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Abstract

The aim of this paper is to derive large deviation results for random motions with finite ve-
locity. We start with large deviation principles for the telegraph process with drift: we consider
both non-conditional distributions and conditional distributions, and we compare the speeds of
convergence with inequalities between rate functions. The same results are presented for the
random flights in R

2 and in R
4 which represent a multidimensional version of the telegraph pro-

cess. Other large deviation principles in this paper concern the non-conditional distributions for
an inhomogeneous telegraph process and for a planar random motion with orthogonal directions.
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1 Introduction

The stochastic processes are often used to describe the real motions. An important example is given
by the Brownian motion, which was introduced after the fruitful observations of botanist Robert
Brown on the movement of the particles in a liquid. However the Brownian motion is not free
from defects such as the unbounded first variation. Therefore, over the years, many authors have
introduced random models having the main characteristics of the real movements: finite velocity
and persistence.

A typical example in this direction is the telegraph process, which is represented by a particle
moving on the real line, alternatively forward and backward, with finite speed. Furthermore,
one suppose that the changes of direction are governed by a homogeneous Poisson process. The
telegraph process is also connected with the theory of the differential equations because its density
law satisfies an hyperbolic partial differential equation. The probabilistic properties of this random
model have been analyzed, for example, in [25], [10], [26] and [2]. Other authors have also studied
generalizations of the telegraph process, concerning the waiting times between two consecutive
changes of direction or the randomization of the velocity (see [7], [32], [33], [8], [4]).

It is interesting to observe that applications of the telegraph process emerge in different fields.
Indeed, in physics the propagation of a damped wave along a wire is described by the telegraph
equation. In ecology the telegraph walk has been exploited to model the movements of the animals
on the soil (see [11]). In order to model the dynamics of the price of risky assets, in [9] was considered
the geometric telegraph process {S(t) : t ≥ 0}, namely S(t) = s0 exp

(
(μ − 1

2σ2)t − σX(t)
)
, where

S(0) = s0 > 0, μ ∈ R, σ > 0 and {X(t) : t ≥ 0} is the standard telegraph motion. A model of
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financial market based on a telegraph process with drift, that is with two different velocities and
switching rates, is introduced in [29] and [30].

Some extensions of the telegraph motion in higher dimensions have been proposed over the
years. A random motion in R

2 with four possible orthogonal directions appears in [27] and the
exact probability distribution of the process is obtained by means of a suitable representation of
the random motion in terms of independent telegraph processes. Planar random motions with an
infinite number of directions are analyzed in [31], [21] and [14] and the directions are independent
random variables with uniform distribution on a disk with radius one. In [28] this type of random
walks, also known as random flights, is studied in R

d for d ≥ 2. It is worth to observe that it is
possible to derive the explicit conditional (on the number of the changes of direction) and non-
conditional distributions for the random flights only in R

2 and R
4. Some possible applications of

the random flights concern the displacements of the microorganisms on laboratory slides and the
mechanics of the gas particles.

The aim of this paper is to present asymptotic results for telegraph processes (possibly with
drift) and some of its multidimensional versions in the literature recalled above. Here we refer
to the theory of large deviations which gives an asymptotic computation of small probabilities on
exponential scale. The most interesting results in this paper concern the cases where we investigate
both the non-conditional distributions and conditional distributions for the same model; in these
cases we can compare the speeds of convergence with inequalities between large deviation rate
functions. Large deviation results for the telegraph process can be derived from the ones for
Markov additive processes (see e.g. [13], [22], [23] and [24]); the computations specified for the
telegraph process can be found in [18] (section 2) and [20]. We are not aware of any other work
in the literature on large deviations for conditional distributions of the telegraph process and for
some multidimensional versions of the telegraph process such as the random flights.

The outline of the paper is the following. We start with some preliminaries on large deviations
in section 2. In section 3 we present the results for the telegraph process with drift, for an inhomo-
geneous case studied in [12], and for the planar random motion in [27]. Finally section 4 is devoted
to the results for random flights.

We conclude with some standard notation used throughout the paper: We write f(x) ∼ g(x)
as x → � to mean that limx→�

f(x)
g(x) = 1 (throughout this paper we have � = 0 and � = ∞); for a

given set S, we write S and Sc for the closure and the complementary of S, respectively.

2 Preliminaries on large deviations

We recall the basic definitions in [6] (pages 4–5). Let Z be a Hausdorff topological space with Borel
σ-algebra BZ. A lower semi-continuous function I : Z → [0,∞] is called rate function. A family of
probability measures {νt : t > 0} on (Z, BZ) satisfies the large deviation principle (LDP for short),
as t → ∞, with rate function I if

lim sup
t→∞

1
t

log νt(F ) ≤ − inf
z∈F

I(z) for all closed sets F

and
lim inf
t→∞

1
t

log νt(G) ≥ − inf
z∈G

I(z) for all open sets G.

A rate function I is said to be good if all the level sets {{z ∈ Z : I(z) ≤ γ} : γ ≥ 0} are compact.
In what follows we use condition (b) with equation (1.2.8) in [6], which is equivalent to the lower
bound for open sets:

lim inf
t→∞

1
t

log νt(G) ≥ −I(z)
for all z ∈ Z such that I(z) < ∞ and
for all open sets G such that z ∈ G.

(1)
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A known large deviation result used throughout the paper is the contraction principle (see e.g.
Theorem 4.2.1 in [6]). Roughly speaking, if a family of probability measures {νt : t > 0} on (Z, BZ)
satisfies the LDP with a good rate function I and f : Z → Y is a continuous function, then the
family of probability measures {νt ◦ f−1 : t > 0} on (Y, BY) satisfies the LDP with a good rate
function J defined by J(y) = inf{I(z) : f(z) = y}.

In some cases we talk about LDP for a family of Z-valued random variables {Zt : t > 0}; in
such a case we consider the above definition with νt(·) = P (Zt ∈ ·).

Remark 2.1. Assume that {ν(1)
t : t > 0} and {ν(2)

t : t > 0} satisfy the LDP with the rate
functions I1 and I2, respectively; moreover assume that I1 and I2 uniquely vanish at the same
point z0. Then, if we have I1(z) > I2(z) for all z in a neighborhood U of z0 (except z0 because
I1(z0) = I2(z0) = 0), we can say that {ν(1)

t : t > 0} converges to z0 faster than {ν(2)
t : t > 0}, as

t → ∞. Indeed, for all ε > 0, there exists tε such that ν
(1)
t (Uc)

ν
(2)
t (Uc)

≤ e−t(I1(Uc)−I2(Uc)+2ε) for all t > tε,

where Ik(U c) = infz∈Uc Ik(z) for k ∈ {1, 2}; thus, since I1(U c) > I2(U c) > 0, we have ν
(1)
t (Uc)

ν
(2)
t (Uc)

→ 0

as t → ∞.

3 Results for telegraph processes and for a planar random motion

The telegraph process with drift is a random motion {X(t) : t ≥ 0} on the real line which starts at
the origin of R and moves with a two-valued integrated telegraph signal, i.e., for some λ1λ2, c1, c2 >
0, we have a rightward velocity c1, a leftward velocity −c2, and the rates of the occurrences of
velocity switches are λ1 and λ2, respectively. More precisely we have

X(t) = V (0)
∫ t

0
(−1)N(s)ds

where: the random variable V (0) is such that P (V (0) ∈ {−c2, c1}) = 1; the process {N(t) : t ≥ 0}
which counts the number of changes of direction is an inhomogeneous Poisson process such that
N(t) =

∑
n≥1 1{S1+···Sn≤t}, the random variables {Sn : n ≥ 1} are conditionally independent given

V (0), and the conditional distribution is the following:

if V (0) = c1, then
{ {S2k−1 : k ≥ 1} are exponentially distributed with mean 1

λ1

{S2k : k ≥ 1} are exponentially distributed with mean 1
λ2

;

if V (0) = −c2, then
{ {S2k−1 : k ≥ 1} are exponentially distributed with mean 1

λ2

{S2k : k ≥ 1} are exponentially distributed with mean 1
λ1

.

We remark that we do not have drift if c1 = c2 and λ1 = λ2. We often assume that λ1 = λ2 = λ
for some λ > 0; in such a case {N(t) : t ≥ 0} is a Poisson process with intensity λ and, moreover,
V (0) and {N(t) : t ≥ 0} are independent (because V (0) and {Sn : n ≥ 1} are independent).

It is useful to consider a different point of view. The process {X(t) : t ≥ 0} can be seen as the
additive component of a very simple continuous time Markov additive process driven by a Markov
chain J = {J(t) : t ≥ 0}, with state space {1, 2} and intensity matrix( −λ1 +λ1

+λ2 −λ2

)

(for the illustration of this point of view, see e.g. [1], chapter 2, section 5, page 40). We remark
that {J(0) = k} = {V (0) = (−1)k+1ck} for k ∈ {1, 2}; moreover {N(t) : t ≥ 0} is the transition
number process concerning the Markov chain J .
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In subsection 3.1 we present two LDPs and we compare the two rate functions: firstly we recall
the known LDP for the non-conditional distributions

{
P

(
X(t)

t ∈ ·
)

: t > 0
}

; secondly, assuming

that λ1 = λ2, we prove the LDP for the conditional distributions
{

P
(

X(t)
t ∈ ·

∣∣∣N(t)
t = wt

)
: t > 0

}
assuming that wt converges to some w ∈ (0,∞) as t → ∞. A connection between a result in
subsection 3.1 and a result in [19] is discussed in subsection 3.2. In subsection 3.3 we prove the
LDP for the non-conditional distributions

{
P

(
Yθ(t)

t ∈ ·
)

: t > 0
}

, where {Yθ(t) : t ≥ 0} is the
inhomogeneous telegraph process in Theorem 2.1 in [12]; more precisely the process {Nθ(t) : t ≥ 0}
which counts the number of changes of direction is driven by the intensity {λθ : t ≥ 0} defined by
λθ(t) := θ tanh(θt) for θ > 0. Finally, in subsection 3.4, we prove the LDP for the non-conditional
distributions

{
P

((
Y1(t)

t , Y2(t)
t

)
∈ ·

)
: t > 0

}
, where {(Y1(t), Y2(t)) : t ≥ 0} is the process in [27]

which describes the planar random motion of a particle moving with orthogonal directions.

3.1 The telegraph process with drift

In this subsection we allow a general initial distribution of J , i.e. we set

(P (J(0) = 1), P (J(0) = 2)) = (p, 1 − p)

for some p ∈ [0, 1]; as we shall see the LDPs proved here do not depend on the value p.
We start with Proposition 3.1 which provides the LDP for the non-conditional distributions.

It is a known result and there are several references for this LDP (see the references recalled in
the Introduction which refers to Markov additive processes). In view of what follows it is useful to
refer to the proof in [20] (section 3) which provides an explicit expression of the rate function: this
proof is based on the LDP for the empirical laws{(∫ t

0 1{J(s)=1}ds

t
,

∫ t
0 1{J(s)=2}ds

t

)
: t > 0

}
(2)

of {J(t) : t ≥ 0} and a very easy application of contraction principle.

Proposition 3.1. The family
{

P
(

X(t)
t ∈ ·

)
: t > 0

}
satisfies the LDP with good rate function

IX
λ1,λ2,c1,c2

defined by

IX
λ1,λ2,c1,c2(x) =

{ (√
λ1

x+c2
c1+c2

−
√

λ2
c1−x
c1+c2

)2
if x ∈ [−c2, c1]

∞ otherwise.

Remark 3.2. Note that, if λ1 = λ2 = λ and c1 = c2 = c for some λ, c > 0, i.e. {X(t) : t ≥ 0} is a
standard telegraph process without drift, the rate function in Proposition 3.1 becomes

IX
λ,λ,c,c(x) =

⎧⎨
⎩ λ

(
1 −

√
1 − x2

c2

)
if x ∈ [−c, c]

∞ otherwise.

Now we prove the LDP for the conditional distributions assuming that λ1 = λ2.

Proposition 3.3. Assume that λ1 = λ2 = λ for some λ > 0. If wt → w ∈ (0,∞), then{
P

(
X(t)

t ∈ ·
∣∣∣N(t)

t = wt

)
: t > 0

}
satisfies the LDP with good rate function I

X|N
λ,λ,c1,c2

(·; w) defined
by

I
X|N
λ,λ,c1,c2

(x; w) =

⎧⎨
⎩ w log

(
c1+c2

2
√

(c2+x)(c1−x)

)
if − c2 < x < c1

∞ otherwise.
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Proof. We consider the extension of equations (2.17)-(2.18) in [5] which concern the case
c1 = c2 = c (for some c > 0) and p = 1

2 ; see Appendix for details. The proof is divided in two parts.
1) Proof of the lower bound for open sets. We want to check the equivalent condition (1), i.e.

lim inf
t→∞

1
t

log P

(
X(t)

t
∈ G

∣∣∣N(t)
t

= wt

)
≥ −w log

(
c1 + c2

2
√

(c2 + x)(c1 − x)

)
.

for all x such that −c2 < x < c1 and for all open sets G such that x ∈ G. Firstly we can take
ε > 0 small enough to have (x − ε, x + ε) ⊂ G ∩ (−c2, c1). Moreover, by taking into account the
conditional distributions derived in the Appendix, for some yε ∈ (x − ε, x + ε), we have

P

(
X(t)

t
∈ G

∣∣∣N(t)
t

= wt

)
≥ P

(
X(t)

t
∈ (x − ε, x + ε)

∣∣∣N(t)
t

= wt

)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(twt)!

(( twt−1
2 )!)2

((c1+c2)t)twt

∫ (x+ε)t
(x−ε)t {(c2t + y)(c1t − y)} twt−1

2 dy if twt ∈ {1, 3, 5, . . .}
(twt)!

( twt
2 )!( twt

2
−1)!((c1+c2)t)twt

∫ (x+ε)t
(x−ε)t {(c2t + y)(c1t − y)} twt

2
−1

·{(c2t + y)p + (c1t − y)(1 − p)}dy if twt ∈ {2, 4, 6, . . .}

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(twt)!

(( twt−1
2 )!)2

((c1+c2)t)twt
ttwt{(c2 + yε)(c1 − yε)}

twt−1
2 2ε if twt ∈ {1, 3, 5, . . .}

(twt)!

( twt
2 )!( twt

2
−1)!((c1+c2)t)twt

ttwt{(c2 + yε)(c1 − yε)}
twt
2

−1

·{(c2 + yε)p + (c1 − yε)(1 − p)}2ε if twt ∈ {2, 4, 6, . . .}.

Then, since limn→∞
log(n!)
n log(n) = 1, we obtain

lim inf
t→∞

1
t

log P

(
X(t)

t
∈ G

∣∣∣N(t)
t

= wt

)

≥ lim inf
t→∞

1
t

(
twt log(twt) − 2

twt

2
log

(
twt

2

)
− twt log(c1 + c2) +

twt

2
log{(c2 + yε)(c1 − yε)}

)

=w log 2 − w log(c1 + c2) +
w

2
log{(c2 + yε)(c1 − yε)} = −w log

(
c1 + c2

2
√

(c2 + yε)(c1 − yε)

)
,

and we complete the proof of the lower bound letting ε go to zero.
2) Proof of the upper bound for closed sets. We have to check

lim sup
t→∞

1
t

log P

(
X(t)

t
∈ F

∣∣∣N(t)
t

= wt

)
≤ − inf

x∈F
I

X|N
λ,λ,c1,c2

(x; w) for all closed sets F.

Firstly note that this condition trivially holds if c1−c2
2 ∈ F and if F ∩ (−c2, c1) = ∅. Thus,

from now on, we assume that c1−c2
2 /∈ F and F ∩ (−c1, c2) = ∅. We also assume that F ∩

( c1−c2
2 , c1), F ∩ (−c2,

c1−c2
2 ) = ∅; otherwise the proof below can be readily adapted. We remark that

I
X|N
λ,λ,c1,c2

(·; w) is decreasing in (−c2,
c1−c2

2 ] and I
X|N
λ,λ,c1,c2

(·; w) is increasing in [ c1−c2
2 , c1); then, if we

set xF := sup(F ∩ (−c2,
c1−c2

2 )) and xF := inf(F ∩ ( c1−c2
2 , c1)), we have F ⊂ (−∞, xF ] ∪ [xF ,∞),

where xF ∈ (−c2,
c1−c2

2 ) and xF ∈ ( c1−c2
2 , c1). Then, by taking into account again the conditional
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distributions derived in the Appendix, we have

P

(
X(t)

t
≥ xF

∣∣∣N(t)
t

= wt

)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(twt)!

(( twt−1
2 )!)2

((c1+c2)t)twt

∫ c1t
xF t{(c2t + y)(c1t − y)} twt−1

2 dy if twt ∈ {1, 3, 5, . . .}
(twt)!

( twt
2 )!( twt

2
−1)!((c1+c2)t)twt

∫ c1t
xF t{(c2t + y)(c1t − y)} twt

2
−1

·{(c2t + y)p + (c1t − y)(1 − p)}dy if twt ∈ {2, 4, 6, . . .}

≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(twt)!

(( twt−1
2 )!)2

((c1+c2)t)twt
ttwt{(c2 + xF )(c1 − xF )} twt−1

2 (c1 − xF ) if twt ∈ {1, 3, 5, . . .}
(twt)!

( twt
2 )!( twt

2
−1)!((c1+c2)t)twt

ttwt{(c2 + xF )(c1 − xF )} twt
2

−1

·(c1 + c2)(c1 − xF ) if twt ∈ {2, 4, 6, . . .}

and, by taking into account that limn→∞
log(n!)
n log(n) = 1 as in the first part of the proof, we obtain

lim sup
t→∞

1
t

log P

(
X(t)

t
≥ xF

∣∣∣N(t)
t

= wt

)

≤ lim sup
t→∞

1
t

(
twt log(twt) − 2

twt

2
log

(
twt

2

)
− twt log(c1 + c2) +

twt

2
log{(c2 + xF )(c1 − xF )}

)
=w log 2 − w log(c1 + c2) +

w

2
log{(c2 + xF )(c1 − xF )} = −I

X|N
λ,λ,c1,c2

(xF ; w).

Finally, since we can prove the inequality

lim sup
t→∞

1
t

log P

(
X(t)

t
≤ xF

∣∣∣N(t)
t

= wt

)
≤ −I

X|N
λ,λ,c1,c2

(xF ; w)

in a similar way, we complete the proof of the upper bound by taking into account F ⊂ (−∞, xF ]∪
[xF ,∞), by applying Lemma 1.2.15 in [6] and noting that max{−I

X|N
λ,λ,c1,c2

(xF ; w),−I
X|N
λ,λ,c1,c2

(xF ; w)}
coincides with − infx∈F I

X|N
λ,λ,c1,c2

(x; w). �

In Remark 3.5 at the end of this subsection we compare the LDPs of non-conditional distribu-
tions and of conditional distributions in the spirit of Remark 2.1; in view of this we refer to the
inequalities between the rate functions IX

λ,λ,c1,c2
and I

X|N
λ,λ,c1,c2

(·; w) proved in the next proposition
(see Figure 1 for the case λ = c1 = 1 and c2 = 2).

Proposition 3.4. We have two cases. (i) For w ≥ λ, we have IX
λ,λ,c1,c2

(x) ≤ I
X|N
λ,λ,c1,c2

(x; w) for
all x ∈ R; moreover the inequality is strict for x ∈ [−c2, c1] \ { c1−c2

2 }. (ii) For w ∈ (0, λ) set

α± = 1
2

[
c1 − c2 ±

√
1 − w2

λ2 (c1 + c2)
]
; then there exist β+ ∈ (α+, c1) and β− ∈ (−c2, α−) such

that I
X|N
λ,λ,c1,c2

(x; w) > IX
λ,λ,c1,c2

(x) for x ∈ [−c2, β−) ∪ (β+, c1], I
X|N
λ,λ,c1,c2

(x; w) < IX
λ,λ,c1,c2

(x) for all

x ∈ (β−, β+) \ { c1−c2
2 } and I

X|N
λ,λ,c1,c2

(x; w) = IX
λ,λ,c1,c2

(x) otherwise.

Proof. Firstly note that, for all w > 0, we have: I
X|N
λ,λ,c1,c2

( c1−c2
2 ; w) = IX

λ,λ,c1,c2
( c1−c2

2 ) = 0;

I
X|N
λ,λ,c1,c2

(x; w) = IX
λ,λ,c1,c2

(x) = ∞ for x /∈ [−c2, c1]; λ = IX
λ,λ,c1,c2

(x) < I
X|N
λ,λ,c1,c2

(x; w) = ∞ for
x ∈ {−c2, c1}. Moreover let us consider the difference function (for x ∈ (−c2, c1)) defined by

Δ(x) := I
X|N
λ,λ,c1,c2

(x; w)−IX
λ,λ,c1,c2(x) = w log

(
c1 + c2

2
√

(c2 + x)(c1 − x)

)
−λ

(
1 − 2

√
(c2 + x)(c1 − x)

c1 + c2

)
.
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Then the derivative is Δ′(x) = x− c1−c2
2

(c2+x)(c1−x)

(
w − 2λ

√
(c2+x)(c1−x)

c1+c2

)
, and we complete the proof as

follows.
Statement (i) can be proved noting that, for w ≥ λ, the function Δ is decreasing in the interval

(−c2,
c1−c2

2 ), is increasing in the interval ( c1−c2
2 , c1), and its global minimum (uniquely attained at

x = c1−c2
2 ) is equal to zero.

Statement (ii) can be proved noting that, for w ∈ (0, λ) and α± = 1
2

[
c1 − c2 ±

√
1 − w2

λ2 (c1 + c2)
]
,

we have what follows: the function Δ is decreasing in the intervals (−c2, α−) and ( c1−c2
2 , α+),

and is increasing in the intervals (α−, c1−c2
2 ) and (α+, c1); a local maximum of Δ is attained at

x = c1−c2
2 and is equal to zero; the minimum of Δ is attained for x ∈ {α−, α+} and is equal to

− [
w log

(
w
λ

)− w + λ
]

< 0; Δ(x) ↑ ∞ as x ↑ c1 and as x ↓ −c2. �

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0

0.
0

0.
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0

x

I1,1,1,2
XIN (xI1.5)
I1,1,1,2
XIN (xI0.6)
I1,1,1,2
X (x)

Figure 1: The functions IX
1,1,1,2(x) and I

X|N
1,1,1,2(x; w), where x ∈ (−2, 1). Two choices for w: w =

1.5 ≥ 1; w = 0.6 ∈ (0, 1).

Remark 3.5. In the LDP presented for conditional distributions we require that N(t)
t converges to

some w (as t → ∞). One can expect that, for w large enough, the convergence of the conditional
distributions to the limit c1−c2

2 is faster than the convergence of the non-conditional distributions.
Actually, by taking into account Remark 2.1 and the inequalities between I

X|N
λ,λ,c1,c2

(·; w) and IX
λ,λ,c1,c2

proved in Proposition 3.4, we can say that the convergence of the conditional distributions is always
faster than the convergence of the non-conditional distributions if and only if w ≥ λ.

3.2 A connection between Proposition 3.3 and another LDP in the literature

The empirical laws in (2) are consistent estimators of the stationary distribution (π(1)
J , π

(2)
J ) =(

λ2
λ1+λ2

, λ1
λ1+λ2

)
of {J(t) : t > 0}. Proposition 3.2 in [19] provides the LDP for another family

{(π̂(1)
n , π̂

(2)
n ) : n ≥ 1} of consistent estimators of (π(1)

J , π
(2)
J ) defined by

π̂(i)
n =

∑n−1
k=0(Tk+1 − Tk)1{Jk=i}

Tn
,
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where T0 = 0 and {Tn : n ≥ 1} are the epochs of the occurrences of the transition number process,
i.e. N(t) =

∑
n≥1 1{Tn≤t} (see eq. (3) in [19]). This family is derived from another family of

consistent estimators presented in [16] for the stationary distribution of a general semi-Markov
process with finite state space and irreducible embedded Markov chain. The large deviation rate
function for {(π̂(1)

n , π̂
(2)
n ) : n ≥ 1} is H defined by (see subsection 4.3 in [19])

H(π1, π2) =

{
log

(
1
2

(√
λ1π1
λ2π2

+
√

λ2π2
λ1π1

))
if π1, π2 ∈ (0, 1) and π1 + π2 = 1

∞ otherwise.

Then, proceeding as in the proof of Proposition 3.1 illustrated in [20] (section 3), {c1π̂
(1)
n − c2π̂

(2)
n :

n ≥ 1} satisfies the LDP with the rate function ĨX
λ1,λ2,c1,c2

defined by

ĨX
λ1,λ2,c1,c2(x) := inf{H(π1, π2) : c1π1 − c2π2 = x},

and we have

ĨX
λ1,λ2,c1,c2(x) =

⎧⎨
⎩ log

(
(λ1−λ2)x+λ1c2+λ2c1

2
√

λ1λ2(c1−x)(x+c2)

)
if x ∈ (−c2, c1)

∞ otherwise.

Finally we remark that ĨX
λ,λ,c1,c2

= I
X|N
λ,λ,c1,c2

(·|1), where the right hand side is a particular case

of the rate function in Proposition 3.3; a possible explanation of this equality is that π̂
(k)
n is the

normalized occupation time in the state k ∈ {1, 2} after n transitions of {J(t) : t > 0}.

3.3 An inhomogeneous case

In [12] it was shown that the finite dimensional law of an inhomogeneous telegraph process driven
by a Poisson process with intensity {λ(t) : t ≥ 0} is a solution of the telegraph equation with
nonconstant coefficients. Here we consider an inhomogeneous telegraph process {Yθ(t) : t ≥ 0}, for
θ > 0, which is a rare example for which the finite dimensional law can be provided explicitly. We
set

Yθ(t) = V (0)
∫ t

0
(−1)Nθ(s)ds (3)

where: the random variable V (0) is such that P (V (0) = c) = P (V (0) = −c) = 1
2 ; the process

{Nθ(t) : t ≥ 0} is an inhomogeneous Poisson process with intensity {λθ(t) : t ≥ 0} defined
by λθ(t) := θ tanh(θt); V (0) and {Nθ(t) : t ≥ 0} are independent. We remark that Λθ(t) :=∫ t
0 λθ(s)ds = log cosh(θt) and we have limt→∞

Λθ(t)
t = θ because θt − log 2 ≤ Λθ(t) ≤ θt for all

t ≥ 0.

Proposition 3.6. The family
{

P
(

Yθ(t)
t ∈ ·

)
: t > 0

}
satisfies the LDP with good rate function

IX
θ,θ,c,c as in Proposition in 3.1 (see Remark 3.2).

Proof. In this proof we consider the law of Yθ(t) for any fixed t > 0 (see e.g. Theorem 2.1 in
[12]):

P (Yθ(t) ∈ E) =
∫

E∩(−ct,ct)

θt

cosh(θt)
I1( θ

c

√
c2t2 − x2)

2
√

c2t2 − x2
dx +

1
2 cosh(θt)

1E(ct) +
1

2 cosh(θt)
1E(−ct)

for any measurable set E, where I1 is the modified Bessel function of the first kind with ν = 1. We
recall that, for ν ∈ R, the modified Bessel function of the first kind is Iν(r) :=

∑∞
k=0

(r/2)ν+2k

Γ(k+1)Γ(k+ν+1)

(see e.g. eq. (5.7.1) in [15]); moreover we have Iν(x) ∼ ex√
2πx

as x → ∞ (see e.g. eq. (5.11.10) in
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[15]), and therefore limx→∞
log I1(x)

x = 1. The proof is divided in two parts.
1) Proof of the lower bound for open sets. We want to check the equivalent condition (1), i.e.

lim inf
t→∞

1
t

log P

(
Yθ(t)

t
∈ G

)
≥ −θ

(
1 −

√
1 − x2

c2

)

for all x ∈ [−c, c] and for all open sets G such that x ∈ G. Firstly we can take ε > 0 small enough
to have (x − ε, x + ε) ⊂ G; moreover, if x ∈ (−c, c), we also require that (x − ε, x + ε) ⊂ (−c, c).
We consider the function f defined by f(r) := I1(r)

r for r = 0; moreover we set f(0) := 1
2 and, since

Iν(x) ∼ xν

2νΓ(ν+1) as x → 0 (see e.g. eq. (5.16.4) in [15]), f is continuous on R. Then, for some
yε ∈ (x − ε, x + ε) ∩ [−c, c], we have

P

(
Yθ(t)

t
∈ G

)
≥ P

(
Yθ(t)

t
∈ (x − ε, x + ε)

)

≥
∫

((x−ε)t,(x+ε)t)∩[−ct,ct]

θt

cosh(θt)
θ

2c
f

(
θ

c

√
c2t2 − y2

)
dy

=
∫

(x−ε,x+ε)∩[−c,c]

θ2t2

2c · cosh(θt)
f

(
θt

c

√
c2 − y2

)
dy

=
θ2t2

2c · cosh(θt)
f

(
θt

√
1 − y2

ε

c2

)
measure((x − ε, x + ε) ∩ [−c, c])︸ ︷︷ ︸

>0

;

thus we obtain

lim inf
t→∞

1
t

log P

(
Yθ(t)

t
∈ G

)
≥ −θ

(
1 −

√
1 − y2

ε

c2

)
,

and we complete the proof of the lower bound letting ε go to zero.
2) Proof of the upper bound for open sets. We have to check

lim sup
t→∞

1
t

log P

(
Yθ(t)

t
∈ F

)
≤ − inf

x∈F
IX
θ,θ,c,c(x) for all closed sets F.

Firstly note that this condition trivially holds if 0 ∈ F and if F ∩ [−c, c] = ∅. Thus, from now
on, we assume that 0 /∈ F and F ∩ [−c, c] = ∅. We also assume that F ∩ (0, c], F ∩ [−c, 0) = ∅;
otherwise the proof below can be readily adapted. We remark that IX

θ,θ,c,c is decreasing in [−c, 0]
and IX

θ,θ,c,c is increasing in [0, c]; then, if we set xF := sup(F ∩ [−c, 0)) and xF := inf(F ∩ (0, c]), we
have F ⊂ (−∞, xF ] ∪ [xF ,∞), where xF ∈ [−c, 0) and xF ∈ (0, c]. Then, since I1(r) is increasing
for r > 0, we have

P

(
Yθ(t)

t
≥ xF

)
=

∫ ct

xF t

θt

cosh(θt)

I1

(
θ
c

√
c2t2 − y2

)
2
√

c2t2 − y2
dy +

1
2 cosh(θt)

=
∫ c

xF

θt

cosh(θt)

I1

(
θt
c

√
c2 − y2

)
2t
√

c2 − y2
tdy +

1
2 cosh(θt)

≤ θt

cosh(θt)

I1

(
θt
c

√
c2 − x2

F

)
2

∫ c

xF

1√
c2 − y2

dy +
1

2 cosh(θt)
;

actually, if xF = c, we have P
(

Yθ(t)
t ≥ xF

)
= 1

2 cosh(θt) . In conclusion we obtain

lim sup
t→∞

1
t

log P

(
Yθ(t)

t
≥ xF

)
≤ −IX

θ,θ,c,c(xF )
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(if xF ∈ (0, c) and p > 0, this is a consequence of Lemma 1.2.15 in [6]). Finally, since we can prove
the inequality

lim sup
t→∞

1
t

log P

(
Yθ(t)

t
≤ xF

)
≤ −IX

θ,θ,c,c(xF )

in a similar way, we complete the proof of the upper bound following the lines of the second part
of the proof of Proposition 3.3. �

We are able to provide an alternative proof of Proposition 3.6 based on the exponential equiva-
lence condition (see e.g. Definition 4.2.10 in [6])

lim sup
t→∞

1
t

log P

({∣∣∣∣Xθ(t)
t

− Yθ(t)
t

∣∣∣∣ > δ

})
= −∞ for all δ > 0 (4)

for a suitable version of the processes
{

Yθ(t)
t : t > 0

}
and

{
Xθ(t)

t : t > 0
}

defined on the same
probability space, where {Xθ(t) : t ≥ 0} is the process {X(t) : t ≥ 0} in Proposition 3.1 with
λ1 = λ2 = θ and c1 = c2 = c; indeed, if condition (4) holds, the LDP in Proposition 3.6 is an
immediate consequence of Theorem 4.2.13 in [6] and the LDP for

{
Xθ(t)

t : t > 0
}

(i.e. Proposition
3.1 with λ1 = λ2 = θ and c1 = c2 = c).

In what follows we check (4) assuming that both the processes {Yθ(t) : t ≥ 0} and {Xθ(t) : t ≥ 0}
have the same random initial velocity V (0) such that P (V (0) ∈ {−c, c}) = 1; thus we have (3) and

Xθ(t) = V (0)
∫ t

0
(−1)N∗

θ (s)ds

for a homogeneous Poisson process {N∗
θ (t) : t ≥ 0} with intensity θ. Then, for a homogeneous

Poisson process {M(t) : t ≥ 0} with intensity 1, we set N∗
θ (t) := M(θt) and Nθ(t) := M(Λθ(t)),

whence we obtain

Xθ(t)
t

:=
V (0)

t

∫ t

0
(−1)M(θs)ds =

V (0)
θt

∫ θt

0
(−1)M(r)dr

and
Yθ(t)

t
:=

V (0)
t

∫ t

0
(−1)M(Λθ(s))ds =

V (0)
θt

∫ Λθ(t)

0
(−1)M(r) er

√
e2r − 1 + e2r

er
√

e2r − 1 + e2r − 1
dr;

the latter equality can be derived by considering the change of variable r = Λθ(s), whence we
obtain s = Λ−1

θ (r) := 1
θ log(er +

√
e2r − 1). Thus we get∣∣∣∣Xθ(t)

t
− Yθ(t)

t

∣∣∣∣ =
c

θt

∣∣∣∣∣
∫ θt

0
(−1)M(r)dr −

∫ Λθ(t)

0
(−1)M(r) er

√
e2r − 1 + e2r

er
√

e2r − 1 + e2r − 1
dr

∣∣∣∣∣
≤ c

θt

(∫ Λθ(t)

0

1
er
√

e2r − 1 + e2r − 1
dr + θt − Λθ(t)

)
=: ac,θ(t)

(where ac,θ(t) is deterministic), and we have

lim
t→∞ ac,θ(t) =

c

θ
lim
t→∞

{
Λ′

θ(t)

eΛθ(t)
√

e2Λθ(t) − 1 + e2Λθ(t) − 1
+ θ − Λ′

θ(t)

}

=
c

θ
lim
t→∞ θ

⎧⎨
⎩1 + tanh(θt)

⎧⎨
⎩ 1

cosh(θt)
√

cosh2(θt) − 1 + cosh2(θt) − 1
− 1

⎫⎬
⎭
⎫⎬
⎭ = 0

because Λ′
θ(t) = θ tanh(θt). In conclusion (4) holds because

{∣∣∣Xθ(t)
t − Yθ(t)

t

∣∣∣ > δ
}

⊂ {ac,θ(t) > δ}
and the event {ac,θ(t) > δ} is empty for t large enough.
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3.4 LDP for a (normalized) planar random motion

In this subsection we prove the LDP for the non-conditional laws of a planar random motion
{(Y1(t), Y2(t)) : t ≥ 0} studied in [27]. Such a random motion consists of the displacements of a
particle having four possible directions along the directions of (1, 0), (0, 1), (−1, 0) and (0,−1) with
velocity c; moreover, when a Poisson event occurs with rate λ, the motion takes with probability
1
2 one of the two directions orthogonal to the previous one. It is interesting that we can avoid to
handle the non-conditional laws of the process (provided explicitly in section 3 in [27]); indeed we
can easily prove the LDP with a straightforward application of the contraction principle.

Proposition 3.7. The family
{

P
((

Y1(t)
t , Y2(t)

t

)
∈ ·

)
: t > 0

}
satisfies the LDP with good rate func-

tion I
(Y1,Y2)
λ,c defined by

I
(Y1,Y2)
λ,c (y1, y2) =

⎧⎨
⎩

λ
2

(
1 −

√
1 − (y1+y2)2

c2

)
+ λ

2

(
1 −

√
1 − (y1−y2)2

c2

)
if (y1, y2) ∈ Qc

∞ otherwise,

where Qc := {(y1, y2) ∈ R
2 : |y1 + y2| ≤ c, |y1 − y2| ≤ c}.

Proof. Let {X1(t) : t ≥ 0} and {X2(t) : t ≥ 0} be the processes defined by

Xk(t) = Vk(0)
∫ t

0
(−1)Nk(s)ds

where, for k ∈ {1, 2}, the random variable Vk(0) is such that P (Vk(0) = c
2) = P (Vk(0) = − c

2) = 1
2

and {Nk(t) : t ≥ 0} is a Poisson process with intensity λ
2 . We assume that V1(0), V2(0), {N1(t) :

t ≥ 0} and {N2(t) : t ≥ 0} are independent, and therefore {X1(t) : t ≥ 0} and {X2(t) : t ≥ 0} are
independent. Then, by eq. (3.2) in [27], we have{

Y1(t) = X1(t) + X2(t)
Y2(t) = X1(t) − X2(t).

Moreover, by Proposition 3.1 with λ1 = λ2 = λ
2 and c1 = c2 = c

2 and by Corollary 2.9 in [17], the

family of laws
{

P
((

X1(t)
t , X2(t)

t

)
∈ ·

)
: t > 0

}
satisfies the LDP with good rate function J

(X1,X2)
λ,c

defined by

J
(X1,X2)
λ,c (x1, x2) :=IX

λ
2
, λ
2
, c
2
, c
2

(x1) + IX
λ
2
, λ
2
, c
2
, c
2

(x2)

=

⎧⎨
⎩ λ

2

(
1 −

√
1 − x2

1
( c
2
)2

)
+ λ

2

(
1 −

√
1 − x2

2
( c
2
)2

)
if (x1, x2) ∈ [− c

2 , c
2 ] × [− c

2 , c
2 ]

∞ otherwise.

Then, since (x1, x2) �→ (y1, y2) = f(x1, x2) = (x1 + x2, x1 − x2) is a continuous function, the family
of laws

{
P

((
Y1(t)

t , Y2(t)
t

)
∈ ·

)
: t > 0

}
satisfies the LDP with good rate function I

(Y1,Y2)
λ,c defined

by
I

(Y1,Y2)
λ,c (y1, y2) := inf

{
J

(X1,X2)
λ,c (x1, x2) : f(x1, x2) = (y1, y2)

}
by the contraction principle. Finally it is easy to check that I

(Y1,Y2)
λ,c (y1, y2) = J

(X1,X2)
λ,c

(y1+y2

2 , y1−y2

2

)
and this meets the expression of the rate function in the statement. �
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4 Results for random flights

We start introducing some standard notation: the norm of zd = (z1, . . . , zd) ∈ R
d is denoted (as

usual) by ‖zd‖ :=
√

z2
1 + · · · + z2

d; moreover, for δ > 0, we set

Bδ(zd) := {y
d
∈ R

d : ‖y
d
− zd‖ < δ}.

In this section we deal with the random flights in R
d presented in [28]. Roughly speaking,

we consider a random motion {Xd(t) = (X1(t), . . . , Xd(t)) : t ≥ 0} which starts at the origin,
moves with constant velocity c, changes direction of motion at any occurrence of a homogeneous
Poisson process {N(t) : t ≥ 0} with intensity λ, and chooses the directions uniformly on the d-
dimensional hypersphere with radius 1. Note that the starting point could be different from the
origin 0d = (0, . . . , 0) ∈ R

d (as, for instance, in [3] for the case d = 2); the results presented below
could be easily adapted with some slight changes.

We treat the case d = 2 in subsection 4.1, and the case d = 4 in subsection 4.2. In subsection 4.3
we discuss the differences between the cases d = 2 and d = 4; some of them concern their connections
with the one-dimensional case studied in subsection 3.1 with λ1 = λ2 = λ and c1 = c2 = c.

4.1 The case d = 2

We start with the LDP for the non-conditional distributions.

Proposition 4.1. The family
{

P
(

X2(t)
t ∈ ·

)
: t > 0

}
satisfies the LDP with good rate function

I
X2
λ,c defined by

I
X2
λ,c (x2) =

⎧⎨
⎩ λ

(
1 −

√
1 − ‖x2‖2

c2

)
if ‖x2‖ ≤ c

∞ otherwise.

Proof. In this proof we consider the law of X2(t) for any fixed t > 0 (see e.g. Theorem 2 in
[14]): we have an absolutely continuous part given by

λ

2πc

e−λt+λ
c

√
c2t2−‖y

2
‖2√

c2t2 − ‖y
2
‖2

1Bct(02)(y2
)dy1dy2,

and a singular part uniformly distributed on the boundary of Bct(02) with weight e−λt. The proof
is divided in two parts.
1) Proof of the lower bound for open sets. We want to check the equivalent condition (1), i.e.

lim inf
t→∞

1
t

log P

(
X2(t)

t
∈ G

)
≥ −λ

(
1 −

√
1 − ‖x2‖2

c2

)

for all x2 ∈ R
2 such that ‖x2‖ ≤ c and for all open sets G such that x2 ∈ G. Firstly we can

take ε > 0 small enough to have Bε(x2) ⊂ G; moreover, if x2 ∈ Bc(02), we also require that

12



Bε(x2) ⊂ Bc(02). Then we have

P

(
X2(t)

t
∈ G

)
≥ P

(
X2(t)

t
∈ Bε(x2)

)

≥
∫

Bεt(x2t)∩Bct(02)

λ

2πc

e−λt+λ
c

√
c2t2−‖y

2
‖2√

c2t2 − ‖y
2
‖2

dy1dy2

≥
∫

Bε(x2)∩Bc(02)

λ

2πc

e−λt+λt
c

√
c2−‖y

2
‖2

ct
t2dy1dy2

≥ λt

2πc

e
−λt+λt

√
1− sup{‖y

2
‖2:y

2
∈Bε(x2)∩Bc(02)}
c2

c
· measure(Bε(x2) ∩ Bc(02))︸ ︷︷ ︸

>0

,

and we conclude by taking lim inft→∞ 1
t log (for both the left hand side and the right hand side)

and by letting ε go to zero.
2) Proof of the upper bound for open sets. We have to check

lim sup
t→∞

1
t

log P

(
X2(t)

t
∈ F

)
≤ − inf

x2∈F
I

X2
λ,c (x2) for all closed sets F.

Firstly note that this condition trivially holds if 02 ∈ F and if F ∩Bc(02) = ∅. Thus, from now on,
we assume that 02 /∈ F and F ∩Bc(02) = ∅. We can find xF

2 ∈ F such that ‖xF
2 ‖ = inf{‖x2‖ : x2 ∈

F ∩ Bc(02)}; note that rF := ‖xF
2 ‖ ∈ (0, c]. Then, since F ⊂ (BrF (02))c, we have

P

(
X2(t)

t
∈ F

)
≤ P

(
X2(t)

t
∈ (BrF (02))

c

)

=
∫ ct

rF t

λ

2πc

e−λt+λ
c

√
c2t2−ρ2√

c2t2 − ρ2
2πρdρ + e−λt

=
[
−e−λt+λ

c

√
c2t2−ρ2

]ρ=ct

ρ=rF t
+ e−λt = exp

(
−λt +

λ

c

√
c2t2 − r2

F t2
)

,

whence we obtain

lim sup
t→∞

1
t

log P

(
X2(t)

t
∈ F

)
≤ −λ +

λ

c

√
c2 − r2

F = −λ

(
1 −

√
1 − ‖xF

2 ‖2

c2

)
= −I

X2
λ,c (xF

2 ).

Thus the proof of the upper bound is complete noting that I
X2
λ,c (xF

2 ) = infx2∈F I
X2
λ,c (x2) because

I
X2
λ,c (x2) ≥ (resp. =)IX2

λ,c (y
2
) if and only if ‖x2‖ ≥ (resp. =)‖y

2
‖. �

Now we prove the LDP for the non-conditional distributions.

Proposition 4.2. If wt → w ∈ (0,∞), then
{

P
(

X2(t)
t ∈ ·

∣∣∣N(t)
t = wt

)
: t > 0

}
satisfies the LDP

with good rate function I
X2|N
λ,c (·; w) defined by

I
X2|N
λ,c (x2; w) =

⎧⎨
⎩ w log

(
c√

c2−‖x2‖2

)
if ‖x2‖ < c

∞ otherwise.
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Proof. In this proof we consider the conditional law of X2(t) given {N(t) = h} for t > 0 and
h ≥ 1 (see e.g. Theorem 1 in [14]):

P (X2(t) ∈ E|N(t) = h) =
∫

E∩Bct(02)

h

2π(ct)h
(c2t2 − ‖y

2
‖2)

h
2
−1dy1dy2

for any measurable set E. The proof is divided in two parts.
1) Proof of the lower bound for open sets. We want to check the equivalent condition (1), i.e.

lim inf
t→∞

1
t

log P

(
X2(t)

t
∈ G

∣∣∣N(t)
t

= wt

)
≥ −w log

(
c√

c2 − ‖x2‖2

)

for all x2 ∈ R
2 such that ‖x2‖ < c and for all open sets G such that x2 ∈ G. Firstly we can take

ε > 0 small enough to have Bε(x2) ⊂ G ∩ Bc(02). Then we have

P

(
X2(t)

t
∈ G

∣∣∣N(t)
t

= wt

)
≥ P

(
X2(t)

t
∈ Bε(x2)

∣∣∣N(t)
t

= wt

)
=

∫
Bεt(x2t)

twt

2π(ct)twt
(c2t2 − ‖y

2
‖2)

twt
2

−1dy1dy2

=
∫

Bε(x2)

twt

2π(ct)twt
ttwt−2(c2 − ‖y

2
‖2)

twt
2

−1t2dy1dy2

≥ twt

2πctwt
(c2 − sup{‖y

2
‖2 : y

2
∈ Bε(x2)})

twt
2

−1πε2,

and we conclude following the lines of the first part of the proof of Proposition 4.1.
2) Proof of the upper bound for open sets. We have to check

lim sup
t→∞

1
t

log P

(
X2(t)

t
∈ F

∣∣∣N(t)
t

= wt

)
≤ − inf

x2∈F
I

X2|N
λ,c (x2; w) for all closed sets F.

Firstly note that this condition trivially holds if 02 ∈ F and if F ∩Bc(02) = ∅. Thus, from now on,
we assume that 02 /∈ F and F ∩Bc(02) = ∅. We can find xF

2 ∈ F such that ‖xF
2 ‖ = inf{‖x2‖ : x2 ∈

F ∩ Bc(02)}; note that rF := ‖xF
2 ‖ ∈ (0, c). Then, since F ⊂ (BrF (02))c, we have

P

(
X2(t)

t
∈ F

∣∣∣N(t)
t

= wt

)
≤ P

(
X2(t)

t
∈ (BrF (02))

c
∣∣∣N(t)

t
= wt

)

=
∫ ct

rF t

twt

2π(ct)twt
(c2t2 − ρ2)

twt
2

−12πρdρ

=
1

(ct)twt

[
−(c2t2 − ρ2)

twt
2

]ρ=ct

ρ=rF t
=

(
c2 − r2

F

c2

) twt
2

,

and we conclude following the lines of the second part of the proof of Proposition 4.1. �

We conclude with some remarks; in particular, in the spirit of Remark 3.5 for the one-dimensional
case, we compare the LDPs of non-conditional distributions and of conditional distributions (Re-
mark 4.3(ii)).

Remark 4.3. (i) We can check that, for all x2 ∈ R
2, we have I

X2
λ,c (x2) = IX

λ,λ,c,c(‖x2‖) and

I
X2|N
λ,c (x2; w) = I

X|N
λ,λ,c,c(‖x2‖; w) (for all w > 0). These equalities are not surprising because the

planar random flight is an extension of the telegraph process in R
2. Indeed, for each fixed t > 0, the

density of the absolutely continuous part of the law of X2(t) satisfies the two-dimensional telegraph
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equation (see e.g. equations (2)-(3) in [14]).
(ii) We can obtain inequalities between I

X2|N
λ,c (·; w) and I

X2
λ,c by Proposition 3.4 (with c1 = c2 = c).

Then, by taking into account Remark 2.1, we can say that the convergence of the conditional
distributions is faster than the convergence of the non-conditional distributions if and only if w ≥ λ;
this inequality has the same interpretation given in Remark 3.5.

4.2 The case d = 4

We start with the LDP for the non-conditional distributions. It is interesting to note that the
rate function I

X4
λ,c can be seen as the restriction on Bc(04) (the set where I

X4
λ,c is finite) of a large

deviation rate function for centered Gaussian distributions; this is not surprising if we look at the
expression of the density of X4(t) provided by Theorem 3.2 in [28].

Proposition 4.4. The family
{

P
(

X4(t)
t ∈ ·

)
: t > 0

}
satisfies the LDP with good rate function

I
X4
λ,c defined by

I
X4
λ,c (x4) =

{
λ
c2
‖x4‖2 if ‖x4‖ ≤ c

∞ otherwise.

Proof. In this proof we consider the law of X4(t) for any fixed t > 0 (see e.g. Theorem 3.2 in
[28]): we have an absolutely continuous part given by

λ

c4t3π2
e−

λ
c2t

‖y
4
‖2

(
2 +

λ

c2t

(
c2t2 − ‖y

4
‖2

))
1Bct(04)(y4

)dy1dy2dy3dy4,

and a singular part uniformly distributed on the boundary of Bct(04) with weight e−λt. The proof
is divided in two parts.
1) Proof of the lower bound for open sets. We want to check the equivalent condition (1), i.e.

lim inf
t→∞

1
t

log P

(
X4(t)

t
∈ G

)
≥ − λ

c2
‖x4‖2

for all x4 ∈ R
4 such that ‖x4‖ ≤ c and for all open sets G such that x4 ∈ G. Firstly we can

take ε > 0 small enough to have Bε(x4) ⊂ G; moreover, if x4 ∈ Bc(04), we also require that
Bε(x4) ⊂ Bc(04). Then we have

P

(
X4(t)

t
∈ G

)
≥ P

(
X4(t)

t
∈ Bε(x4)

)

≥
∫

Bεt(x4t)∩Bct(04)

λ

c4t3π2
e−

λ
c2t

‖y
4
‖2

(
2 +

λ

c2t

(
c2t2 − ‖y

4
‖2

))
dy1dy2dy3dy4

=
∫

Bε(x4)∩Bc(04)

λ

c4t3π2
e−

λt
c2

‖y
4
‖2

(
2 +

λt

c2

(
c2 − ‖y

4
‖2

))
t4dy1dy2dy3dy4

≥ λt

c4π2
e−

λt
c2

sup{‖y
4
‖2:y

4
∈Bε(x4)∩Bc(04)}

·
(

2 +
λt

c2

(
c2 − sup{‖y

4
‖2 : y

4
∈ Bε(x4) ∩ Bc(04)}

))
measure(Bε(x4) ∩ Bc(04))︸ ︷︷ ︸

>0

,

and we conclude following the lines of the first part of the proof of Proposition 4.1.
2) Proof of the upper bound for open sets. We have to check

lim sup
t→∞

1
t

log P

(
X4(t)

t
∈ F

)
≤ − inf

x4∈F
I

X4
λ,c (x4) for all closed sets F.
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Firstly note that this condition trivially holds if 04 ∈ F and if F ∩Bc(04) = ∅. Thus, from now on,
we assume that 04 /∈ F and F ∩Bc(04) = ∅. We can find xF

4 ∈ F such that ‖xF
4 ‖ = inf{‖x4‖ : x4 ∈

F ∩ Bc(04)}; note that rF := ‖xF
4 ‖ ∈ (0, c]. Then, since F ⊂ (BrF (04))c, we have

P

(
X4(t)

t
∈ F

)
≤ P

(
X4(t)

t
∈ (BrF (04))

c

)

=
∫ ct

rF t

λ

c4t3π2
e−

λ
c2t

ρ2
(

2 +
λ

c2t
(c2t2 − ρ2)

)
2π2ρ3dρ + e−λt;

moreover we note that, if ρ ∈ [rF t, ct], we have{
0 ≤ λ

c2t
(c2t2 − ρ2) = λt

(
1 − ( ρ

ct

)2
)
≤ λt

0 ≤ 2λρ3

c4t3
= 2

( ρ
ct

)2 λρ
c2t

≤ 2λρ
c2t

,

whence we obtain

P

(
X4(t)

t
∈ F

)
≤ (2 + λt)

∫ ct

rF t

2λρ

c2t
e−

λ
c2t

ρ2

dρ + e−λt

=(2 + λt)
[
−e−

λ
c2t

ρ2
]ρ=ct

ρ=rF t
+ e−λt = (2 + λt)e−λ

r2
F

c2
t

(
1 − e

−λt

(
1− r2

F
c2

))
+ e−λt;

actually, if rF = c, we have P
(

X4(t)
t ∈ (BrF (04))c

)
= e−λt because

{
X4(t)

t ∈ (BrF (04))c
}

=
{N(t) = 0}. In conclusion we obtain

lim sup
t→∞

1
t

log P

(
X4(t)

t
∈ F

)
≤ − λ

c2
r2
F = −I

X4
λ,c (xF

4 ),

(if rF ∈ (0, c), this is a consequence of Lemma 1.2.15 in [6]). Thus the proof of the upper bound is
complete noting that I

X4
λ,c (xF

4 ) = infx4∈F I
X4
λ,c (x4) because I

X4
λ,c (x4) ≥ (resp. =)IX4

λ,c (y
4
) if and only

if ‖x4‖ ≥ (resp. =)‖y
4
‖. �

Now we prove the LDP for the conditional distributions.

Proposition 4.5. If wt → w ∈ (0,∞), then
{

P
(

X4(t)
t ∈ ·

∣∣∣N(t)
t = wt

)
: t > 0

}
satisfies the LDP

with good rate function I
X4|N
λ,c (·; w) defined by

I
X4|N
λ,c (x4; w) =

⎧⎨
⎩ 2w log

(
c√

c2−‖x4‖2

)
if ‖x4‖ < c

∞ otherwise.

Proof. In this proof we consider the conditional law of X4(t) given {N(t) = h} for t > 0 and
h ≥ 1 (see e.g. Theorem 3.1 in [28]):

P (X4(t) ∈ E|N(t) = h) =
∫

E∩Bct(04)

h(h + 1)
π2(ct)2h+2

(c2t2 − ‖y
4
‖2)h−1dy1dy2dy3dy4

for any measurable set E. The proof is divided in two parts.
1) Proof of the lower bound for open sets. We want to check the equivalent condition (1), i.e.

lim inf
t→∞

1
t

log P

(
X4(t)

t
∈ G

∣∣∣N(t)
t

= wt

)
≥ −2w log

(
c√

c2 − ‖x4‖2

)
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for all x4 ∈ R
4 such that ‖x4‖ < c and for all open sets G such that x4 ∈ G. Firstly we can take

ε > 0 small enough to have Bε(x4) ⊂ G ∩ Bc(04). Then we have

P

(
X4(t)

t
∈ G

∣∣∣N(t)
t

= wt

)
≥ P

(
X4(t)

t
∈ Bε(x4)

∣∣∣N(t)
t

= wt

)

=
∫

Bεt(x4t)

twt(twt + 1)
π2(ct)2twt+2

(c2t2 − ‖y
4
‖2)twt−1dy1dy2dy3dy4

=
∫

Bε(x4)

twt(twt + 1)
π2(ct)2twt+2

t2(twt−1)(c2 − ‖y
4
‖2)twt−1t4dy1dy2dy3dy4

≥ twt(twt + 1)
π2c2twt+2

(c2 − sup{‖y
4
‖2 : y

4
∈ Bε(x4)})twt−1 measure(Bε(x4))︸ ︷︷ ︸

>0

,

and we conclude following the lines of the first part of the proof of Proposition 4.1.
2) Proof of the upper bound for open sets. We have to check

lim sup
t→∞

1
t

log P

(
X4(t)

t
∈ F

∣∣∣N(t)
t

= wt

)
≤ − inf

x4∈F
I

X4|N
λ,c (x4; w) for all closed sets F.

Firstly note that this condition trivially holds if 04 ∈ F and if F ∩ Bc(04) = ∅. Thus, from
now on, we assume that 04 /∈ F and F ∩ Bc(04) = ∅. We can find xF

4 ∈ F such that ‖xF
4 ‖ =

inf {‖x4‖ : x4 ∈ F ∩ Bc(04)}; note that rF := ‖xF
4 ‖ ∈ (0, c). Then, since F ⊂ (BrF (04))c, we have

P

(
X4(t)

t
∈ F

∣∣∣N(t)
t

= wt

)
≤ P

(
X4(t)

t
∈ (BrF (04))

c
∣∣∣N(t)

t
= wt

)

=
∫ ct

rF t

twt(twt + 1)
π2(ct)2twt+2

(c2t2 − ρ2)twt−12π2ρ3dρ ≤ twt(twt + 1)
(ct)2twt+2

(c2t2 − r2
F t2)twt−12

∫ ct

rF t
ρ3dρ

=
twt(twt + 1)
(ct)2twt+2

(c2t2 − r2
F t2)twt−1 c4t4 − r4

F t4

2
=

twt(twt + 1)
c2twt+2

(c2 − r2
F )twt−1 c4 − r4

F

2

and we conclude following the lines of the second part of the proof of Proposition 4.1. �

In Remark 4.7 at the end of this subsection we compare the LDPs of non-conditional distribu-
tions and of conditional distributions in the spirit of Remarks 3.5 and 4.3(ii); in view of this we refer
to the inequalities between the rate functions I

X4
λ,c and I

X4|N
λ,c (·; w) proved in the next proposition

(see Figure 2 for the case λ = c = 1).

Proposition 4.6. We have two cases. (i) For w ≥ λ, we have I
X4
λ,c (x4) ≤ I

X4|N
λ,c (x4; w) for all

x4 ∈ R
4; moreover the inequality is strict for x4 ∈ Bc(04) \ {04}. (ii) For w ∈ (0, λ), there exists

γ ∈ (ξ, 1) where ξ =
√

1 − w
λ such that: I

X4|N
λ,c (x4; w) > I

X4
λ,c (x4) for ‖x4‖ ∈ (γc, c], I

X4|N
λ,c (x4; w) <

I
X4
λ,c (x4) for ‖x4‖ ∈ (0, γc) and I

X4|N
λ,c (x4; w) = I

X4
λ,c (x4) otherwise.

Proof. Firstly note that, for all w > 0, we have: I
X4|N
λ,c (04; w) = I

X4
λ,c (04) = 0; I

X4|N
λ,c (x4; w) =

I
X4
λ,c (x4) = ∞ for all ‖x4‖ > c; λ = I

X4
λ,c (x4) < I

X4|N
λ,c (x4; w) = ∞ for ‖x4‖ = c. Moreover let us

consider the difference function (for r = ‖x4‖ ∈ [0, c)) defined by

Δ(r) := I
X4|N
λ,c (x4; w) − I

X4
λ,c (x4) = 2w log

(
c√

c2 − r2

)
− λ

c2
r2

(the definition is well-posed). Then the derivative is Δ′(r) = 2r
c2

(w−λ)c2+λr2

c2−r2 , and we complete the
proof as follows.
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Statement (i) can be proved noting that, for w ≥ λ, the function Δ is increasing in the interval
[0, c) and its global minimum - equal to zero - is uniquely attained at r = 0.

Statement (ii) can be proved noting that, for w ∈ (0, λ) and ξ =
√

1 − w
λ , we have what follows:

the function Δ is decreasing in the interval [0, ξc) and is increasing in the interval (ξc, c); a local
maximum of Δ - equal to zero - is attained at r = 0; the minimum of Δ is uniquely attained at
r = ξc and is equal to − [

w log
(

w
λ

)− w + λ
]

< 0; Δ(r) ↑ ∞ as r ↑ c. �

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6

r

I1,1
X4IN(rI1.5)
I1,1
X4IN(rI0.6)
I1,1
X4 (r)

Figure 2: The functions I
X4
1,1 (x4) and I

X4|N
1,1 (x4; w), where r = ‖x4‖ ∈ [0, 1). Two choices for w:

w = 1.5 ≥ 1; w = 0.6 ∈ (0, 1).

Remark 4.7. By taking into account Remark 2.1 and the inequalities between I
X4|N
λ,c (·; w) and I

X4
λ,c,

proved in Proposition 4.6, we can say that the convergence of the conditional distributions is always
faster than the convergence of the non-conditional distributions if and only if w ≥ λ; this inequality
has the same interpretation given in Remarks 3.5 and 4.3(ii).

4.3 A discussion on the differences between the cases d = 2 and d = 4

We already pointed out in Remark 4.3(i) that, for all x2 ∈ R
2, we have:

I
X2
λ,c (x2) = IX

λ,λ,c,c(‖x2‖); I
X2|N
λ,c (x2; w) = I

X|N
λ,λ,c,c(‖x2‖; w) for all w > 0.

These equalities illustrate the strict connection between the case d = 2 and the one-dimensional
case studied in subsection 3.1 with λ1 = λ2 = λ and c1 = c2 = c. On the contrary we do not have
the same situation for the case d = 4. For all x4 ∈ R

4 we have:

I
X4
λ,c (x4) =

{
λ
c2
‖x4‖2 if ‖x4‖ ≤ c

∞ otherwise;
IX
λ,λ,c,c(‖x4‖) =

⎧⎨
⎩ λ

(
1 −

√
1 − ‖x4‖2

c2

)
if ‖x4‖ ≤ c

∞ otherwise;

I
X4|N
λ,c (x4; w) = 2I

X|N
λ,λ,c,c(‖x4‖; w) for all w > 0.

Thus the main difference concerns the non-conditional distributions; on the contrary, for the con-
ditional distributions, the difference consists of a multiplicative factor 2.
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We have the same differences between the cases d = 2 and d = 4 even if we consider some LDPs
obtained from the ones in subsections 4.1 and 4.2 and an application of the contraction principle.
For instance, by taking the inspiration from section 4 in [28] for the case d = 4, we present LDPs
for the (normalized) random flights in the lower spaces with dimension s < d and the respective
rate functions:

{
P

(
Xs(t)

t ∈ ·
)

: t > 0
}

satisfies the LDP with good rate function I
Xs
λ,c;d is defined

by
I

Xs
λ,c;d(xs) := inf

{
I

Xd
λ,c (xd) : (xs+1, . . . , xd) ∈ R

d−s
}

;

if wt → w ∈ (0,∞),
{

P
(

Xs(t)
t ∈ ·

∣∣∣N(t)
t = wt

)
: t > 0

}
satisfies the LDP with good rate function

I
Xs|N
λ,c;d (·; w) is defined by

I
Xs|N
λ,c;d (xs; w) := inf

{
I

Xd|N
λ,c (xs; w) : (xs+1, . . . , xd) ∈ R

d−s
}

.

Firstly, if we specialize the above formulas for d = 2, we have:

IX1
λ,c;2 = IX

λ,λ,c,c; I
X1|N
λ,c;2 (·; w) = I

X|N
λ,λ,c,c(·; w) for all w > 0.

Secondly, for d = 4 and s ∈ {1, 2, 3}, for all xs ∈ R
s we have:

I
Xs
λ,c;4(xs) =

{
λ
c2
‖xs‖2 if ‖xs‖ ≤ c

∞ otherwise;
IX
λ,λ,c,c(‖xs‖) =

⎧⎨
⎩ λ

(
1 −

√
1 − ‖xs‖2

c2

)
if ‖xs‖ ≤ c

∞ otherwise;

I
Xs|N
λ,c;4 (xs; w) = 2I

X|N
λ,λ,c,c(‖xs‖; w) for all w > 0.

We conclude with a direct comparison between the LDPs concerning the cases d = 2 and d = 4;
more precisely, with an abuse of notation, we write I

Xd
λ,c (r) and I

Xd|N
λ,c (r; w) where r = ‖xd‖; note

that, in order to avoid the trivial case where both the rate functions are equal to infinity, r ∈ [0, c]
when we deal with non-conditional distributions and r ∈ [0, c) when we deal with conditional
distributions. In the spirit of Remark 2.1 we can say that, for both non-conditional distributions
and conditional distributions, the convergence to the origin in R

4 is faster than the analogous
convergence in R

2. In some sense this is not surprising because one can expect a faster convergence
of a normalized random flight in a higher space. In detail we have: I

X4
λ,c (r) ≥ I

X2
λ,c (r) and the

inequality turns into an equality for r ∈ {0, λ} (see Figure 3 for the case λ = c = 1; note that r = 0
is the limit point and in such a case both the rate functions are equal to zero; moreover r = λ

concerns the case without changes of directions); I
X4|N
λ,c (r; w) = 2I

X2|N
λ,c (r; w) ≥ I

X2|N
λ,c (r; w) and the

inequality turns into an equality for r = 0 (for the same reasons illustrated for the non-conditional
distributions).

Appendix: the extension of equations (2.17)-(2.18) in [5]

In this Appendix we consider the telegraph process {X(t) : t ≥ 0}, with λ1 = λ2 = λ. The aim is
to study the conditional distribution of X(t) given N(t) = n, for t > 0 and n ≥ 1. In this case the
changes of direction are governed by a homogenous Poisson process {N(t) : t ≥ 0}. If N(t) = n
for n ≥ 1, then the displacements of the telegraph process are of two types, i.e. c1t(Tk − Tk−1) or
−c2t(Tk −Tk−1), where tTk is the instant in which the k-th Poisson event happens. In other words,
Tk is the k-th order statistics from the uniform law in [0, 1]. By means of the exchangeability of
Tk − Tk−1, we can put together the n1 forward steps as well as the n + 1 − n1 backward ones.
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Figure 3: The function I
Xd
1,1 (r) for d = 2 and d = 4, where r = ‖xd‖ ∈ [0, 1].

Then, when n changes of direction happen, the random variables X(t) and t[c1Tn1 − c2(1 − Tn1)]
(for t > 0) are equally distributed; thus we obtain

P (X(t) ≤ x|N(t) = n, J(0) = {1, 2}) = P

(
Tn1 ≤ c2t + x

(c1 + c2)t

∣∣∣N(t) = n, J(0) = {1, 2}
)

.

Moreover, being the order statistic Tn1 a Beta(n1, n+1−n1) distributed random variable, we have

P (X(t) ∈ dx|N(t) = n, J(0) = {1, 2}) = dx
n!

(n1 − 1)!(n − n1)!
(c2t + x)n1−1(c1t − x)n−n1

((c1 + c2)t)n
. (5)

Clearly there is a strict relationship between n and n1, indeed we have:⎧⎨
⎩

if n = 2k + 1 (for some k ≥ 0), then n1 = k + 1;
if n = 2k (for some k ≥ 1) and J(0) = 1, then n1 = k + 1;
if n = 2k (for some k ≥ 1) and J(0) = 2, then n1 = k.

(6)

In conclusion, from (5) and (6), we can provide the following formulas: for all k ≥ 0,

P (X(t) ∈ dx|N(t) = 2k + 1, J(0) = {1, 2}) = P (X(t) ∈ dx|N(t) = 2k + 1)

= dx
(2k + 1)!

((c1 + c2)t)2k+1(k!)2
[(c2t + x)(c1t − x)]k;
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for all k ≥ 1,{
P (X(t) ∈ dx|N(t) = 2k, J(0) = 1) = dx (2k)!

((c1+c2)t)2k(k−1)!k!
(c2t + x)k(c1t − x)k−1

P (X(t) ∈ dx|N(t) = 2k, J(0) = 2) = dx (2k)!
((c1+c2)t)2k(k−1)!k!

(c2t + x)k−1(c1t − x)k,

whence we obtain

P (X(t) ∈ dx|N(t) = 2k) =
2∑

j=1

P (X(t) ∈ dx|N(t) = 2k, J(0) = j)P (J(0) = j)

=dx
(2k)!

k!(k − 1)!((c1 + c2)t)2k
(c2t + x)k−1(c1t − x)k−1{(c2t + x)p + (c1t − x)(1 − p)}.
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