rigorous evaluation of

the approximation error and is applicable to regularly and irregularly spaced spatial data, even on a curved

surface. Essential to the development of this approach are the works of Rue and Tjelmeland (2002) and Rue

and Held (2005) on the integrated nested Laplace approximation (INLA), whose main output is the INLA

software (Rue et al., 2009). INLA assumes the observed response variable to be distributed as a member

of the exponential family with expectation linked to a structured additive predictor including a latent GF,

possibly a GMRF approximation of a GF (see section 3 for details and Lindgren et al. (2011)). The use

of the Laplace approximation ensures that the posterior distribution of the parameter vector has error rate

of order O(n−1) (for more information about the approximation error in INLA see section 4 in Rue et al.

(2009)). INLA allows to do Bayesian computations in a fraction of the time needed for McMC, but has

some major limitations: the dimension of the parameter vector has to be smaller than six to obtain feasible

computational times, it is not capable to handle multimodal distributions of the parameter vector and the

approximation is poor for highly non-Gaussian likelihoods. Some recent proposals aiming at minimizing

the limitations of the INLA implementation are given in Ji et al. (2011) where the IS-LA, MH-LA an MLA

approaches are introduced, that combine Importance Sampling (Rubinstein, 1981), Metropolis Hastings

and a Marginalization based approach with the Laplace approximation respectively.
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Finally sparse spatial covariance matrices can be obtained by truncating the covariance function to zero

for distances farther than a given value. This is the basic idea behind the tapering method which multiplies

the covariance function of the spatial process by a tapering function, in order to obtain an equivalent

process with a sparse covariance matrix (see section 4 for details and Furrer et al. (2006)). The literature

on the tapering provides two different kinds of approximations: one that has simpler asymptotic results but

biased maximum likelihood estimates, another one that leads to unbiased maximum likelihood estimates

(Kaufman et al., 2008). Asymptotic results are provided for both approximations in the increasing domain,

i.e. letting the sampling region increase without limitation together with the sample size, and in the fixed

domain, where the domain is fixed and the observations become more and more dense (see for example

Kaufman et al. (2008) or Shaby and Ruppert (2011)). A Matérn covariance is generally required to obtain

a process with asymptotically valid covariance function in both the increasing and fixed domain.

In the next two sections we give some more insights on the SPDE/INLA and tapering approaches. We

focus on these two methods as they both involve continuous spatial data and the assumption of Gaussian

random fields, and are thus comparable in a Kriging-based estimation framework.

3 SPDE/INLA

The SPDE method was proposed by Lindgren et al. (2011) as an explicit and computationally efficient

Markov representation of a Gaussian process z = z(s1, . . . ,sn) with Matérn covariance function given by:

C(h) =
σ2

2ν−1Γ(ν)
(κh)νKν(κh) (1)

where h is a generic distance between two sites, σ2 is the process variance, Kν is the Bessel function

of order ν , κ =
√

8ν/φ is a scale parameter, Γ(·) is the gamma function and 1/φ is the variance decay

parameter. Let ∆ be the Laplacian operator in a r-dimensional space, we consider the following linear

fractional SPDE

(
κ

2−∆
) α

2 z(si) = qW (si), si ∈ Rr, κ > 0, α > 0, (2)

where W is a spatial Gaussian white noise process with unit variance, α = ν + r
2 ,
(
κ2−∆

) α

2 is a pseudo

differential operator and

q2 =
σ2Γ(α)(4π)r/2

κ2ν

Γ(ν)
(3)

Whittle (1954, 1963) found that the only stationary solution of (2) has Matérn Covariance function and

Lindgren et al. (2011) call it a Matérn field. Let 〈 f ,g〉 =
∫

f (si)g(si)dsi be the inner product, where the

integral is over the region of interest, then the solution of (2) found requiring that{〈
ϕl,
(
κ

2−∆
)α/2 z

〉}
l=1,...,N

D
=
{
〈ϕl,qW 〉

}
l=1,...,N

, (4)

for an appropriate finite set of test functions {ϕl}, l = 1, . . . ,N, is called stochastic weak solution of the

SPDE. The weak solution of (2) can be obtained by the finite elements method (FEM) (Brenner and Scott,

2007) and is based on the triangulation of the spatial domain into a set of non-intersecting triangles. As the

quality of the solution depends on the triangulation properties, the Delaunay triangulation, which ensures
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smooth transitions between small and large triangles, is adopted (Lindgren et al., 2011, and references

therein).

The basis functions {ψl}, l = 1, . . . ,N, used in the finite elements representation of the weak solution,

are defined as piecewise linear basis functions:

ψi (t j) =

{
1, i = j

0, i 6= j
i, j = 1, . . . ,N.

where t j is a vertex in the triangulation. A general finite elements solution of (2) requires the calculation of

matrices C = [〈ψi,ψ j〉]i, j=1,...,N and G = [〈∇ψi,∇ψ j〉]i, j=1,...,N . While G is a sparse matrix, C is dense and

Lindgren et al. (2011) propose to substitute it with the sparse diagonal matrix C̃ with non-zero elements

C̃i,i = [〈ψi,1〉]i=1,...,N . Then the finite elements representation proposed by Lindgren et al. (2011) is

z̃(t j) = q
N

∑
l=1

ψl (t j)wl, (5)

where {wl} , l = 1, . . . ,N are zero-mean Gaussian weights with precision matrix Qα . The choice of the

test functions {ϕl}l=1,...,N in relation to the basis functions governs the approximation properties of the

resulting model representation.

With α = 1 and ϕl =
(
κ2−∆

)α/2
ψl (least squares solution)

Q1 = q−2(κ2C̃+G)

With α = 2 and ϕl = ψl (Galerkin solution)

Q2 = q−2(κ2C̃+G)C̃−1(κ2C̃+G)

For α > 2 the precision matrix Qα is found with a recursive formulation based on Q2 and Q1 for α even

and odd, respectively:

Qα = q−2(κ2C̃+G)C̃−1Qα−2C̃−1(κ2C̃+G).

As matrices C̃, G and C̃−1 involved in the calculation of Qα are sparse, Qα is sparse as well and then
{wl}, l = 1, . . . ,N, and consequently z̃, are GMRF’s. A link is then obtained between the parameters of the

Matérn GF and the elements of the GMRF, with computational cost O(N) for every triangulation (Lindgren

et al., 2011). The substitution of C with C̃ is necessary because C−1 is not a sparse matrix and then the

corresponding z̃ is not a GMRF. Lindgren et al. (2011) show that the difference in convergence rates for

the exact FEM representation and the Markov approximation is negligible.

Extensions of the SPDE approximation for a non-stationary process can be found considering the parame-

ters κ2 and q constant within the support of the basis function but varying slowly in space (Lindgren et al.,

2011).

The SPDE approximation of a GF by a GMRF is currently implemented using the INLA approach (Rue

et al., 2009). As mentioned above, the latter is a tool designed to make statistical inference for Latent

Gaussian Markov random field models in a computationally efficient way. INLA assumes that a response

variable vector y is observed at a set of n sites and is distributed as a member of the exponential family

with possibly vector-valued parameter θ1
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E(y) = d(µ + z̃+ ε), (6)

ε ∼ N(0,τ2I),

where µ is the intercept, z̃ is the SPDE representation of a spatial process z with Matérn covariance function

as a GMRF, ε is the vector of n unstructured error terms and τ2 is the variance of the elements of ε .

Let θ 2 = (log(1/τ2), log(κ2), log(1/q))′ be a parameter vector and x = (η ′,µ, z̃′)′ ∈ RM be a GMRF

with assumed zero mean and precision Q(θ 2) depending on the hyperparameter vector θ 2. The elements

of the observed response vector y are assumed to be conditionally independently distributed given x and

θ 1. The definition of the prior distribution for the hyperparameter vector θ = (θ ′1,θ
′
2)
′ ∈ Rm completes the

INLA model. In Rue et al. (2009) an approximation of the relevant posterior distribution

π(xi|y) =
∫

π(xi|θ ,y)π(θ |y)dθ (7)

is obtained combining the Laplace approximation of π(xi|θ ,y), i = 1, . . . ,M and π(θ |y). The latter is

discretized by a grid search and approximate π(θ j|y), j = 1, . . . ,m are used in the numerical approximation

of integral (7).

4 Tapering

Tapering speeds up the computational time by introducing zeros in the covariance matrix, thus enabling

the use of sparse matrix algorithms when working with a zero mean (without loss of generality) Gaussian

process y = z+ ε defined on an irregular lattice, where z is a GF with zero mean and covariance matrix

Σ given by an isotropic stationary covariance function C(h;θ) and ε has i.i.d. elements with variance τ2.

In some applications there is reason to believe that distant sites are independent and then many elements

of the spatial covariance matrix Σ can be set to zero. The idea behind tapering is to reduce the covariance

to zero for distances greater or equal than a fixed value ρ . This is done by taking an isotropic correlation

function on a compact support Ctap(h;ρ) that is identically zero if h > ρ .

Let C(h;θ) be the covariance function of the original process, depending on a vector of parameters θ .

The tapered covariance function is:

Ct(h;θ ,ρ) =C(h;θ)Ctap(h;ρ), (8)

and the associated tapered covariance matrix is:

Σ
TAP(θ t) = Σ◦F(ρ), (9)

where F(ρ)i j =Ctap(hi j;ρ) and ◦ is the Schur product (Hadamard product) that ensures that (9) is a valid

covariance matrix (Kaufman et al., 2008). The tapered covariance matrix (9) has thus a large proportion of

zero elements and is sparse. The size of ρ defines the strength of the tapering, ρ → ∞ implies no elements

of the covariance matrix are forced to zero, while ρ → 0 returns independent observations.

To approximate the Gaussian log-likelihood we can simply replace the original covariance matrix with
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the tapered covariance:

l1tap(θ t) ∝−1
2

log
∣∣(Σ+ τ

2I)◦F(ρ)
∣∣− 1

2
y′
[
(Σ+ τ

2I)◦F(ρ)
]−1 y (10)

The previous expression is called the one-taper likelihood approximation. If the taper range is too small

with respect to the correlation range of the process, there is no guarantee that maximizing (10) leads to

asymptotically unbiased estimates. A more computationally expensive asymptotically unbiased two-taper

approximation was also proposed by Kaufman et al. (2008). Heuristic work suggests that l1tap is more

suitable for the Kriging procedure (Kaufman et al., 2008) than the two-taper.

In Zhang (2004), Zhang and Du (2008) and Kaufman et al. (2008), several asymptotic results are

given for processes with Matérn covariance function (1) in the fixed domain. These results ensure the

identifiability of parameters σ2 and κ under given conditions and the equivalence of the original process

with the process obtained by the tapering. As suggested by Furrer et al. (2006), a family of taper function

that satisfies the aforementioned conditions is the family of compactly supported functions proposed by

Wendland (1995). When the original covariance function is Matérn, two such functions are commonly

used:

Wρ,1 (h) = max

[(
1−
(

h
ρ

))4

,0

](
1+4

h
ρ

)
, (11)

Wρ,2 (h) = max

[(
1−
(

h
ρ

))6

,0

](
1+6

h
ρ
+35

h2

2ρ2

)
. (12)

While Wρ,1is a valid taper function (i.e the Schur product gives a valid covariance function) for ν ≤ 1.5,

Wρ,2 is valid for ν ≤ 2.5 (Bolin and Lindgren, 2011). Furrer et al. (2006) report that for ν ≤ 1.5 the ratio

of the mean squared errors of the Wρ,1(·) tapered process and the original process is closer to 1 than the

corresponding ratio obtained with the Wρ,2(·).

5 A simulation study

In this section we are going to discuss the “big n problem” in the context of spatial interpolation, comparing

SPDE/INLA and tapering approximations when used in a Kriging predictions framework. For this purpose

we simulate data from the following model:

y(s) = z(s)+ ε(s),

z(s)∼ N (0,Σ) ,

ε(s)∼ N
(
0,τ2I

)
,

(13)

where s = (s1, . . . ,sn) is a set of sites, Σ is built according to a spatially structured Matérn covariance func-

tion (1) and ε (s) is a white noise process with variance τ2 (nugget), then y(s) is an isotropic and stationary

process. Even with a large process dimension, simulation from (13) is straightforward and computation-

ally feasible as only one matrix inversion is required and, having chosen a model with measurement error

(τ2 6= 0), the resulting covariance matrix is numerically stable.

Within this setting we run two types of simulation experiments using the grf function in the geoR R
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library: a general experiment where 18 datasets are obtained by as many combinations of values of the

practical range φ = 10,50,150, variance σ2 = 10,50 and nugget τ2 = 2,5,10,25,50, keeping ν = 1. The

second simulation experiment is focused on a large value of the process variance (σ2 = 100), keeping

ν = 1. We generate five datasets differing for the values of the practical range and the nugget: one dataset

with φ = 10 and τ2 = 20, one with φ = 150 and τ2 = 20 and three with φ = 50 and τ2 equal to 20, 50 and

100. In both experiments, for every combination of covariance structure parameters, we simulate 50000

data points from model (13) with coordinates x and y uniformly generated over the bidimensional interval

[0,1000]× [0,1000]. Every dataset is divided into a training set, denoted by str, and a testing set, denoted

by sts, obtained by randomly sampling 40000 (training) and 10000 (testing) observations. In the second

experiment each simulated dataset is randomly sampled 100 times, in order to build an equivalent number

of replications of training and testing sets for every combination of covariance structure parameters. As

the focus is on the evaluation of the performance of the approximation returned by the two approaches,

we perform simulated experiments in a very simplified setting, keeping the values of covariance structure

parameters fixed at the corresponding “true” values, i.e. those used to simulate the data. Also the mean

is assumed identically null with the tapering, while an informative prior centered at zero is used with

SPDE/INLA. Conditioning on values at the training set, predictions are obtained at the testing set and at

str as well.

Root mean squared (prediction) errors (RMSE’s) are computed comparing simulated values at str and

sts with their corresponding predictions, in order to respectively verify the fitting and predictive ability of

the SPDE/INLA and tapering approaches.

5.1 Prediction details: SPDE/INLA

Let us consider a process with ν = 1 in a two-dimensional space. In this setting α = 2 and the Gaussian

weights in (5) have distribution (Lindgren et al., 2011):

w∼ N(0,Q−1
2 ).

As mentioned in section 3, values of the matrices G and C̃ required in the calculation of Q2 are found

by the constrained refined Delaunay triangulation (CRDT). First, sites in str and sts are used as starting

vertices of the triangles. Then extra vertices are added to ensure that the transition between small and large

triangles is smooth. Taking a generic triangle T , with vertices (t1, t2, t3), expressions for matrices C̃(T )

and G(T ), defined as in section 3 for triangle T , are given by (see Lindgren and Rue, 2007):

C̃(T ) =
|T |
3

(
1 1 1

)
, (14)

G(T ) =
1

4 |T |

(
r1 r2 r3

)′(
r1 r2 r3

)
, (15)

where |T | is the area of the triangle and

r1 = t3− t2,

r2 = t1− t3,

r3 = t2− t1
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are the edge vectors opposite to each corner, e.g r1 is the edge opposite to t1.

Once matrices (14) and (15) are obtained for all triangles, G and C̃ are easily computed. For i= 1, . . . ,N

let Ti be the set of triangles linked to vertex ti, then the i-th element of the diagonal of matrix C̃ is:

C̃i,i = 〈ψi,1〉= ∑
T∈Ti

C̃i,i (T ) =
1
3 ∑

T∈Ti

|T |, (16)

and the ik-th element of G is

Gi,k = 〈∇ψi,∇ψk〉= ∑
T∈Ti∩Tk

Gi,k (T ). (17)

In this study three SPDE specifications are applied to each dataset, they differ by the minimum angle

permitted in the triangulation algorithm: 10, 15 and 20 degrees respectively. The three models are named

Spde10, Spde15 and Spde20. Notice that by increasing the minimum angle we indirectly increase the

number of extra vertices used, this allows to obtain more precise results at a higher computational cost.

As mentioned above, we obtain SPDE/INLA predictions conditioning on the values of ν , κ2, q and τ

fixed at the corresponding values used to simulate the data and we adopt a Gaussian prior with mean zero

and variance 0.01 for the mean. These computations are implemented within the INLA package in the R

system.

5.2 Prediction details: tapering

When the tapering is used with Kriging it allows to reduce the computational effort needed to invert covari-

ance matrices involved in spatial interpolation. Let spr be a set of points where we want to make predictions

and Σtr, Σpr and Σpr,tr be the covariance matrices of z at str, spr, and between spr and str respectively. We

obtain:

z(spr) |y(str) ∼ N
(

µ pr|y ,Σpr|y

)
, (18)

where

µ pr|y = Σpr,tr
(
Σtr + τ

2I
)−1

y(str) ,

Σpr|y = Σtr−Σpr,tr
(
Σtr + τ

2I
)−1

Σ
′
pr,tr,

(19)

Expressions in (19) involve matrix inversions that can cause troubles when n is large. In the one-taper

approach the two matrices Σpr,tr and Σtr are replaced with their tapered versions ΣTAP
pr,tr and ΣTAP

tr obtained

as:

Σ
TAP
pr,tr = Σpr,tr ◦Fpr,tr (ρ) ,

Σ
TAP
tr = Σtr ◦Ftr (ρ) ,

(20)

where Ftr and Fpr,tr are calculated considering distances among locations in the training set for Ftr and

between locations in spr and str for Fpr,tr. The tapered versions of the Kriged mean and variance in (19)

become:
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Figure 1: RMSE’s calculated for the training sets in the first simulation experiment. Parameter combina-
tions used for data simulation are indicated under the horizontal axis (µ = 0, ν = 1), the legend contains
SPDE/INLA and tapering specifications.

µ
TAP
pr|y = Σ

TAP
pr,tr
(
Σ

TAP
tr + τ

2I
)−1
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For each dataset in our experiments we use three tapering specifications with ρ = 50,100,200, re-

spectively named Tap50, Tap100 and Tap200. Notice that larger values of ρ imply less sparse covariance

matrices and larger neighborhoods for carrying on the Kriging interpolation, with corresponding higher

computational costs. As with the SPDE/INLA, we consider covariance structure parameters as fixed and

known and µ = 0. The tapered Kriging predictions are obtained with the R function mKrig in package

fields.

5.3 Results

In the following we compare the approximation performance of SPDE/INLA and tapering, running a gen-

eral simulation experiment and a second simulation experiment focused on a large value of the process

variance. Root mean squared (prediction) errors are computed in order to verify the fitting and predictive

ability of the two approaches.

First Experiment: Fig. 1 describes RMSE’s calculated for the training sets and shows some interesting

features of the fitting ability of the two approaches: the SPDE/INLA approach has a better overall fit
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Figure 2: RMSE’s calculated for the testing sets in the first simulation experiment. Parameter combina-
tions used for data simulation are indicated under the horizontal axis (µ = 0, ν = 1), the legend contains
SPDE/INLA and tapering specifications.

than the tapering and is also less sensitive to the presence of noise on equal terms. While τ2 is well

identified in the SPDE, tapering suffers from variance component lack of identifiability and from matrix

ill-conditioning that arises in spatial models with small or null noise variance (Banerjee et al., 2004).

Both methods improve when φ decreases as a GF with weaker spatial correlation is less affected by the

approximation. SPDE/INLA has a better fit when σ2 decreases and the range is large (φ = 150), the same

holds for tapering also with a smaller value of the range (φ = 50). Smaller values of the tapering parameter

improve the fit as predictions at training locations are based on a more “local” covariance structure.

The predictive ability of the two approaches is represented in Fig. 2 that shows huge differences for

both methods according to the σ2 specification, with better predictions for smaller variances. SPDE/INLA

produces more accurate predictions for larger values of the range when the variance is small. Overall

tapering seems to return more accurate predictions than the SPDE/INLA when the process range φ is

small, even when the tapering parameter is large. If ρ is widely underestimated with respect to the range

value, the prediction accuracy of the tapered estimates is strongly reduced. However when the spatial

dependence becomes stronger (larger φ ) the two approximations return an equivalent prediction accuracy

when the tapering parameter gets closer to the process range. Finally, for small values of τ2, ill-conditioned

covariance matrices hamper the predictive ability of the tapering method.

Second Experiment: Smaller RMSE’s are observed for the training sets (better fit) of all SPDE/INLA

specifications with respect to the corresponding tapering ones (Tab. 1). Both testing and training sets, in

the first and second experiment show the same behavior with respect to the SPDE specification: the values
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Table 1: Average RMSE’s computed for 100 training sets in the second simulation experiment. Parameter
combinations used for data simulation on rows (µ = 0, ν = 1, σ2 = 100), SPDE/INLA and tapering
specifications on columns.

Process
Spde10 Spde15 Spde20 Tap50 Tap100 Tap200parameters

φ τ2

10 20 0.106 0.089 0.078 0.585 0.609 0.615
50 20 1.201 1.106 1.025 3.428 3.971 4.039
50 50 1.223 1.130 1.046 4.727 5.407 5.497
50 100 1.165 1.079 1.001 5.474 6.244 6.354
150 20 3.644 3.565 3.482 4.825 6.673 7.046

Table 2: Average RMSE’s computed for 100 testing sets in the second simulation experiment. Parameter
combinations used for data simulation on rows (µ = 0, ν = 1, σ2 = 100), SPDE/INLA and tapering
specifications on columns.

Process
Spde10 Spde15 Spde20 Tap50 Tap100 Tap200parameters

φ τ2

10 20 11.642 11.407 11.184 11.411 11.127 11.062
50 20 11.419 11.309 11.152 11.479 10.663 10.534
50 50 11.493 11.370 11.210 11.111 10.408 10.289
50 100 11.239 11.133 10.990 10.662 10.112 10.010
150 20 10.420 10.383 10.334 11.242 10.173 9.938

of the RMSE decrease with a more complex triangulation, thus both the fit (RMSE’s in Fig. 1 and Tab. 1)

and the predictive ability (RMSE’s in Fig. 2 and Tab. 2) of the method improve with a growing number of

vertices. A different behavior is observed for the tapering in the two sets: in the training sets the RMSE is

inversely proportional to ρ (a small tapering parameter produces smaller RMSE’s) while the opposite holds

in the testing sets (the RMSE values decrease when ρ increases). A small value of ρ produces predictions

at training points being based on few neighboring points (overfitting), leading to larger discrepancies with

the testing set and larger values of the corresponding RMSE’s. While for the testing sets (Tab. 2) the

tapering specifications ρ = 100,200 have always smaller RMSE’s (better predictive ability) than the three

SPDE/INLA specifications, when the nugget is small (τ2 = 20) Tap50 only outperform Spde10 if the

practical range equals 10, i.e. when the spatial correlation is very weak. As already reported, small values

of the nugget result in less accurate tapering predictions. For larger values of τ2, differences in favor of the

tapering predictive performance become more evident.

6 Concluding remarks

In this work we have offered a brief overview of recent developments in spatial modeling for large datasets.

Challenges are there to solve the “big n problem”. Extensions to complex setting such as multivariate spa-

tial data or space-time data are still in progress, as the adaptation of SPDE approximation of GF in multi-

variate settings, while low rank approximations already offer promising solutions in this regard (Banerjee

and Fuentes, 2012).
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Here we focused mostly on two approaches, SPDE/INLA and tapering that are based on different

philosophies while suitable for the same type of data. In the SPDE/INLA a rigorous solution to the ap-

proximation of a GF with GMRF is found and then the GMRF estimation and prediction is carried on in

a Bayesian perspective using a non-McMC method. The latter adds a further approximation level (intro-

duced by the INLA) to the involved distributions. Tapering introduces only one level of approximation

directly on the second moment of the process (the covariance matrix). In this case estimation is carried on

in a likelihood framework, while performing a full Bayesian estimation with the tapering approach does

not seem straightforward as pointed out in Sun et al. (2012); a quasi-Bayesian procedure has been recently

proposed by Shaby and Ruppert (2011) were the full likelihood is substituted by a tapered likelihood. In

our opinion SPDE/INLA is a better choice when a Bayesian implementation is preferred, while tapering

seems to be best used when maximum likelihood is the choice.

In our simulation experiments both the fitting and predictive ability show the same behavior with respect

to the SPDE/INLA specification: the values of the RMSE decrease with a more complex triangulation. A

different behavior is observed for the tapering: the fit is inversely proportional to ρ (a small tapering param-

eter produces smaller RMSE’s) while the opposite holds for the predictive ability (RMSE values decrease

when ρ increases). Notice that small values of the nugget result in less accurate tapering predictions.

As we mentioned in the introduction, no one of the methods proposed so far to approach “the big n

problem” is “good” for all estimation situations. The SPDE/INLA and the tapering, however, are suitable

whenever isotropic stationary Kriging has to be performed. In a more complex setting such as space-time

modeling, SPDE/INLA is easily adapted, while tapering needs the assumption of separability (Sun et al.,

2012). For non stationary fields, as mentioned in Section 3, Lindgren et al. (2011) propose a solution to

the SPDE with q and κ2 varying in space, while the tapering approach can be used but its behavior and

accuracy are not fully understood yet (Sun et al., 2012).
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