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Abstract

In the presence of prior information on an unknown parameter of a statistical
model, Bayesian and frequentist estimates based on the same observed data
do not coincide. However, in many standard parametric problems, their
discrepancy tends to be reduced as the sample size increases. In this paper
we consider the pre-experimental design problem of selecting sample sizes
that guarantee large probabilities of observing a small discrepancy between
Bayesian and frequentist point estimates of a parameter. We propose a
Bayesian predictive approach and we illustrate some examples using the
normal model. We argue that these examples may be discussed even in
introductory-level courses in Bayesian inference.
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1 Introduction

Bayesian statistics offers the theoretical framework for combining experimental and

extra-experimental information on phenomena under study. As a consequence,

Bayesian procedures for inference on an unknown parameter of a statistical model

take into account both experimental data and information on the parameter

incorporated in the so-called prior distribution.

In the presence of pre-experimental information, frequentist and Bayesian

procedures, such as point or interval estimates based on the same observed sample

-in general- do not coincide. However, in many standard parametric problems, the

1



discrepancy between frequentist and Bayesian procedures is rather limited when

sampling information dominates the prior distribution. Furthermore, this conflict

tends to disappear as the sample size increases. Therefore, for sufficiently large

sample sizes, frequentist procedures may provide good approximations of Bayesian

methods.

A paradigmatic example is the estimation problem for the expected value of a

normal random variable. In this case (see Section 3.1 for technical details), given

n observations from independent and identically distributed (i.i.d.) normal random

variables, the standard Bayesian estimate of θ is a linear combination of the sampling

mean, x̄n, and of a prior guess on the parameter, µA:

ωnx̄n + (1− ωn)µA, ωn ∈ (0, 1), (1)

where the value of ωn in the above formula tends to one as n diverges. Therefore,

for a sufficiently large sample size, ωnx̄n + (1 − ωn)µA ' x̄n, that is the Bayesian

estimate (1) is well approximated by the sample mean.

In most of introductory books on Bayesian inference [see, for instance, Berger

(1985), Bernardo and Smith (1994), Gelman et al. (2004), Lee (2004), O’Hagan

and Forster (2004), Robert (2001)], the progressive reduction of conflict between

Bayesian and frequentist procedures is typically showed only as a limiting result.

However, before observing the data, any measure of conflict between estimators is

a random variable and one might desire to choose the sample size so to have a

large probability to observe a small discrepancy between Bayesian and frequentist

procedures. This sample size determination (SSD in the following) problem is the

topic of the present paper, that is organized as follows. In Section 2.1, we introduce

a measure of discrepancy, Dn, between a frequentist and a Bayesian estimator. In

Section 2.2 we define sample size determination criteria based on the predictive

distribution of Dn. The basic idea is to choose the minimal sample size necessary

to have a large probability that Dn is sufficiently small. We derive the explicit

expression of Dn, its predictive cumulative distribution function (cdf) and expected

value for the normal model with conjugate priors, assuming both known (Section

3.1) and unknown (Section 3.2) variance. We illustrate some examples for these

basic uniparametric models that may be discussed even in introductory-level courses

in Bayesian statistical inference. In Section 4 we apply the methodology to an

illustrative example based on a superiority clinical trial.
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2 Methodology

2.1 Discrepancy between estimators

Let Xn = (X1, X2, . . . , Xn) be a random sample from a probability distribution

fn(·|θ), where θ is an unknown real-valued parameter that belongs to the parameter

space, Θ. Following the Bayesian inferential approach, we assume that θ is a

random variable. For simplicity, assume that Θ ⊆ R. Let xn = (x1, x2, . . . , xn)

be an observed sample, πA(·) the prior density function of θ, fn(xn|θ) its likelihood

function and

π(θ|xn) =
fn(xn|θ)πA(θ)∫

Θ
fn(xn|θ)πA(θ)dθ

its posterior distribution. We will refer to πA as to the analysis-prior. It models pre-

experimental knowledge/uncertainty on θ taken into account in posterior analysis.

For instance, if θ represents the unknown effect of a new clinical treatment, πA may

model all the pre-trial information we have on the parameter, based on subjective

opinion of experts and/or historical data.

We denote a Bayesian estimator of θ as θ̂B(Xn) whereas θ̂F (Xn) is a generic

consistent frequentist estimator. In this article we consider the posterior expectation

of the parameter θ, E(θ|Xn) =
∫

Θ
θπ(θ|xn)dθ, as θ̂B and the maximum likelihood

estimator (MLE) as θ̂F . Nevertheless, all the following can be extended to other

Bayesian and frequentist point estimators.

Let Dn(Xn) be a measure of discrepancy between θ̂B and θ̂F . Specifically, we

consider the standard squared difference between estimators:

Dn(Xn) = [θ̂B(Xn)− θ̂F (Xn)]2. (2)

Before observing the data, θ̂B, θ̂F and Dn are random variables (functions of Xn).

With no loss of generality we assume that, as n tends to infinity, Dn converges in

probability to zero. Therefore, as the sample size increases, Bayesian and frequentist

point estimators tends to become closer and closer.

2.2 Sample size determination

Turning to SSD, we want to determine the minimal sample size such that the

probability of observing a small discrepancy between θ̂B and θ̂F is sufficiently large.

As for any other design problem in Bayesian inference, this probability can be

evaluated using two alternative distributions for the data [see, for instance, Chaloner
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and Verdinelli (1995)]. The conditional approach prescribes the use of the sampling

distribution fn(·|θ), with θ = µD, a “design value” for the unknown parameter. This

method takes into account a single value for θ at the design phase of the analysis

and leads to sample sizes that are optimal conditionally on this chosen value µD.

The predictive approach implies the use of the predictive distribution

mD(xn) =

∫

Θ

fn(xn|θ)πD(θ)dθ,

where πD (design-prior) is a density function that accounts for a range of plausible

design values of θ. The corresponding sample sizes are optimal conditionally on the

chosen design-prior distribution πD. Note that, if πD is a point-mass prior on µD,

the predictive and the conditional approach coincide. Hence, we adopt here notation

of the predictive method, which includes the conditional approach as a special case.

At this point it is important to note that we are now using two distinct priors: πD

for determination of the marginal distribution of the data and πA for determination

of the posterior distribution of θ. Several previous articles consider distinct design

and analysis-priors as we do here. Among these, see Tsutakawa (1972), Etzioni and

Kadane (1993), Joseph, du Berger and Belisle (1997), O’Hagan and Stevens (2001),

Wang and Gelfand (2002), Sahu and Smith (2006), De Santis (2006) and Sambucini

(2008). The necessity of making this distinction is self-evident, for instance, in

clinical experiments. As an example, let us consider a superiority trial, whose goal

is to prove superiority of a new treatment over a standard therapy. In this case,

superiority is conjectured and the design-prior must reflect the optimism of the

researcher. However, he/she may decide to be neutral in reporting posterior results,

as often required by regulatory agencies. Under these circumstances, we would

choose a design-prior (πD) centered on a value greater than a significative effect-

level we wish to assess. At the same time, we would assume an analysis-prior (πA)

centered on zero (to express neutrality) and relatively noninformative, so to let the

data drive the analysis.

Before moving to SSD criteria, a technical remark is in order. In fact,

the marginal distribution mD exists only if πD is a proper proper distribution.

Conversely, πA can also be a standard noninformative and improper prior.

The SSD criteria that we consider in this article are based on the simple idea

of selecting the smallest n so that the predictive distribution of Dn is sufficiently

concentrated on small values. Let

pn(d) = P(Dn ≤ d), d > 0 (3)
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be the cumulative distribution function of Dn. For any pair of chosen values d > 0

and γ ∈ (0, 1), the optimal sample size n∗p(d, γ) is the minimum n such that pn(d)

is larger than γ:

n∗p(d, γ) = min{n ∈ N : pn(d) > γ}, γ ∈ (0, 1). (4)

Alternatively, let

en = E(Dn) (5)

be the expected values of Dn computed with respect to the marginal distribution

mD. For a given value of d > 0, the optimal sample size n∗e is:

n∗e(d) = min{n ∈ N : en ≤ d}. (6)

3 Results for the normal model

3.1 Known variance.

Let Xn be a random sample from a N(θ, σ2) distribution. The MLE of θ is θ̂F = x̄n.

Assume for θ a normal analysis-prior density πA(θ) = N(θ|µA, σ2/nA), where,

in general, N(·|a, b) denotes the density function of a normal random variable of

parameters (a, b) and where nA is given the standard interpretation of “prior sample

size”. The normal density for θ is said conjugate to the model fn since the resulting

posterior distribution is still a normal density. In fact, from standard results on

conjugate analysis for the normal model [Bernardo and Smith (1994, p. 439)], the

posterior distribution of θ is

π(θ|xn) = N

(
θ

∣∣∣∣
nx̄n + nAµA

n + nA

, σ2 1

n + nA

)
.

Hence

θ̂B =
nx̄n + nAµA

n + nA

= ωnx̄n + (1− ωn)µA, ωn =
n

n + nA

=
1

1 + Iπ

In

, (7)

where In = n/σ2 is the observed information and Iπ = nA/σ2 is the prior precision

(i.e. the inverse of the prior variance). The ratio Iπ/In = n/nA determines the

impact of the prior mean µA and of the MLE x̄n on the weighted average that define

θ̂B. In fact, the larger the ratio Iπ/In, the closer θ̂B to µA. Conversely, the smaller

the ratio, the closer θ̂B to θ̂F .
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Suppose now that

πD(θ) = N(θ|µD, σ2/nD), (8)

where µD, nD and σ2 are known constants. In this case, the predictive density

function of x̄n is

mD(x̄n) = N(x̄n|µD, ψ2
n), where ψ2

n = bnσ
2 and bn =

n + nD

nnD

. (9)

We now give the explicit expression for Dn, its predictive expected value (en) and

cumulative distribution function (pn).

Result 1. Assume that Xi|θ has density N(·|θ, σ2/n), i = 1, 2, . . . , n,

and that πA(θ) = N(θ|µA, σ2/nA), Then,

Dn = a2
n(X̄n − µA)2, where an =

nA

n + nA

. (10)

Furthermore, assuming πD(θ) = N(θ|µD, σ2/nD), it follows that

en = a2
n[bnσ

2 + δ2],

pn(d) = Φ
[
b−1/2
n (δ + a−1

n d1/2) σ−1
]− Φ

[
b−1/2
n (δ − a−1

n d1/2) σ−1
]
,

where δ = µD − µA.

Proof. The expression of en is determined noting that, under (9),

E[X̄n] = µD and E[X̄2
n] = µ2

D + ψ2
n. Furthermore, the expression of

pn can be determined by noting that pn(d) = P(µA − a−1
n

√
d ≤ X̄n ≤

µA + a−1
n

√
d).

Remarks

1. Noting that bn = O(1) and an = o(n−1), it follows that en = o(n−2) and that,

as n diverges, Dn converges in probability to zero as fast as n−2.

2. It can be checked (see Appendix A.1) that Dn = a2
nψ

2
nYn, where Yn is a

non-central chi-square random variable with one degree of freedom and non-

centrality parameter λn = δ2/ψ2
n. Therefore, pn, the predictive cdf of Dn, can

also be expressed as follows: pn(d) = P[Dn ≤ d] = Fλn (d/anψ
2
n) , where Fλn is

the cdf of Yn.
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3. Under the hypotheses of Result 1, but assuming πA(θ) = πD(θ), we have

that en = σ2 nA/n(n + nA) and pn(d) = Φ
(
b
−1/2
n a−1

n d1/2 σ−1
) − Φ

( −
b
−1/2
n a−1

n d1/2 σ−1
)
. These formulas are obtained by replacing nD with nA and

by setting δ = 0 in the corresponding expressions of Result 1.

4. Note that the expressions of both en and pn depend on the prior means only

through the absolute difference |δ| = |µA − µD|.

Example 1. We illustrate the method described in this section using some

numerical examples. For instance, let us assume a fixed known variance σ2 = 1

and a design-prior with parameters µD = 2 and nD = 20. Just for illustration, we

take d = 0.2 and, in order to assess the impact of different prior beliefs on en and

pn, we consider a set of values for the analysis-prior parameters.
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Figure 1: Plots of en with respect to n assuming µD = 2, nD = 20, σ2 = 1 and for several

choices of |δ| and nA, d = 0.2.

In Figure 1, en is plotted with respect to n for |δ| = |µA − µD| = 2, 3 and for

several values of nA. The two basic features to be noticed are the following:

- as |δ| becomes smaller – i.e. as the analysis-prior becomes more and more

consistent with the design guess of the trial – the values of en become smaller

and smaller for any given n;

- as nA (the weight of the analysis-prior) increases, the values of the expected

discrepancy become larger for any given n.
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Figure 2: Plots of pn with respect to n assuming µD = 2, nD = 20, σ2 = 1 and for several

choices of |δ| and nA, d = 0.2, γ = 0.9.

Table 1-(a) reports the optimal sample sizes for different choices of |δ| and nA. In

general, for any fixed nA, the smaller |δ| is, the smaller n∗e(d) and, for any fixed value

of |δ|, the larger nA is, the larger the corresponding optimal sample size. Note also

that the impact of nA is stronger for larger values of δ. Similar considerations hold

nA

1

5

10

50

n∗e(d)

|δ|
4 3 2 1 0

8 6 4 2 1

40 29 18 7 3

80 57 35 14 3

398 286 175 65 5

n∗p(d, γ)

|δ|
4 3 2 1 0

9 7 5 3 2

44 33 22 12 5

87 64 43 21 7

430 318 207 97 14

Table 1: Sample sizes for several values of the analysis prior parameters, using

the criterion based on en and pn, assuming, nD = 20, σ2 = 1, several choices for

|δ| = |µD − µA| and nA, with d = 0.2, γ = 0.9.

for the plots of pn in Figure 2 and the optimal sample sizes n∗p(d, γ) in Table 1-(b),

obtained with the probability criterion with threshold γ = 0.9.
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3.2 Unknown variance.

Let us now assume that the variance, σ2, of the normal model is unknown. To extend

the previous results, a natural choice is to consider a full conjugate analysis-prior

for (θ, σ2), i.e.: πA(θ, σ2) = πA(θ|σ2)πA(σ2), where

πA(θ|σ2) = N(θ|µA, σ2/nA) and πA(σ2) = IG(σ2|αA, βA), (11)

and where, in general, IG(·|a, b) denotes the density function of an inverted-gamma

random variable of parameter (a, b) (see Bernardo-Smith, 1994). From standard

results on conjugate analysis (see, for instance, Bernardo and Smith (1994), p.

440) it follows that the posterior distribution of θ is a three parameters Student

density whose expected value given is unchanged with respect to the known-variance

case. The MLE of θ is as well unchanged with respect to the known variance case.

Therefore, in this case, the expression of Dn is still given by (10).

For the design-prior, assume that πD(θ, σ2) = πD(θ|σ2)πD(σ2), where

πD(θ|σ2) = N(θ|µD, σ2/nD) and πD(σ2) = IG(σ2|αD, βD). (12)

It follows that, mD(x̄n) is a three-parameters Student distribution with parameters

(µD, ηn, 2αD), where ηn = nDn(nD + n)−1αDβ−1
D (Bernardo and Smith, 1994). The

following result gives the explicit expressions of en and pn for this unknown-variance

case.

Result 2. Assume that Xi|θ has density N(·|θ, σ2/n), i = 1, 2, . . . , n,

and that πA(θ, σ2) and πD(θ, σ2) are respectively given by (11) and (12).

It follows that the expression of Dn = is still given by (10) and that

en = a2
n[bnσ̃

2 + δ2],

pn(d) = Tν

[
b−1/2
n (δ + a−1

n d1/2) σ̇−1
]− Tν

[
b−1/2
n (δ − a−1

n d1/2) σ̇−1
]

where σ̃2 = E[σ2] = βD(αD− 1)−1, σ̇ = E[1/σ2]−1/2 = α−1
D βD and where

Tν(·) is the cdf of a standard Student t distribution distribution with

ν = 2αD degrees of freedom and where δ = µD − µA.

Proof. The expression of en is determined noting that, under (12),

E[X̄n] = µD and E[X̄2
n] = µ2

D + η−1
n αD(αD − 1)−1 [see, for instance,

Bernardo and Smith (1994), p. 122, for the moments of a three-

parameters Student random variable]. The expression of pn can be

determined as in Result 1.
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Note that the expression of en in Result 2 is obtained by the expression of en

determined for the known variance case (Result 1) by simply replacing σ2 with its

expected value σ̃2, determined with the design-prior (11). Similarly, the expression

of pn in Result 2 is obtained by the expression of pn for the known variance case

by replacing the functions Φ(·) with Tν(·) and σ with σ̇. For a general discussion

on the relationships between optimal designs for the normal model with known and

unknown variance see Verdinelli (2000).

Example 2. Let us consider again the setup of Example 1 in the previous section,

but let us now assume (θ, σ2) unknown with design- and analysis-prior as in Result

2. In Table 2 we consider three sets of values for the design-prior hyperparameters

(αD, βD), yielding a prior mode equal to 1 (i.e. the value assigned to σ2 in Example

1), with different values for the prior variance (0.33, 0.05, 0.02 respectively). When

en is considered the resulting sample sizes are not affected by the different choices

of the hyperparameters (see the comments after the proof of Result 2). Conversely,

using pn, smaller values of the prior variance results in slightly lowered value of the

optimal sample sizes, uniformly with respect to |δ|. Moreover, comparing Table 2

with the last row of Table 1 (corresponding to nA = 50), we notice that the sample

sizes are exactly the same for the criterion based on en and almost overlapping also

for the one based on pn.

αD βD

5 4

20 19

50 49

n∗e(d)

|δ|
4 3 2 1 0

398 286 175 65 5

” ” ” ” ”

” ” ” ” ”

n∗p(d, γ)

|δ|
4 3 2 1 0

425 314 202 92 11

429 317 206 96 13

430 318 207 97 14

Table 2: Optimal sample sizes for several values of |δ|, using the criterion based on

en and pn, assuming nA = 50, d = 0.2, γ = 0.9 and hyperparameters αD and βD

such that the prior mode for σ equals 1

Example 3. In the preceding examples we have seen that, in general, for any fixed

sample size n, the conflict between θ̂F and θ̂B increases with the prior sample size,

nA. Hence, we can use the predictive analysis of the previous sections to establish,

for given sample sizes, an upper bound for the analysis-prior variance in order to

keep pn (the probability of small values of the discrepancy between estimators)
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sufficiently large (or, similarly, to have en sufficiently small). This kind of analysis

allows one to identify values of nA that correspond to priors that, for a given sample

size, are relatively non-informative.

In Figure 3 en and pn are plotted as functions of nA for n = 10 and for several values

of |δ|. In the left panel we notice that, generally, en increases with the prior sample

size nA. This behavior is particularly evident in correspondence of larger values of

|δ|, while for δ = 0, en increases very slowly with nA. Table 3 reports the values of

nA needed reach d = 0.2. The right panel of Figure 3 shows that pn decreases as nA

increases: the reduction is dramatic for δ = 4, whereas it is smoother and smoother

as µA approaches µD. In Table 3 we report the maximum values of nA such that

the probability exceeds the probability threshold γ = 0.9.

Finally, when we fix a larger value for the sample size, for instance n = 100,

the affordable prior sample size nA uniformly increases for any given value of δ, as

shown in Table 3.
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Figure 3: Plots of en and pn with respect to nA for several choices of |δ| (αD = 5, βD = 4).

4 Illustrative example: a superiority trial

Results of the previous section are now employed in the context of a clinical

trial designed to prove superiority of a new treatment towards a standard therapy

for the same disease. The unknown parameter of interest is the log-odds ratio

θ = log θ1(1 − θ2)/θ2(1 − θ1), where θi is the probability of death under therapy
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nA

|δ|
n 4 3 2 1 0

en 10 1 1 2 7 -

100 12 17 28 76 -

pn 10 1 1 2 4 39

100 11 15 24 54 -

Table 3: Maximum values of nA such that en reaches d = 0.2 and pn reaches the

probability threshold γ = 0.9, respectively, for a fixed sample size n = 10, 100 and

several values of |δ|.

i, i = 1, 2. Let x̄ni
denote the sample proportion of events (death) under

treatment i. Following, for instance, Spiegelhalter et al. (2004), the MLE of θ,

θ̂F = log x̄n1(1−x̄n2)/x̄n2(1−x̄n1), is asymptotically normal with parameters (θ, 4/n),

where n (effective sample size) has now the interpretation of the overall number of

deaths under the two treatments. Negative values of the estimates provide evidence

if favor of treatment 1. Results of Section 3 can now be used for approximate

inference on θ, by replacing x̄n with θ̂F in all the formulas.

As a specific example, we consider the set-up of the GREAT trial, analyzed in

detail in Spiegelhalter et al. (2004, pp.69-72) The goal of the experiment was to

compare the effects of two alternative treatments for myocardial infarction. The

evidence from the trial was in favor of the new theraphy (treatment 1=anistreplase)

with respect to a standard therapy. In fact, θ̂F was equal to −0.74, corresponding

to a 52% reduction in odds of death.

Assume now that a new experiment is planned to prove superiority of anistreplase

and to estimate θ. We use the optimistic result of the GREAT trial to elicit the

design prior πD. Hence, we set µD = −0.74 and nD = 30.5. Under this optimistic

scenario, we expect to observe values of θ̂F indicating superiority of anistreplase.

The optimistic outcomes of the GREAT trial (that we use here to set πD) were

in conflict with historical data available at the time of the experiment. These data

have been used by Spiegelhalter et al. (2004) to elicit a normal analysis-prior density

with parameters µA = −0.26 and nA = 236.7, which is quite more sceptical than πD

towards the new treatment. Using this prior, we expect to observe values of θ̂B that

are, at least for moderate sample sizes, in conflict with those of θ̂F . However, as n

increases, the effect of the prior tends to disappear and the conflict between θ̂F and
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nA 236.7 236.7/2 236.7/5 236.7/10

n∗e 99 56 28 18

n∗p 130 73 33 20

Table 4: Sample sizes for the GREAT example.

θ̂B to be reduced. Figure 4 reports the plot of en as a function of the sample size
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Figure 4: Plots of en for the GREAT example using the clinical prior [µA = −0.26,

nA = 236.7 (solid line)] and the sceptical prior [µA = 0, nA = 32.3 (dashed line)].

(solid line). As expected, values of en decrease as n increases. Choosing, for instance,

d = 0.2, yields n∗e(d) = 99. This large value of the sample size highly depends on the

analysis-prior sample size, nA. In fact, if we reduce the analysis-prior precision (nA),

the corresponding optimal sample sizes decrease considerably, as shown in Table 4.

For sensitivity analysis, Spiegelhater et al. (2004) consider an alternative analysis-

prior, more sceptical about large treatment effects than the previous clinical prior.

To formalize scepticism about the new treatment, the parameters are chosen so that

the resulting prior is centered on zero and assigns 95% of its probability mass on

an interval of the parameter space ranging from 50% of reduction in odds of death

using anistreplase, to a 100% of increase. The resulting parameters are µA = 0 and

nA = 32.3. The plot of en is reported in Figure 4 (dashed line). It is interesting to

note that, despite the expected value of this prior (µA = 0) is substantially more

sceptical than the expected value of the clinical prior (µA = −.26), the values of en

are uniformly smaller than those of the first prior, due to the strong effect of the
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large value of nA in the clinical prior. The optimal sample size is now n∗e(d) = 33.

For completeness, we also report, in Figure 5, the plots of pn(d) for the two priors,
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Figure 5: Plots of pn(d) for the GREAT example using the clinical prior [µA = −026,

nA = 236.7 (solid line)] and the sceptical prior [µA = 0, nA = 32.3 (dashed line)], d = 0.2.

assuming d = 0.2 and γ = 0.7. The strong effect of prior precision is now even

more self-evident: the optimal sample size is n∗p(d, γ) = 130 for the clinical prior

and n∗p(d, γ) = 33 for the sceptical prior.

5 Conclusion

It is well known that, in many standard parametric problems, Bayesian and

frequentist methods often provides approximately equal estimates as long as

sampling information dominates the prior and that their difference tends to be

reduced for increasing sample sizes. In this paper we have formalized the pre-

experimental problem of selecting the minimal sample size sufficient to keep the

conflict between Bayesian and frequentist point estimates sufficiently small. Of

course, we have made several choices to deal with this problem that could be

questioned. Here is a non-exhaustive list of critical points that may deserve further

discussion and development.

i) Alternative measures of conflict. We have selected a specific measure of

divergence between estimator, namely the quadratic difference (2). Of course,

alternative choices can be considered. For instance, we can use the absolute
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difference between estimators

D′
n(Xn) = |θ̂B(Xn)− θ̂F (Xn)|.

It can be shown that, for the normal models of Section 3, closed-form

expressions for D′
n, en and pn can be determined.

ii) Predictive approach. For pre-experimental sample size computations we

used the predictive distribution mD(·) instead of the sampling distribution

fn(·|θ)|θ=µD
, in order to account for possible uncertainty on the design-value

µD. In general, using a predictive distribution in the place of the sampling

distribution implies larger sample sizes.

iii) Two-priors approach. Within the predictive approach to SSD, we prefer

considering two priors, one for design and one for analysis, rather than using

the same priors. In fact, we believe that accounting for pre-experimental

information is different from modelling design uncertainty.

iv) Extensions. In this paper we have considered the basic normal model and

an inferential problem that can be easily illustrated even in introductory

courses on Bayesian statistics. We have focused on the normal model with

conjugate priors. Extensions to more complex and useful models do not present

difficulties in principle but may require analytical and computational efforts.

v) Relationships with other SSD methods. We believe that predictive control of

the conflict between estimators is an important tool for evaluating the impact

of prior assumptions on posterior analysis and to understand to what extent

Bayesian procedure can be approximated by frequentist procedure. We also

believe that the SSD criteria of Section 2.2 should be used in concert with other

criteria specifically aimed at guaranteeing good performance of inferential

procedures and based on, for instance, the variance of point estimators, length

and location of interval estimators, measures of evidence in testing.

15



REFERENCES

Berger, J.O. (1985). Statistical Decision Theory and Bayesian Analysis, II ed.,

Springer-Verlag, New York.

Bernardo, J.M. and Smith, A.F.M. (1994). Bayesian Theory. Wiley.

Chaloner, K. and Verdinelli, I. (1995). Bayesian experimental design: a

review. Statistical Science, 10, 237-308.

De Santis, F. (2006). Sample size determination for robust Bayesian analysis.

Journal of the American Statistical Association, 101, n. 473, 278-291.

Gelman A, Carlin, J.B., Stern, H.S., Rubin, D.B. (2004). Bayesian Data

Analysis, II ed., Chapman Hall/CRC.

Joseph, L., du Berger, R. and Belisle, P. (1997). Bayesian and mixed

Bayesian/likelihood criteria for sample size determination. Statistics in

Medicine, 16, 769-781.

Lee, P.M. (2004). Bayesian Statistics: An Introduction, III ed., Arnold, London.

O’Hagan, A. and Forster, J. J. (2004). Bayesian Inference, II ed., vol. 2B

of ”Kendall’s Advanced Theory of Statistics”. Arnold, London.

O’Hagan, A., and Stevens, J.W. (2001). Bayesian assessment of sample size

for clinical trials for cost effectiveness. Medical Decision Making, 21, 219-230.

Robert, P.C., (2001). from Decision-Theoretic Motivations to Computational

Implementation, II ed. Springer-Verlag, New York.

Sahu, S. K. and Smith, T. M. F. (2006). A Bayesian method of sample size

determination with practical applications . Journal of the Royal Statistical

Society, Ser. A, 169, no. 2, 235-253.

Sambucini, V. (2008). A Bayesian predictive two-stage design for phase II clinical

trials. Statistics in Medicine, 27, no. 8, 1199-1224.

Spiegelhalter, D.J, Abrams, K.R. and Myles, J.P. (2004). Bayesian

approaches to clinical trials and health-care evaluation. Wiley.

16



Tsutakawa, R.K. (1972). Design of experiment for bioassay. Journal of the

American Statistical Association, 67, n. 339, 584-590.

Verdinelli, I. (2000). A note on Bayesian design for the normal linear model

with unknown error variance. Biometrika (2000) 87,1, 222-227.

Wang, F., and Gelfand, A.E. (2002). A simulation-based approach to

Bayesian sample size determination for performance under a given model and

for separating models. Statistical Science, 17, n. 2, 193-208.

APPENDIX

A1.

We have seen in Section 2.1 that, from standard results on conjugate analysis for

the normal model (see, for instance, Bernardo and Smith, 1994), the predictive

distribution of the sample mean, X̄n is N(µD, ψ2
n) where ψ2

n = σ2(n + nD)(nnD)−1.

Therefore, X̄n − µA ∼ N(µD − µA, ψ2
n) and Yn = (X̄n − µA)2ψ−2

n is a a chi-square

random variable with non-centrality parameter λn:

Yn =
(X̄n − µA)2

ψ2
n

∼ χ2
1(λn), λn =

(µD − µA)2

ψ2
n

.

Noting that Dn = anψ2
nYn, it follows that the marginal cdf of Dn is

pn(d) = P[Dn < d] = P[anψ
2
nYn < d] = Fλn

(
d

anψ2
n

)
,

where Fλn is the cdf of a non-central chi-square with one degree of freedom and

non-centrality parameter λn.
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