
A repeated sequential elimination algorithm for

finding an upper bound on the clique number

Luigi Curzi1, Alain Hertz2, Isabella Lari1

1 Sapienza, Università di Roma, Dip. Scienze Statistiche

isabella.lari@uniroma1.it

2 École Polytechnique de Montréal,

Dép. de Mathématiques et de Génie Industriel

Abstract

In this paper a new procedure for finding an upper bound on the
clique number of a given graph is described. Gendron, Hertz and St-
Louis (2008) proposed a sequential elimination algorithm which, given any
method that computes an upper bound on the clique number, improves
upon that bound by iteratively reducing the graph. The idea of the new
algorithm is to apply the sequential elimination algorithm to the given
graph and then apply it again to some subgraphs in order to further
improve the obtained bound. A preliminary set of computational results
shows that if the new algorithm is associated with a simple but sufficiently
accurate method for computing an upper bound on the clique number it
can substantially improve the bounds obtained with the Gendron, Hertz
and St-Louis algorithm within reasonable execution times.

Keywords: Clique number; Upper bounds.

1 Introduction

A clique of a graph G = (V,E) is a complete subgraph of G. The maximum
clique problem is the problem of finding a clique of G having maximum number
of vertices and the clique number ω(G) of G is the cardinality of a maximum
clique of G. It is well known that the maximum clique problem is NP-hard [6]
and that also the problem of finding an approximation of the clique number is
hard [9]. Therefore tight upper bounds of the clique number are useful for any
exact or heuristic algorithm.

The problem of finding an upper bound on the clique number has been
studied by several authors. A simple upper bound has been proposed by Amin
and Hakimi [1], who proved that (3 +

√
9− 8(n−m)/2 is an upper bound of

ω(G), where n = |V | and m = |E|. An upper bound can be also found by

1

solving a continuous relaxation of an Integer Linear Program (see e.g.[8] and
[1]). Another upper bound can be obtained by formulating the maximum clique
problem as an unconstrained 0-1 quadratic program [8] and finding the roof
dual of this problem [5]. In [2] Boros et al. proposed a generalization of the roof
duality theory and applied it to the maximum clique problem showing that the
obtained upper bounds strongly improve those provided by the roof dual.

A coloring of a graph is an assignment of labels or colors to the vertices of the
graph in such a way that adjacent vertices have different colors. The number of
colors in any graph coloring of G is an upper bound on the clique number of G.
The best of such upper bounds is the chromatic number of G, i.e. the minimum
number of colors in a coloring of G. The problem of finding or approximating
the chromatic number of a graph is NP-hard [9], but any heuristic for the graph
coloring problem provides an upper bound on the clique number. Lovász [7]
introduced the function θ(G) and proved that ω(G) ≤ θ(G) ≤ χ(G). The θ
function can be defined in many different ways and can be found in polynomial
time by Semidefinite Programming.

Gendron, Hertz and St-Louis [4] proposed a sequential elimination algorithm
for finding an upper bound on the clique number which, given an arbitrary
function providing an upper bound on the clique number, iteratively reduces
the graph for improving the bound. In this paper we propose a repeated se-
quential elimination algorithm in which the graph reducing procedure is applied
in two stages in order to further improve the bound obtained at the end of the
sequential elimination algorithm The paper is organized as follows: in Section
2 the Gendron, Hertz and St-Louis procedure is briefly described; in Section 3
the repeated sequential elimination procedure is proposed and in Section 4 the
computational results on a set of DIMACS benchmarks are presented.

2 The sequential elimination algorithm

Given a graph G we indicate the vertex set of G as V (G). Given a vertex
v ∈ V (G), the closed neighborhood NG(v) of v in G is the subgraph of G induced
by v and the vertices of G adjacent to v. Let h(G) be a function providing an
upper bound on the clique number of G. The sequential elimination algorithm
(SEA) proposed by Gendron et al. [4] is based on the following ideas.

• Decomposition of the graph: for each vertex v of the graph, the function
h is computed on the closed neighborhood NG(v) of v and the maximum
among the obtained upper bounds is an upper bound on the clique number
of G.

• Reduction of the graph: the graph is iteratively reduced by deleting at
each iteration the vertex whose closed neighborhood has the minimum
value of the function h.

At each iteration of the algorithm an upper bound on the clique number is
available and the algorithm terminates when it is not possible to improve the
bound.

2

A pseudocode of the algorithm follows.
——————————————————————————————
algorithm Sequential Elimination (SEA)

input: An undirected graph G = (V,E).
output: An upper bound h′(G) on the clique number of G.

begin
let G′ := G and h′(G) := 0;
while h′(G) < maxv∈V (G′)h(NG′(v)) do

choose in G′ a vertex s such that h(NG′(s)) = minv∈V (G′)h(NG′(v));
if h(NG′(s)) > h′(G) then let h′(G) := h(NG′(s));
update G′ by removing s and all the edges incident to s;

return h′(G);
end
——————————————————————————————

At the beginning of each iteration h′(G) is an upper bound on the cardinality
of any clique containing one of the removed vertices and maxv∈V (G′)h(NG′(v))
is an upper bound on the clique number of the current graph G′; if this value is
greater than or equal to h′(G), it is also an upper bound on the clique number
of G. Otherwise, if h′(G) > maxv∈V (G′)h(NG′(v)), h′(G) is an upper bound on
the clique number of G. In this case it is no longer possible to decrease this
bound by further reducing the graph and the algorithm stops.

Gendron, Hertz and St-Louis proved the following theorem which ensures
that, under a reasonable assumption on the function h, the bound provided by
SEA is no worse than h(G).

Theorem 2.1 If h is decreasing, i.e. if h(G) ≥ h(G′) for any induced subgraph
G′ of G, then h′(G) ≤ h(G) [4] .

3 The repeated sequential elimination algorithm

The repeated sequential elimination algorithm (R-SEA) which is presented in
this paper is a variant of SEA and it has been created to improve its performance.
Unlike the original algorithm, it is divided into two distinct parts: in the first
part SEA is applied to the given graph, while, in the second one, SEA is applied
again to some of the generated subgraphs. In the first part the algorithm behaves
as the original one but it iterates until the remaining subgraph is a clique. The
cardinality of this clique is a lower bound on the clique number. In addition,
at each iteration of the first part, two pieces of information are stored: the
subgraph induced by the closed neighborhood of the removed vertex and the
upper bound for this subgraph. These stored data are compared in the second
part, trying to improve at each iteration the upper bound; in particular, the
algorithm iteratively apply SEA on a stored subgraph having maximum upper

3

bound until it is possible to improve the bound.
A pseudo-code of the algorithm follows.

——————————————————————————————
algorithm Repeated Sequential Elimination (R-SEA)

input: An undirected graph G = (V,E).
output: An upper bound h′′(G) on the clique number of G.

begin
(first part)
let G′ := G, h′(G) := 0 and k := 1;
while G′ is not a clique do

choose in G′ a vertex s such that h(NG′(s)) = minv∈V (G′)h(NG′(v));
if h(NG′(s)) > h′(G) then h′(G) := h(NG′(s));
let Gk := NG′(s) and Uk := h(NG′(s));
update G′ by removing s and all the edges incident to s;
let k := k + 1;

let Gk := G′ and Uk := V (G′);
(second part)
order the upper bounds U1, ..., Uk in non increasing order
and let i1, ..., ik such that Ui1 ≥ . . . ≥ Uik ;
let h′′(G) := 0 and j := 1;
while Uij > h′′(G) and j ≤ k do

apply SEA to Gij and let h′(Gij) be the obtained upper bound;
let h′′(G) := max{h′′(G), h′(Gij)};
let j := j + 1;

return h′′(G);
end
——————————————————————————————

The first part of the algorithm has the same computational complexity of
SEA, i.e. O(n2T (n,m)), where T (n,m) is the computational complexity of
the procedure providing the upper bound h. The second part has complexity
O(n3T (n,m)), thus the computational complexity of the overall procedure is
O(n3T (n,m)).

The following results show that R-SEA correctly finds an upper bound on
the clique number and, similarly to the original algorithm, if h is decreasing (see
theorem 2.1) the obtained bound is no worse than h′(G).

Theorem 3.1 At the end of R-SEA, h′′(G) is an upper bound on the clique
number of G.

Proof. Let s1, . . . , sk be the vertices deleted from G during the first part of
the algorithm for obtaining G1, . . . , Gk, respectively.

The subgraphs G1, . . . , Gk are generated in such a way that:

• all cliques of G containing s1 are induced subgraph of G1,

4

• for each j = 2, , k−1, all cliques of G containing sj but not s1, . . . , sj−1
are induced subgraphs of Gj ,

• the last subgraph Gk is a clique of G containing all vertices of G but
s1, . . . , sk−1.

Therefore a maximum clique of G is a maximum clique of one of the subgraphs
G1, . . . , Gk. It follows that, since Uj is an upper bound on ω(Gj) for each j, at
the end of the first part h′(G) = max{U1, . . . , Uk} is an upper bound on ω(G).

At iteration j of the second part, SEA is applied to the subgraph having the
largest upper bound and h′′(G) is the maximum among the updated bounds.
Hence max{h′′(G), Uij} is an upper bound on the clique number of G. The
algorithm stops when Uij ≤ h′′(G) and then h′′(G) is an upper bound on the
clique number and it is impossible to further improve it. 2

Theorem 3.2 If h is decreasing then at the end of R-SEA h′′(G) ≤ h′(G).

Proof. At the first iteration of the second part, h′′(G) = 0 and SEA is applied
to the subgraph Gi1 . Since h is decreasing

h′(Gi1) ≤ Ui1 = h′(G).

Therefore at the end of the first iteration

h′′(G) = max{0, h′(Gi1)} = h′(Gi1) ≤ h′(G).

At iteration j of the second part

h′(Gij) ≤ Uij ≤ Ui1 = h′(G).

Suppose by induction that at the beginning of this iteration h′′(G) ≤ h′(G). It
follows that the updated value of h′′(G), i.e. max{h′′(G), h′(Gij)}, is still less
than or equal to h′(G). 2

4 Experimental results

The repeated sequential elimination algorithm has been compared to the orig-
inal sequential elimination algorithm on a set of DIMACS benchmarks for the
maximum clique problem. In our experiments we used three methods for finding
the upper bound in the induced subgraphs: a Linear Coloring coloring algorithm
and DSATUR [3] that are well-known heuristics for the coloring problem, and a
procedure based on the degree sequence of the vertices of the given graph. For
each test problem we considered two performance indicators:

• the error, i.e. the difference between the upper bound and the clique
number divided by the clique number;

• the execution time of the algorithm.

5

We chose to run the algorithms on graphs having at most 200 vertices in or-
der to perform a larger number of tests, maintaining the execution times within
certain limits. All the experiments were performed on a PC equipped with an
AMD Turion 64 X2 dual-core 1.80 Ghz, with 2 GB of RAM and the operat-
ing system Debian GNU/Linux and the algorithms have been implemented in
Python.

The experimental results are shown in Tables 1 and 2 where R-SEA is com-
pared to SEA. In Table 1 we show the errors and in Table 2 the execution times
of the two procedures. We have not included the results for the executions that
have breached the time limit of 14000 seconds.

In all the considered cases the bound obtained with the new algorithm is
closer to the optimum than the bound produced by the original algorithm and
for all three cases (Degree Sequence, Linear Coloring, DSATUR) the average
error of R-SEA is about half the error of SEA. Even using a function quite
simple and not very accurate as the one based on the degree sequence, on low
density graphs, as for example In200-40-13 having density 40%, or on graphs
with sufficiently high optimum, as for example In200-60-35, the error of R-
SEA is exactly 0; this does not happen with SEA. Using the Linear Coloring
algorithm things get even better and the average error is less than half the error
achieved by the execution of SEA (0,10 against 0,23). Also using DSATUR, the
results are very good (0.04 against 0.14), but for some graphs, in particular for
very dense ones, we were not able to find the upper bound since the execution
time exceeded the maximum time of 14000 seconds.

As shown in Table 2, regarding the execution times there is no match, SEA
is much faster than R-SEA: about 9 times with Degree Sequence, 6 times with
Linear Coloring and 1,5 with DSATUR. In the latter case we counted only
graphs for which the execution of R-SEA terminated within the time limit.

At this point you might think that the game not worth the effort due to the
excessive increase of the execution times of R-SEA with respect to SEA. But
giving a closer look at the tables we can see that the average error obtained
using R-SEA with the Linear Coloring function is slightly more than half the
error obtained running SEA with DSATUR (0.10 against 0.18); comparing these
two cases, the time spent by R-SEA is less than the one spent by SEA: the
new algorithm spent on average 303 seconds as opposed to 3176 seconds of the
sequential elimination algorithm.

5 Conclusions and future works

The experimental results show that R-SEA is a valid procedure to improve the
upper bound on the clique number given by SEA, mainly if it is associated with
simple but sufficiently accurate upper bound functions for the maximum clique
problem. However the running times are very high and the efficiency of the
procedure and its implementation must be improved.

6

References

[1] Amin A.T. , Hakimi S.L. (1972), Upper bounds of the order of a clique of a
graph, SIAM J. Appl. Math., vol. 22, pp. 569-573.

[2] Boros E., Lari I., Simeone B. (2004), Block linear majorants in quadratic
0-1 optimization, Discrete Applied Mathematics, vol. 145, pp. 52-71.

[3] Brélaz, D. (1979), New methods to color the vertices of a graph, Communi-
cations of the Assoc. of Comput. Machinery 22, pp. 251-256.

[4] Gendron B., Hertz A., St-Louis P. (2008), A sequential elimination algorithm
for computing bounds on the clique number of a graph, Discrete Optimization,
vol. 5, pp. 615-628.

[5] Hammer P. L., P. Hansen, Simeone B. (1984), Roof duality, complementation
and persistency in quadratic 0-1 optimization, Mathematical Programming,
vol. 28, pp 121-155.

[6] Karp R. M., (1972), Reducibility among combinatorial problems, in Com-
plexity of Computer Computations: Proc. of a Symp. on the Complexity of
Computer Computations, R. E. Miller and J. W. Thatcher, Eds., The IBM
Research Symposia Series, New York, NY: Plenum Press, 1972, pp. 85-103.

[7] Lovász L. (1979), On the Shannon capacity of a graph, IEEE Transactions
on Information Theory, Vol. 25, pp. 1-7.

[8] Pardalos P. M., Xue J. (1992), The Maximum Clique Problem, Journal of
Global Optimization Vol. 4, pp. 301-328.

[9] Zuckerman, D. (2007), Linear degree extractors and the inapproximability
of Max Clique and Chromatic Number, Theory of Computing, vol. 3, pp.
103-128.

7

Degree Sequence Linear Coloring DSATUR

Graph SEA R-SEA SEA R-SEA SEA R-SEA

In200-40-13 1.29 0.00 0.08 0.00 0.00 0.00

In200-40-22 0.35 0.00 0.00 0.00 0.00 0.00

In200-40-33 0.00 0.00 0.00 0.00 0.00 0.00

In200-40-40 0.00 0.00 0.00 0.00 0.00 0.00

In200-40-55 0.00 0.00 0.00 0.00 0.00 0.00

In200-60-15 3.36 1.37 0.73 0.24 0.53 0.13

In200-60-35 0.85 0.00 0.00 0.00 0.00 0.00

In200-60-40 0.61 0.00 0.00 0.00 0.00 0.00

In200-60-50 0.26 0.00 0.00 0.00 0.00 0.00

In200-60-75 0.00 0.00 0.00 0.00 0.00 0.00

In200-80-25 3.73 2.55 0.85 0.58 0.62 -

In200-80-40 1.94 1.19 0.25 0.04 0.16 -

In200-80-55 1.13 0.59 0.00 0.00 0.00 0.00

In200-80-70 0.63 0.20 0.00 0.00 0.00 0.00

In200-80-80 0.42 0.04 0.00 0.00 0.00 0.00

MANN-a9.clq 1.31 1.06 0.13 0.13 0.19 0.13

brock200-1.clq 3.71 2.19 1.00 0.52 0.86 -

brock200-2.clq 2.58 0.67 0.58 0.08 0.42 0.00

brock200-3.clq 3.27 1.40 0.80 0.27 0.67 0.20

brock200-4.clq 3.53 1.71 0.88 0.41 0.76 0.24

c-fat200-1.clq 0.00 0.00 0.00 0.00 0.00 0.00

c-fat200-2.clq 0.00 0.00 0.00 0.00 0.00 0.00

c-fat200-5.clq 0.00 0.00 0.00 0.00 0.00 0.00

hamming6-2.clq 0.63 0.44 0.00 0.00 0.00 0.00

hamming6-4.clq 1.00 0.00 0.25 0.00 0.25 0.00

johnson16-2-4.clq 7.50 5.00 0.63 0.50 0.63 0.50

johnson8-2-4.clq 1.00 0.00 0.25 0.00 0.25 0.00

johnson8-4-4.clq 1.71 0.86 0.07 0.00 0.07 0.00

san200-0.7-1.clq 2.10 1.90 0.07 0.00 0.00 0.00

san200-0.7-2.clq 5.22 4.67 0.28 0.00 0.06 -

san200-0.9-1.clq 1.03 0.70 0.10 0.00 0.00 0.00

san200-0.9-2.clq 1.47 1.10 0.22 0.08 0.13 -

san200-0.9-3.clq 2.39 1.91 0.55 0.41 0.32 -

AVG: 1.61 0.90 0.23 0.10 0.18 0.04

(0.14)

Table 1: in this table the errors obtained by the execution of SEA and R-SEA
are compared. In the last two columns some values are missing because the
algorithm in those cases took more than 14000 seconds.The last bracketed value
of column DSATUR/SEA shows the average error of the cases with execution
times less than 14000.

8

Degree Sequence Linear Coloring DSATUR

Graph SEA R-SEA SEA R-SEA SEA R-SEA

In200-40-13 11.08 29.94 21.19 23.40 497.72 508.22

In200-40-22 12.38 27.10 21.70 21.88 538.21 528.31

In200-40-33 13.70 13.58 22.94 23.01 597.81 590.95

In200-40-40 14.12 13.97 24.14 23.99 667.19 659.90

In200-40-55 15.68 15.43 28.50 28.26 942.39 948.10

In200-60-15 19.96 153.57 46.17 275.57 1886.07 8316.71

In200-60-35 24.20 152.67 57.64 59.87 2348.68 2448.99

In200-60-40 24.81 148.96 57.98 60.24 2386.39 2486.10

In200-60-50 26.77 129.98 60.15 62.16 2548.47 2653.98

In200-60-75 35.18 35.69 67.46 69.35 3293.86 3425.54

In200-80-25 24.21 475.70 76.44 957.23 5844.98 -

In200-80-40 28.70 487.57 77.33 1010.35 5776.70 -

In200-80-55 30.96 473.43 114.58 119.37 7726.06 7989.33

In200-80-70 34.26 490.63 115.60 120.41 7931.74 8325.59

In200-80-80 33.60 472.57 116.17 121.12 8129.43 8541.14

MANN-a9.clq 0.04 0.34 0.24 1.26 4.65 16.62

brock200-1.clq 33.17 445.52 70.63 936.48 4862.42 -

brock200-2.clq 18.80 67.85 33.42 120.74 1047.01 2918.16

brock200-3.clq 25.13 160.05 50.58 304.87 2098.92 9356.67

brock200-4.clq 25.31 243.01 58.06 445.21 2753.77 17256.72

c-fat200-1.clq 1.08 1.28 2.31 2.70 33.17 38.64

c-fat200-2.clq 3.64 3.62 7.88 7.84 179.94 182.22

c-fat200-5.clq 16.33 20.93 34.35 44.91 1513.69 2076.96

hamming6-2.clq 0.03 1.05 0.46 1.34 3.22 49.44

hamming6-4.clq 0.01 0.22 0.25 0.31 3.02 3.66

johnson16-2-4.clq 0.19 20.52 10.45 43.63 405.64 2248.35

johnson8-2-4.clq 0.00 0.03 0.02 0.04 0.18 0.41

johnson8-4-4.clq 0.03 2.67 1.22 3.77 31.79 76.31

san200-0.7-1.clq 44.62 70.73 77.20 468.64 4560.25 4872.75

san200-0.7-2.clq 42.46 71.44 81.60 1085.66 4218.99 -

san200-0.9-1.clq 38.77 511.93 81.10 1016.20 13425.85 13412.87

san200-0.9-2.clq 33.30 512.97 90.62 1231.59 8502.28 -

san200-0.9-3.clq 30.04 495.80 96.46 1318.26 10056.08 -

AVG: 20.08 174.27 48.63 303.32 3176.26 3701.21
(2427.97)

Table 2: in this table the execution times in seconds obtained by SEA and
R-SEA are compared. In the last column some values are missing because the
algorithm in those cases took more than 14000 seconds. The last bracketed
value on column DSATUR/SEA shows the average execution time of the cases
with execution times less than 14000. Notice that in some cases in which the
error is equal to zero, the execution times of R-SEA and SEA are very similar.

9

