
Modeling Biproportional Apportionment via zero-one matrices

with given line sums

Isabella Lari1, Federica Ricca1, Andrea Scozzari2

1 Sapienza, Università di Roma,

{isabella.lari, federica.ricca}@uniroma1.it

2 Università degli Studi “Niccolò Cusano”, Roma

andrea.scozzari@unisu.it

July 25, 2012

Abstract

In the Biproportional Apportionment Problem (BAP) a matrix of the vote counts of the
parties within the constituencies is given, and one has to convert the vote matrix into an
integer matrix of seats “as proportional as possible” to it, subject to the following constraints:
i) each constituency must be granted its pre-specified number of seats; ii) each party must be
allotted the total number of seats it is entitled to on the basis of its national vote count; iii)
a zero-vote zero-seat condition must be satisfied. The matrix of seats must simultaneously
meet the integrality and the proportionality requirements and this not infrequently gives rise
to self-contradictory procedures in the electoral laws of some countries, such as, for example,
Italy. Correct procedures exist for BAP but they are generally not suitable to be written in
an electoral law and simpler procedures are needed in order to be acknowledged by legislators
and citizens. Without the zero-vote zero-seat condition, that is, when all parties receive some
votes in each constituency, BAP can be solved via a very simple procedure based on a central
result of the theory of (0, 1)-matrices with given line sums provided by Gale and Ryser in the
60’s. In fact, once the floor of the quota has been assigned to each party in each constituency,
basing on the remainders, a very simple rule can be applied to complete the seat matrix with
the residual seats. On the contrary, the presence of zeros in the input vote matrix forces zero
cells also in the output matrix (fixed zeros) and the previous procedure does not apply any
more. In this paper we consider the problem under the fixed zeros condition and analyze
specific configurations of the vote matrix for which we show that a modified version of the
Ryser procedure works well. For these cases we also state necessary and sufficient conditions
for the existence of a feasible solution. Although our analysis does not cover all possible
cases, we provide new results on (0, 1)-matrices with given line sums and fixed zeros which
has a central role in the more general area of combinatorial matrix theory.

Keywords: (0, 1)-matrices with given line sums, matrices with fixed zeros, biproportional
apportionment.

1 Introduction

Let m and n be positive integers, M = {1, . . . ,m}, N = {1, . . . , n}, and r = (r1, r2, . . . , rm)
and s = (s1, s2, . . . , sn) be nonnegative integral vectors satisfying

∑m
i=1 ri =

∑n
j=1 sj . Consider

the class of (0, 1)-matrices with row sum vector r and column sum vector s, and denote it by

1

A(r, s). Let Z denote a set of forbidden positions in an m×n matrix where 1’s are not permitted.
We are interested in the following Matrix Feasibility Problem (MFP): find - if exists - a matrix
A = [aij] of size m by n with row sum vector r and column sum vector s such that aij = 0 for
all (i, j) ∈ Z.

The problem was first studied independently in [12] and in [16] for the class A(r, s) without
forbidden cells (i.e., with Z = ∅). For this class, feasibility conditions were provided and the
well-known Ryser’s algorithm was introduced to efficiently find a matrix in A(r, s) (see, for
example, [17]). The results by Ryser were further studied and extended by Fulkerson in [11]
where the possibility of forbidden cells (or, fixed zeros) in A(r, s) is considered for the first time
in the special case of n×n (0, 1)-matrices with zero trace. Due to the very particular and regular
structure of such matrices, in his paper Fulkerson shows that existence conditions analogous to
those provided by Ryser can be stated for matrices constrained to have zero trace, but he does
not provide any algorithm for finding one of them. These results were further generalized by
Anstee [2] and Chen [9] who extended the analysis to the case of matrices with at most one 0 in
each column. In [6] Brualdi et al. study (0, 1)-matrices of size m×n with given line sums and a
block of zeros (of fixed size) located at one of the corners of the matrix. The existence of such a
matrix is characterized in terms of the “structure matrix” already defined in [16] and a modified
version of the well-known algorithms by Gale [12] and Ryser [16] is provided. In [7] additional
results are provided for matrices showing a configuration of forbidden cells that forms a Young
diagram. All the above results are collected and further developed in the book published by
Brualdi in 2006 which provides a comprehensive review on problems related to combinatorial
matrix classes, including MFP [5].

The Matrix Feasibility Problem stated above arises in different applications, such as in graph
theory [11] or in the area of discrete tomography [6, 7]. Our work was motivated by an application
to the Biproportional Apportionment Problem (BAP) which consists of allocating seats to parties
in different electoral constituencies having a fixed number of seats at stake in each of them and
a fixed number of total (national) seats to assign to each party (see, for example [18]). Given
an m × n matrix V of votes for the parties (n columns) within the constituencies (m rows),
one must compute the number of seats that each party should receive in each constituency
on the basis of the number of votes that it has obtained in that constituency. The solution
of BAP is an integer matrix satisfying both row and column totals and as proportional as
possible to the vote matrix V (apportionment) (see, [3, 4]). In many electoral laws, as in the
Italian Law for the election of the Chamber of Deputies, the procedure for assigning seats is
based on the proportional method by Hare [13]. In order to pursue proportionality, the exact
(fractional) quota qij of seats that a party j should receive in constituency i is first computed
(the corresponding matrix Q = [qij] represents the ideal - but not integral - allocation of seats,
see [13, 18]), and a number of seats equal to ⌊qij⌋ is assigned to it in that constituency. The
rest of the seats, that necessarily remain in each constituency (residual seats), are then assigned
to the parties in each constituency according to the non increasing order of their remainders
< qij >= qij−⌊qij⌋. It must be noticed that this computation does not guarantee that the output
matrix satisfies column (party) sums as required by BAP. Therefore, additional operations are
performed in order to meet these conditions. Unfortunately, due to the difficulties of lawmakers
to understand the details of the mathematical problem behind BAP, it frequently happens that
electoral procedures for this problem are self-contradictory. Correct procedures exist but they
are generally not suitable to be written in an electoral law, while simple procedures for BAP
are needed that could be acknowledged by legislators and citizens. The results presented in this
paper were motivated by the necessity of studying a new BAP procedure for the Italian electoral

2

law for the Chamber of Deputies being both correct and simple at the same time.
Reasoning out about possible simple procedures, we found that the theory of (0, 1)-matrices

with fixed row and column sums may fit our case. Without modifying the first stage of the
seat allocation rule described above, one may suggest assigning the floor of the quota to each
party in each constituency in order to meet the principle of proportionality between the vote
and the seat matrix. After this, one may solve BAP by searching for a rounding of Q according
to the definition provided by Cox and Ernst in [8]. This means that each party will receive in
each constituency at most one additional seat on the basis of his remainder 1. In view of this,
BAP reduces to filling in an m × n (0, 1)-matrix A = [aij] under the constraints that row and
column sums must meet the total number of residual seats, in each constituency and for each
party, respectively. The final number of seats for party j in constituency i will then be given by
⌊qij⌋+ aij .

In [18] it is illustrated how, under the Cox and Ernst Controlled Rounding model, BAP
constraints can be reformulated as those of a capacitated linear transportation problem with
forbidden routes. Consider the nonnegative m×n real matrix Q of regional quotas, and suppose
to search for an apportionment that is a rounding of Q and minimizes for example the L1-
distance from Q. The problem can be modeled via the introduction of binary variables aij , as
follows:

min
∑
i∈M

∑
j∈N

| ⌊qij⌋+ aij − qij |∑
j∈N

(⌊qij⌋+ aij) = ri i ∈ M∑
i∈M

(⌊qij⌋+ aij) = sj j ∈ N

aij = 0 (i, j) ∈ Z̄

aij ∈ {0, 1} i ∈ M, j ∈ N, (i, j) /∈ Z̄

(1)

where M and N denote the set of electoral constituencies (rows) and parties (columns), respec-
tively, while the set Z̄ is the set Z (entries with zero votes) plus the entries (if any) with integral
qij .
Following [18], problem (1) can be equivalently written as

min
∑
i∈M

∑
j∈N

dij aij +
∑
i∈M

∑
j∈N

<qij>∑
j∈N

aij = r̄i i ∈ M∑
i∈M

aij = s̄j j ∈ N

aij = 0 (i, j) ∈ Z̄

0 ≤ aij ≤ 1 i ∈ M, j ∈ N, (i, j) /∈ Z̄

(2)

where <qij>= qij − ⌊qij⌋, and
1Notice that in BAP a rounding corresponds to an apportionment satisfying the Hare property.

3

dij = 1− 2 <qij>

r̄i = ri −
∑
j∈N

⌊qij⌋

s̄j = sj −
∑
i∈M

⌊qij⌋
.

Models (1) and (2) differ just by a constant term in the objective function and by the integrality
constraints aij ∈ {0, 1} which in (2) can be relaxed into the bounds 0 ≤ aij ≤ 1 thanks to the
property of the coefficient matrix of (2) to be totally unimodular.

Following a similar approach, in this paper we still exploit the idea of assigning first ⌊qij⌋ to
party j in constituency i, but we resort to the theory of (0, 1)-matrices with fixed row and column
sums and fixed zeros in order to find a rounding of Q without using network flow techniques.

It is well known that even the existence of a feasible (0, 1)-matrix with forbidden positions
can be decided in polynomial time via the solution of a maximum flow problem on a suitable
network [1]. However, the results by Gale and Ryser have shown that, when Z = ∅, a set
of n conditions is sufficient to check whether such matrix exists or not, leading to a O(mn)
time algorithm for solving the problem. Following the notation in [5], we formulate our Matrix
Feasibility Problem as follows. Let C = [cij] be an m × n nonnegative integral (0, 1)-matrix,
and let r = (r1, r2, . . . , rm) and s = (s1, s2, . . . , sn) be nonnegative integral vectors 2 satisfying∑m

i=1 ri =
∑n

j=1 sj . The set of feasible solutions to MFP with fixed zeros, which we denote by
AC(r, s), corresponds to the feasible flows in the above network for which the arc capacities are
the elements of the matrix C. Notice that when all cells in C are equal to 1, the problem reduces
to the one without fixed zeros introduced by Gale and Ryser. In the more general case, C has
a 1 only in the positions out of Z.

In this paper we extend the results in [11] assuming that m = n = qp and that the fixed zeros
of the matrix correspond exactly to the p square submatrices of order q on the main diagonal.
In the BAP application, such zeros correspond to cells (i, j) were party j cannot gain seats in
constituency i since it did not receive any vote there. This is the well known zero votes-zero seats
condition (see, for example, [18]) and the zeros in the p principal square submatrices of order q
mean that specific groups of parties did not present their lists in specific groups of constituencies.

As in [11], we also assume that the row and column sum vectors are non increasing and we
refer to this problem as Matrix Feasibility Problem with zero q-blocks (q-MFP). For this problem
we provide necessary and sufficient existence conditions for a feasible solution and we present a
O(n2) time solution algorithm for the special case q = 1 (1-MFP).

The paper is organized as follows. In Section 2, we recall some basic results from the literature
on MFP and develop new ones related to the specific case of q-MFP. Basing on these results, in
Section 3, we provide necessary and sufficient conditions for the existence of a feasible solution
for q-MFP, while in Section 4 we illustrate an algorithm for the particular case of 1-MFP. Finally,
in Section 5, we draw some conclusions and discuss possible lines of research.

2 Basic results

In MFP we are given two nonnegative integral vectors r = (r1, r2, . . . , rm) and s = (s1, s2, . . . , sn)
such that

∑m
i=1 ri =

∑n
j=1 sj = τ and an m× n capacity (0, 1)-matrix C = [cij]. We investigate

the existence conditions of an m × n (0, 1)-matrix A in AC(r, s). Relying on the theory of

2In the BAP application r and s denote the row and column sums of the residual seats.

4

network flows [1], this problem can be formulated and solved as a maximum flow-minimum cut
problem on a suitable network G and necessary and sufficient conditions for the existence of
a matrix in AC(r, s) can be derived. Actually, it can be shown [10] that there is a one-to-one
correspondence between cuts in G and pairs (R,S), where R is a subset of the set of rows M and
S is a subset of the set of columns N and that the capacity C(R,S) of the cut corresponding to
(R,S) is given by

C(R,S) = 2τ −
∑
i∈R

ri −
∑
j∈S

sj +
∑
i∈R

∑
j∈S

cij .

A necessary and sufficient condition for the existence of a matrix in AC(r, s) is that the minimum
capacity of a cut in G is equal to τ , that is,

C(R,S) ≥ τ, ∀ R,S (3)

or, equivalently,

τ −
∑
i∈R

ri −
∑
j∈S

sj +
∑
i∈R

∑
j∈S

cij ≥ 0, ∀ R,S. (4)

The above exponential number of conditions were already pointed out independently by Gale
[12] and Ryser [16] in 1957, and, for the case cij = 1, i ∈ M, j ∈ N , they both showed that
a linear number of conditions is enough. These conditions require to check that the column
sum vector s is majorized (in the sense of Hardy-Littlewood-Pólya [14]) by the vector of the
conjugate sequence of the row sum vector r (see, [16] Chapter 6, Theorem 1.1).

For the sake of simplicity we denote

g(R,S) =
∑
i∈R

ri +
∑
j∈S

sj −
∑
i∈R

∑
j∈S

cij ≥ 0, ∀ R,S. (5)

To check feasibility for MFP, one can either minimize the left-hand side of (4) or maximize
g(R,S) over all pairs R,S, verifying that for an optimal solution R∗, S∗, one has g(R∗, S∗) = τ .

On the basis of the above results, both Gale and Ryser provided polynomial time algorithms
for MFP without fixed zeros, which are conceptually simpler than network flow techniques.
Fulkerson [11], Brualdi and Dahl [6, 7], and others, already provided some results on MFP for
special cases in which the matrix C has a particular configuration but the general problem still
lacks of a unifying existence result.

In his paper Fulkerson considered the case of square matrices having zero trace and non increas-
ing row and column sums. In the present paper we start from the results by Fulkerson and
generalize them to the case m = n = qp and the fixed zeros of the matrix are in the p principal
q × q submatrices located in the main diagonal of C. This case is not still covered by previous
results in the literature. The following theorem is provided in [5] (see, Theorem 4.4.2 in Section
4) and seems to be the most general result for MFP with fixed zeros. Note that the original
version of the theorem is more general than our (0, 1)-matrix case, since it refers to the existence
of integral matrices with fixed zeros.

Theorem 2.1 (See, [5]) Let r = (r1, r2, . . . , rm) and s = (s1, s2, . . . , sn) be nonnegative integral
vectors satisfying

5

m∑
i=1

ri =

n∑
j=1

sj . (6)

Let C = [cij] be a nonnegative integral matrix of size m by n satisfying

m∑
i=1

(cij − cik)
+ ≤ sj − sk + 1 1 ≤ j < k ≤ n. (7)

There exists a matrix A = [aij] in AC(r, s) if and only if

m∑
i=1

(ri −
h∑

j=1

cij)
+ ≤

n∑
j=h+1

sj h = 1, . . . , n. (8)

The above theorem states that (8) is a necessary and sufficient condition for the existence of A
in AC(r, s), provided that C satisfies condition (7). As noted by Brualdi, in the theorem it is
not assumed that s is non increasing, but condition (7) implies a sort of nearly non increasing
property of S, in the sense that, under condition (7) for j < k one has sj ≥ sk − 1 (see, [5]).

It is easy to check that the case of at most one zero in each column of C is solved by this
theorem, while the following example shows that in our version of MFP, characterized by q × q
“blocks” of fixed zeros, the above theorem does not apply any more, and in this case a specific
result is required to provide necessary and sufficient conditions for the existence of a matrix A
in AC(r, s).

Example 1

Consider the following 6× 6 matrix C, that in every matrix in AC(r, s) forces to zero all cells in
the two diagonal square matrices of order q = 3, and assume ri = 1 for all i = 1, . . . ,m, sj = 1
for all j = 1, . . . , n:

C =



0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1
1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0

 .

The instance of MFP is feasible and a feasible solution in AC(r, s) is given by

A =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 .

but matrix C does not satisfy condition (7). In fact, for a pair of columns j and k, 1 ≤ j ≤ 3
and 4 ≤ k ≤ 6, one has:

m∑
i=1

(cij − cik)
+ = 3 > 1 = sj − sk + 1.

6

We now focus on q-MFP. For h = 1, . . . , p, we define

Rh = {(h− 1)q + 1, . . . , qh}

and
Sh = {(h− 1)q + 1, . . . , qh}

corresponding to the row and column indexes of the h-th q × q submatrix in the main diagonal
of A.
In the following a set of rows Rh will be called a row block and a set of columns Sh a column
block, while the pair (Rh, Sh) will be simply referred to as a block.

According to our specific formulation of q-MFP, we assume that{
cij = 0 for all pairs (i, j) such that i ∈ Rh and j ∈ Sh, h = 1, . . . , p
cij = 1 otherwise

(9)

and {
ri ≥ ri+1 i = 1, . . . , n− 1
sj ≥ sj+1 j = 1, . . . , n− 1.

(10)

The main results of this paper rely on assumptions (9) and (10). However, for some minor
results (10) can be replaced by the following weaker monotonicity conditions:{

ri ≥ ri+1 i ∈ Rh\{qh}, h = 1, . . . , p
sj ≥ sj+1 j ∈ Sh\{qh}, h = 1, . . . , p

(11)

The following Proposition 2.2 states a nice property of the sets R and S that maximize function
g(R,S) introduced in (5).

Proposition 2.2 Suppose that hypothesis (9) and (11) hold. Then, among all pairs of row and
column subsets (R,S) with |Rh ∩ R| = kh ≥ 1 and |Sh ∩ S| = lh ≥ 1, h = 1, . . . , p, there exists
one, say, (R∗,S∗), maximizing function g(·) and such that:

i) for each row block Rh including at least one row in R∗, one has:
R∗ ∩Rh = {(h− 1)q + 1, . . . , (h− 1)q + kh}
(i.e., R∗ contains the first kh rows of Rh);

ii) for each column block Sh including at least one column in S∗, one has:
S∗ ∩ Sh = {(h− 1)q + 1, . . . , (h− 1)q + lh}
(i.e., S∗ contains the first lh rows of Sh).

Proof Given a set of rows R and a set of columns S, suppose that |Rh ∩ R| = kh ≥ 1. If
kh = q the row block Rh satisfies property i), since all rows of Rh belong to R. Suppose now
that kh ≤ q − 1 and R does not satisfy property i). Hence, there exists in R a row (h− 1)q + t
such that kh < t ≤ q, and there exists a row (h− 1)q + z which does not belong to R such that
1 ≤ z ≤ kh. Let R

′ = R\{(h− 1)q+ t}∪ {(h− 1)q+ z}. Since rows (h− 1)q+ t and (h− 1)q+ z
are in the same block h, we have:

g(R′, S) = g(R,S)− r(h−1)q+t + r(h−1)q+z +
∑
j∈S

(c(h−1)q+t,j − c(h−1)q+z,j).

7

By hypothesis (9), c(h−1)q+t,j = c(h−1)q+z,j for all j ∈ N , hence:

g(R′, S) = g(R,S)− r(h−1)q+t + r(h−1)q+z.

Moreover, by hypothesis (11), r(h−1)q+t ≤ r(h−1)q+z, so that

g(R′, S) ≥ g(R,S).

Thus, replacing row (h − 1)q + t by row (h − 1)q + z in R produces a new pair (R′, S) with a
better value of g(·) w.r.t. (R,S). We can repeat the above argument in order to finally obtain
a set R∗ satisfying property i) and having, for any given S, the largest value of g(·) among all
pairs (R,S) with |Rh∩R| = kh. A similar construction can be applied also to the set of columns
to finally obtain the pair (R∗, S∗) maximizing g(·) and such that S∗ satisfies property ii). 2

Replacing (10) by the stronger assumption (9), leads to the following stronger result.

Proposition 2.3 Suppose that hypothesis (9) and (10) hold. Then, among all pairs of row
and column subsets (R,S) with |R| = k ≥ 0 and |S| = l ≥ 0, there exists one, say, (R∗,S∗),
maximizing function g(·) and such that:

a) either R∗ is empty (if k = 0), or R∗ = {1, . . . , k}, (if 1 ≤ k ≤ n);

b) either S∗ is empty (if l = 0), or S∗ = {1, . . . , l}, (if 1 ≤ l ≤ n).

Proof Suppose we are given the subset of rows R and the subset of columns S, with |Rh∩R| =
kh ≥ 1 and |Sh ∩ S| = lh ≥ 1, h = 1, . . . , p,

∑p
h=1 kh = k and

∑p
h=1 lh = l, maximizing function

g(·) and satisfying properties i) and ii) of Proposition 2.2. Such a pair of sets exists for every
possible fixed cardinalities kh and lh, h = 1, . . . , p, since (10) implies (11). Now suppose that R
is not empty and does not satisfy property a). This means that there exist two row blocks Rh′

and Rh′′ with h′′ > h′ such that kh′ < q and kh′′ ≥ 1.
We will show that updating R by including the maximum possible number of rows in block

h′ in place of the same number of rows in h′′ (which will be deleted from R), and performing a
similar replacement involving the columns of blocks h′ and h′′, leads to a new pair (R1, S1) such
that g(R1, S1) ≥ g(R,S). The idea of the proof is that, when replacing (R,S) by (R1, S1), by
assumption (10) the sum of the ri’s and of the sj ’s in g(·) increases, while the sum of the cij ’s
in g(·) decreases, since, by (9), the number of fixed zeros in this sum increases. By repeatedly
applying this updating to the new generated pairs until condition a) holds, and doing the same,
in a second phase, for the columns to satisfy property b), one finally gets the optimal pair
(R∗, S∗) with the required properties a) and b).

Let α = min{q − kh′ , kh′′} and consider the sets of rows

Ah′′ = {(h′′ − 1)q + kh′′ − α+ 1, . . . , (h′′ − 1)q + kh′′}

and
Ah′ = {(h′ − 1)q + kh′ + 1, . . . , (h′ − 1)q + kh′ + α},

for which one has |Ah′ | = |Ah′′ | = α. Let

R1 = R\Ah′′ ∪Ah′ .

8

Moreover, let β = min{q − lh′ , lh′′}. If β > 0 define the sets of columns

Bh′′ = {(h′′ − 1)q + lh′′ − β + 1, . . . , (h′′ − 1)q + lh′′}

and
Bh′ = {(h′ − 1)q + lh′ + 1, . . . , (h′ − 1)q + lh′ + β}

with |Bh′ | = |Bh′′ | = β, and let
S1 = S\Bh′′ ∪Bh′ .

If β = 0 let S1 = S and Bh′ = Bh′′ = ∅.

Now we compare g(R,S) and g(R1, S1). We have:

g(R,S) =
∑
i∈R

ri +
∑
j∈S

sj −
∑
i∈R

∑
j∈S

cij

=
∑
i∈R

ri +
∑
j∈S

sj −|R||S|+
∑
i∈R

∑
j∈S

(1− cij)

=
∑
i∈R

ri +
∑
j∈S

sj −|R||S|+
∑

h∈{1,...,p}
khlh

and
g(R1, S1) =

∑
i∈R1

ri +
∑
j∈S1

sj −
∑
i∈R1

∑
j∈S1

cij

=
∑
i∈R1

ri +
∑
j∈S1

sj −|R||S|+
∑
i∈R1

∑
j∈S1

(1− cij)

=
∑
i∈R1

ri +
∑
j∈S1

sj −|R||S|+
∑

h∈{1,...,p}:h̸=h′,h′′
khlh

+(kh′ + α)(lh′ + β) + (kh′′ − α)(lh′′ − β).

Hence,
g(R1, S1)− g(R,S) =

∑
i∈Ah′

ri −
∑

i∈Ah′′

ri +
∑

j∈Bh′

sj −
∑

j∈Bh′′

sj

+α(lh′ − lh′′ + β) + β(kh′ − kh′′ + α).

Since |Ah′ | = |Ah′′ |, by hypothesis (10) we have
∑

i∈Ah′
ri ≥

∑
i∈Ah′′

ri. Similarly,
∑

j∈Bh′
sj ≥∑

j∈Bh′′
sj . Moreover, it is easy to verify that α(lh′ − lh′′ + β) ≥ 0 and β(kh′ − kh′′ + α) ≥ 0 for

all possible values of α and β. It follows that g(R1, S1) ≥ g(R,S).
We can repeatedly apply the above argument to row blocks which still do not satisfy property

a), until, at some step γ, we obtain the set of cardinality k that satisfies property a), i.e.,
Rγ = R∗(k). Analogous operations can be applied if the set of columns in the current pair
(R∗(k), Sγ(l)) does not satisfy property b). The final pair (R∗(k),S∗(l)) satisfies properties a)
and b) and conditions |R∗(k)| = k and |S∗(l)| = l. Since the initial pair (R,S) maximizes g(·)
under the weaker monotonicity assumption (11) for fixed kh and lh, h = 1, . . . , p, in view of the
fact that g(R∗(k), S∗(l)) ≥ g(R,S), it follows that, under the stronger monotonicity assumption
(10), g(R∗(k), S∗(l)) maximizes g(·) for the corresponding k =

∑p
h=1 kh and l =

∑p
h=1 lh. The

same procedure leads to an optimal pair g(R∗(k), S∗(l)) for every possible fixed k and l. 2

9

3 Existence conditions for a feasible solution of q-MFP

The results of Section 2 can be exploited in different ways to state necessary and sufficient
conditions for the existence of a feasible solution for q-MFP.

First, in view of Proposition 2.3, we can define a structure matrix T (r, s, q) for the class AC(r, s)
where C is defined by (9). As in the structure matrix already introduced by Ford and Fulkerson
(see, [10]), the generic element tkl of T (r, s, q), k = 0, 1, . . . , n and l = 0, 1, . . . , n, computes
the value C(R,S) − τ , with R = {1, . . . , k} and S = {1, . . . , l}. Therefore, conditions (4) can
be efficiently checked by verifying tkl ≥ 0 for k = 0, 1, . . . , n and l = 0, 1, . . . , n. The generic
element of the (n+ 1)× (n+ 1) structure matrix T (r, s, q) is given by

tkl =
[
τ −

k∑
i=1

ri
]
−

l∑
j=1

sj + kl − ⌊min{k,l}
q ⌋ · q2 −

{[
min{k, l} − ⌊min{k,l}

q ⌋ · q
]
×

×
[
q −

(
q ·

(
⌊min{k,l}

q ⌋+ 1
)
−max{k, l}

)+]}
,

(12)

or equivalently:

tkl =
n∑

i=k+1

ri −
l∑

j=1
sj + kl − ⌊min{k,l}

q ⌋ · q2 −
{[

min{k, l} − ⌊min{k,l}
q ⌋ · q

]
×

×
[
q −

(
q ·

(
⌊min{k,l}

q ⌋+ 1
)
−max{k, l}

)+]}
,

(13)

where a+ = max{a, 0}.

It is easy to see that, once
∑k

i=1 ri and
∑l

j=1 sj have been computed for all k and l, tkl can be

obtained in constant time. Hence, one can determine in O(n2) time whether the class AC(r, s) is
empty or not. We also point out that in the particular cases q = 0 or q = 1, the above formulas
for tkl have the same expressions already provided by Ford and Fulkerson [10] and Fulkerson
[11], respectively.

The results of Proposition 2.3 can be exploited directly to reduce the exponential number of
conditions (4) to a linear number of conditions for q-MFP. To obtain this, we observe that, for
any fixed subset of columns S, one can rewrite condition (4) as follows:

δ(S) = min
R⊆{1,...,n}

[
C(R,S)− τ

]
=

n∑
i=1

min{
∑
j∈S

cij , ri} −
∑
j∈S

sj ≥ 0 ∀S ⊆ {1, . . . , n}. (14)

We can replace the above set of conditions by a smaller set, since, for all subsets of columns
S with the same cardinality l, from Proposition 2.3 we know that δ(S) ≥ δ({1, . . . , l}), and,
therefore, only the set S = {1, . . . , l} of the first l columns is relevant for finding R∗ and S∗.
Hence, we can restrict to verify only the following n conditions:

δ({1, . . . , l}) =
n∑

i=1

min{
l∑

j=1

cij , ri} −
l∑

j=1

sj ≥ 0 l = 1, . . . , n. (15)

10

We observe that
∑n

i=1min{
∑l

j=1 cij , ri} is the maximum number of 1’s that, according to r and
C, can be put in the first j columns of the output (0, 1)-matrix.

Following an approach similar to the one proposed in [16], the above conditions can be
rewritten in terms of the conjugate sequence of vector r. In our case, the constraints of the
fixed zeros in some positions of the (0, 1)-matrix require the definition of a C-conjugate sequence
of r, r∗j (C), j = 1, . . . , n, that is, the conjugate sequence of r that also takes into account the
capacities equal to 0 in the matrix C:

r∗j (C) = |i ∈ {1, . . . , n} : cij = 1, ri ≥
j∑

t=1

cit|. (16)

Notice that, when the capacities are all equal to 1, r∗j (C), j = 1, . . . , n, corresponds to the
standard conjugate sequence of r adopted in [17].

It is easy to see that
∑l

j=1 r
∗
j (C) =

∑n
i=1min{

∑l
j=1 cij , ri}, so that, using r∗j (C), conditions

(15) become:

l∑
j=1

r∗j (C) ≥
l∑

j=1

sj l = 1, . . . , n. (17)

For q-MFP, the above conditions can be verified in O(n2) time, since for every column j one
can compute r∗j (C) in O(n) time following an incremental strategy that allows the updating of
r∗j (C) from r∗j−1(C) in constant time.

4 An algorithm for 1-MFP

In [11] Fulkerson provides necessary and sufficient conditions for the existence of a feasible
solution for MFP with fixed zeros on the main diagonal of the output (0, 1)-matrix which is a
special case of q-MFP. However, he did not provide any algorithm for finding a feasible solution
for this problem, neither did he suggest any way of exploiting the existence conditions in this
sense. It is obvious that a feasible solution can be always found via network flow techniques, but,
in this section, we provide an algorithm to practically find a solution of 1-MPF in O(n2) time,
once the existence conditions hold true. The same conditions are used to show the correctness
of the algorithm.

One may think that the straightforward application of the classical algorithms by Ryser [16]
or by Gale [12] may work also for 1-MPF. The following examples show that this is not true,
since although the 1-MPF instances are feasible, the presence of fixed zeros causes the above
algorithms to prematurely stop without finding a solution. In Example 2, we apply the algorithm
by Ryser. According to it, the “maximal matrix” (see, [16] for details) is computed at the
beginning (iteration 0), and then the algorithm moves the 1’s from left to right starting from
the largest row sums and giving preference to the bottom-most 1 in case of a tie. In the 1-MFP
instance of Example 2, the algorithm stops at iteration 3 in column 3 (in bold) due to an excess
of 1’s in this column w.r.t. the corresponding column sums.

Example 2

Consider the 1-MFP instance with r = (3, 2, 2, 1, 1) and s = (3, 3, 1, 1, 1) and apply the Ryser
procedure [16]. The steps are the following (a “×” denotes a fixed zero):

11

iteration 0 iteration 1 iteration 2 iteration 3
× 1 1 1 0
1 × 1 0 0
1 1 × 0 0
1 0 0 × 0
1 0 0 0 ×




× 1 1 0 1
1 × 1 0 0
1 1 × 0 0
1 0 0 × 0
1 0 0 0 ×




× 1 1 0 1
1 × 1 0 0
1 0 × 1 0
1 0 0 × 0
1 0 0 0 ×




× 1 1 0 1
1 × 1 0 0
1 0 × 1 0
1 0 0 × 0
1 0 0 0 ×

 .

At iteration 3 the third column has two 1’s but its total is s3 = 1 and the algorithm stops
without finding a feasible solution. Nevertheless, AC(r, s) is non empty and, for example, a
feasible solution is the following:

A =


× 1 0 1 1
1 × 1 0 0
1 1 × 0 0
0 1 0 × 0
1 0 0 0 ×

 .

The algorithm by Gale starts by filling the matrix from the first column and at iteration j it
inserts the 1’s in the sj rows with largest row sums (except for row j in 1-MFP), giving preference
to the top-most 1’s in case of ties. Example 3 illustrates a case in which the Gale procedure fails
in filling the last column (in bold), since, according to it, the last 1 should be placed in the last
row which, for 1-MPF, always corresponds to a fixed zero.

Example 3

Consider the 1-MFP instance with r = (3, 2, 2, 2, 1) and s = (3, 3, 2, 1, 1) and apply the Gale
procedure [16]. We have:

iteration 1 iteration 2 iteration 3 iteration 4
× 0 0 0 0
1 × 0 0 0
1 0 × 0 0
1 0 0 × 0
0 0 0 0 ×




× 1 0 0 0
1 × 0 0 0
1 1 × 0 0
1 1 0 × 0
0 0 0 0 ×




× 1 1 0 0
1 × 1 0 0
1 1 × 0 0
1 1 0 × 0
0 0 0 0 ×




× 1 1 1 0
1 × 1 0 0
1 1 × 0 0
1 1 0 × 0
0 0 0 0 ×

 .

Even in this case, a feasible solution exists being, for example, the following one:

A =


× 1 0 1 1
1 × 1 0 0
1 1 × 0 0
0 1 1 × 0
1 0 0 0 ×

 .

In the following, we present an algorithm for 1-MFP which implements a simple variant of the
original strategy of the Ryser algorithm. The idea is always to start with a matrix where in each
row i we have 1 in the first ri positions having capacity equal to 1 and 0 elsewhere and then
moving 1’s from left to right in those rows having the largest row sums. The difference is that
in case of a tie we choose the top-most 1 instead of the bottom-most as in the Ryser algorithm.

Given an n-vector r, we define the n×n maximal matrix ĀC as the matrix having row sums
ri, i = 1, . . . , n, and column sums r∗j (C), j = 1, 2, . . . , n. It is easy to see that for each row i of

12

ĀC the first ri elements having capacity different from 0 are equal to 1 and the other elements
are equal to 0. For the sake of simplicity, when there is no danger of confusion, we will denote
ĀC simply by Ā.

In the TOP-MOST-TIE algorithm, we are going to describe below for 1-MFP, we suppose
that condition (17) holds true so that AC(r, s) is nonempty. As in the Ryser algorithm, the
starting maximal matrix Ā is iteratively modified by moving 1’s from left to right in order to
satisfy the column sums. At iteration n− f +1 the last n− f columns of the matrix are the last
n− f columns of the output matrix; while the first f columns define an n× f maximal matrix.
We denote by Āf the matrix containing the first f column of Ā and by āij the element in row
i and column j of Ā. We also denote the column sums of Āf by e1, . . . , ef and its row sums by
r̄1, . . . , r̄n.

ALGORITHM TOP-MOST-TIE
Input: a row sum nonnegative n-vector r and a column sum nonnegative n-vector s satisfying
conditions (17). An n × n capacity matrix C such that cii = 0, i = 1, . . . , n and cij = 1, i, j =
1, . . . , n, i ̸= j.
Output: A matrix Ā ∈ AC(r, s).

1. build the maximal matrix Ā;

2. let e := r∗(C), r̄ := r, and f := n (Āf = Ā);

3. update Ā as follows: move to column f the right-most 1’s in the sf rows of Āf , different
from row f , having the largest row sums (note that some of these 1’s may already be in
column f). In case of a tie between row sums, move first the 1 from the top-most row;

4. update e1, . . . , ef−1 and r̄1, . . . , r̄n to be the column sums and the row sums of the matrix
Āf−1, respectively;

5. let f := f − 1;

6. if f := 1 STOP and output Ā, else go to step 3;

In Theorem 4.3 we will prove that under hypothesis (17) at each iteration of the TOP-MOST-
TIE algorithm it is always possible to perform step 3 and fill the current column f with the
required number sf of 1’s. We now give some insight on the algorithm behavior that will be
useful in the proof of this theorem.

First of all we note that at iteration n − f + 1 the totals of columns f + 1, . . . , n of Ā are
equal to the required values sf+1, . . . , sn. It follows that the column sums of Āf , e1, . . . , ef , are
such that

f∑
j=1

ej =

f∑
j=1

sj . (18)

Also notice that, when f = 1 (18) implies e1 = s1 and the algorithm can stop since the first
column already satisfies its total.

Moreover, since the starting matrix is maximal and the 1’s that are moved at iteration
n − f + 1 are the right-most 1’s in their rows in Āf , the remaining matrix Āf−1 is a maximal
matrix, as well.

To illustrate how the algorithm works, in Figure 1 we show the generic configuration for two
consecutive columns k and k + 1 in Āf with f > k + 1. According to the algorithm strategy,

13

k

k+1

k+1k

X

1 1
1 1

1 1
1

X

11

1

1

1

1

1

1

1

1

1

1

1

Figure 1: The sequence of the (four) sets of 1’s that, according to the TOP-MOST-TIE rule,
can be moved from two consecutive columns of Āf . The first set is in the boldface circle, the
second set is in the circle in column k + 1; the third set is represented by the 1’s in the dotted
boldface circles of column k, and, finally, the fourth set is given by the 1’s in the dotted circles
in rows i = 1, . . . , k − 1 and column k.

the 1’s in column k are moved to the right only if all the 1’s in column k + 1 have been already
moved. Indeed, considering the right-most 1 in each row, and choosing the top-most 1 in case of
a tie, the first set of 1’s to move to column f > k + 1 is the set of 1’s in column k + 1 and rows
i = k+2, . . . , n (see the 1’s in the boldface circle of Figure 1). The second set of 1’s to be moved
are those in column k + 1 and in rows i = 1, . . . , k (the 1’s in the circle of Figure 1). Note that
the algorithm may be prevented from moving a 1 from cell (i, k+ 1) to (i, f) whenever i = f or
when there is already a 1 in (i, f), but, in any case, if a 1 cannot be moved from column k + 1
to f , it cannot be moved from column k to f as well. Once all the possible 1’s in column k + 1
have been moved, the next set of 1’s to move are those in the boldface dotted circles and then
those in the dotted circles (see, Figure 1).

Consider iteration n−h+1 of the algorithm, i.e., when column h has to be filled, and let f < h.
We denote by en−h+1

f the number of 1’s in column f at iteration n− h+ 1.

Lemma 4.1 If sh < en−h+1
f holds, then in order to fill column h and satisfy its total sh, the

algorithm TOP-MOST-TIE needs not to fall upon 1’s in columns g < f .

Proof The result follows from two facts: i) the current number of 1’s in column f is at least
one more than the necessary to fill column h; ii) no 1’s can be moved in column h from column
g < f before all 1’s in f have been moved. Therefore, the 1’s in f are sufficient to fill h even if
one takes into account that the 1 in cell (h, f) cannot be moved to (h, h). 2

Lemma 4.2 For each f = 1, . . . , n, at iteration n − f + 1 of the TOP-MOST-TIE algorithm,
the column sums vector e of the maximal matrix Āf satisfies:

e1 ≥ ej , j = 2, . . . , f. (19)

14

Proof We first observe that

r∗1(C) ≥ r∗j (C) for j = 2, . . . , n.

Let t ≤ n be the number of rows i such that ri > 0. We have r∗j (C) ≤ t − 1, for each j, and
r∗1(C) = t−1. Since at the beginning of the algorithm ej = r∗j (C) for each j, at the first iteration
(19) holds.
Suppose now that (19) does not hold at iteration n−f+1, for some f ≤ n−1. Then there exists
a column k, 2 ≤ k ≤ f , such that ek > e1. Since Āf is a maximal matrix, a 1 in column k implies
a 1 in column 1 in all rows but row 1 for which we have c11 = 0. Thus, ek > e1 may hold only
when ā1k = 1 and āi1 = āik, i = 2, . . . , n. Since ckk = 0, it follows that āk1 = ākk = 0, meaning
that the 1 in cell (k, 1) was already moved at a previous iteration under the condition that
r̄k = maxi=1,...,,n r̄i. At that iteration, if r̄k > 1 the algorithm should have moved the rightmost
1 in row k instead of the 1 in cell (k, 1); on the other hand, if r̄k = 1 the algorithm should have
moved the 1 in cell (1, k) instead of the 1 in cell (k, 1). In any case we get a contradiction with
the TOP-MOST-TIE rule. 2

Theorem 4.3 Let r and s be two nonnegative n-vectors defining an instance of 1-MFP for
which hypothesis (6) and (10) hold. If AC(r, s) is nonempty, the TOP-MOST-TIE algorithm
correctly finds a (0, 1)-matrix in AC(r, s).

Proof We show that a contradiction arises whenever, being AC(r, s) nonempty, one assumes
that the algorithm prematurely stops at some iteration n−f+1 since it is not possible to satisfy
the column sum sf of column f . The latter situation may arise only in two cases: i) ef < sf
and e1 ≤ sf ; in this case, when filling column f one realizes that the 1’s that can be moved from
left to right in Āf are not sufficient to fill the whole matrix; ii) ef > sf ; in this case, there is a
surplus of 1’s in column f that cannot be eliminated.

We notice that, when ef < sf and e1 > sf , in column e1 there are enough 1’s that can be
moved to column f . Thus, column f can be filled with sf 1’s even in the extreme case in which
such 1’s cannot be taken from columns 2 to f − 1 in Āf . It is clear that when ef = sf , column
f already satisfies its total.

Suppose i) holds, i.e. ef < sf and e1 ≤ sf . By Lemma 4.2 and by (18) one has:

fe1 ≥
f∑

j=1

ej =

f∑
j=1

sj .

From hypothesis (10) and e1 ≤ sf one has:

f∑
j=1

sj ≥ fsf ≥ fe1,

implying

fe1 =

f∑
j=1

ej =

f∑
j=1

sj = fsf .

Hence
e1 = e2 = . . . = ef = s1 = s2 = . . . = sf ,

15

which contradicts ef < sf .

We now consider assumption ii), i.e., ef > sf . At iteration n − f + 1 column f is the next
to be filled by the algorithm. We first show that, under assumption ii), up to this stage the
algorithm had never moved 1’s from columns 1, . . . , f − 1. Suppose on the contrary that at
iteration n − h + 1, h > f , some 1’s have been moved from a column j < f to column h. By
Lemma 4.1 this may happen only if

sh ≥ en−h+1
f ,

where en−h+1
f is the total number of 1’s in column f at iteration n − h + 1. Since, during

iterations n− h+ 1, . . . , n− f + 2, some 1’s may have been moved from column f to the right,
at iteration n− f + 1 one has:

en−h+1
f ≥ ef .

On the other hand, by assumption ii) and by the monotonicity of the column sum vector, one
also has

ef > sf ≥ sh

leading to the contradiction sh > sh. Hence, no 1’s were moved from columns 1, . . . , f −1 before
iteration n− f + 1. It follows that, at the beginning of iteration n− f + 1, we have:

e1 + e2 + . . .+ ef−1 = r∗1(C) + r∗2(C) + . . .+ r∗f−1(C). (20)

By (18), (17) and (20), one has

e1 + e2 + . . .+ ef−1 + ef = s1 + s2 + . . .+ sf−1 + sf

≤ r∗1(C) + r∗2(C) + . . .+ r∗f−1(C) + sf

= e1 + e2 + . . .+ ef−1 + sf

(21)

thus implying sf ≥ ef which contradicts ef > sf .
2

To illustrate how the algorithm works, in the following we apply it to the 1-MPF instance of
Examples 2. The displayed matrices correspond to the updates of Ā at the successive iterations
of the algorithm. The last matrix is a feasible matrix in AC(r, s). Notice that, according to
(18), at iteration 4, when f = 1, the first column of Ā automatically satisfies its total s1 = 3
and the algorithm stops with the feasible solution A:

iteration 0 iteration 1 iteration 2
× 1 1 1 0
1 × 1 0 0
1 1 × 0 0
1 0 0 × 0
1 0 0 0 ×




× 1 1 0 1
1 × 1 0 0
1 1 × 0 0
1 0 0 × 0
1 0 0 0 ×




× 1 0 1 1
1 × 1 0 0
1 1 × 0 0
1 0 0 × 0
1 0 0 0 ×



16

iteration 3 iteration 4
× 1 0 1 1
1 × 1 0 0
1 1 × 0 0
1 0 0 × 0
1 0 0 0 ×

 A =


× 1 0 1 1
1 × 1 0 0
1 1 × 0 0
0 1 0 × 0
1 0 0 0 ×

 .

5 Conclusions

In this paper we studied the Matrix Feasibility Problem (MFP), which was independently in-
troduced by Gale and Ryser in 1957. For this problem both authors provided important results
for the existence of a feasible solution and gave conceptually simple algorithms. Motivated by
the elegance of these results, we started thinking about using Gale and Ryser algorithms for
the solution of the Biproportional Apportionment Problem (BAP), a central problem in the
theory of electoral systems. Actually, a straightforward application of these algorithms works
well for this problem when each party receives votes in every electoral constituency, but some
additional constraints must be taken into account when, for example, party j does not present
its lists in constituency i at all. In this case, since it receives no votes, it cannot obtain any seat,
due to the so called “zero-vote zero-seat” rule of BAP. This implies a fixed zero in cell (i, j) of
the output matrix and additional constraints must be taken into account in the corresponding
problem which then becomes a MFP “with fixed zeros”. Looking at the possibility of extending
the results by Gale and Ryser to this constrained version of MFP, we realized that, although
this problem was already widely studied in the literature on combinatorial matrices, only few
results exist for this case and they concern very particular configurations of the fixed zeros, while
a general result does not exists.

In this paper we provide additional results for MFP on an n × n matrix, with n = qp and
fixed zeros in the p square submatrices of order q located on the main diagonal, a case that may
arise in real applications of BAP. We also provide an algorithm for the special case q = 1 that
is as simple as the one given by Ryser for the case without fixed zeros. Unfortunately, when
fixed zeros are in arbitrary positions the problem is still open and additional effort is needed to
reach a general result. Besides the theoretical importance of such a result, it must be pointed
out that providing an algorithm that works in the general case would give rise to the possibility
of producing a simple method for solving BAP which could be in fact acknowledged by the
lawmakers and eventually written in an electoral law.

References

[1] R.K. Ahuja, T.L. Magnanti, J.B. Orlin. Network flows. Theory, algorithms and applications, Prentice
Hall, New Jersey, 1993.

[2] R.P. Anstee (1982). Properties of a class of (0.1)-matrices covering a given matrix, Canadian Journal
of Mathematics, 34, 438–453.

[3] M.L. Balinski, G. Demange (1989). An axiomatic approach to proportionality between matrices,
Mathematics of Operations Research, 14, 700–719.

[4] M.L. Balinski, G. Demange (1989). Algorithms for proportional matrices in reals and integers,
Mathematical Programming, 45, 193–210.

[5] R.A. Brualdi. Combinatorial Matrix Classes, Cambridge University Press, 2006.

17

[6] R.A. Brualdi, G. Dahl (2003). Matrices of zeros and ones with given line sums and a zero block,
Linear Algebra and its Applications, 371, 191–207.

[7] R.A. Brualdi, G. Dahl (2007). Constructing (0, 1)-Matrices with given line sums and certain fixed
zeros. In Advances in Discrete Tomography and Its Applications, Eds.: Herman, G.T., Kuba, A.,
Birkhaser, Boston, 2007.

[8] L.H. Cox, L.R. Ernst (1982). Controlled rounding, INFOR—Information Systems and Operational
Research, 20, 423–432.

[9] Y. Chen (2006). Simple existence conditions for zero-one matrices with at most one structural zero
in each row and column, Discrete Mathematics, 306, 2870–2877.

[10] L.R. Ford, D.R. Fulkerson. Flows in networks, Princeton University Press, Princeton 1962.

[11] D.R. Fulkerson (1960). Zero-one matrices with zero trace, Pacific Journal of Mathematics, 10, 831–
836.

[12] D. Gale (1957). A theorem on flows in networks, Pacific Journal of Mathematics, 7, 1073-1082.

[13] P. Grilli di Cortona, C. Manzi, A. Pennisi, F. Ricca, B. Simeone. Evaluation and Optimization of
Electoral Systems, SIAM Monographs on Discrete Mathematics and Applications, SIAM, Society
for Industrial and Applied Mathematics, Philadelphia 1999.

[14] G.H. Hardy, J.E. Littlewood, G. Pólya (1929). Some simple inequalities satisfied by convex functions,
Messenger Mathematics 58, 145–152.

[15] Y. Nam (1999). Integral matrices with given row and column sums, Ars Combinatoria 52, 141–151.

[16] H.J. Ryser (1957). Combinatorial properties of matrices of zeros and ones, Canadian Journal of
Mathematics, 9, 371–377.

[17] H.J. Ryser. Combinatorial Mathematics. Carus Math. Monograph ♯14, Math Assoc. of America,
1963.

[18] F. Ricca, A. Scozzari, P. Serafini, B. Simeone (2012), Error minimization methods in biproportional
apportionment, TOP, The Official Journal of the Spanish Society of Statistics and Operations Re-
search, in press, doi: 10.1007/s11750-012-0252-x.

18

