
Linear regression analysis for interval-valued data based

on the Lasso technique

Paolo Giordani

Department of Statistical Sciences
Sapienza University of Rome

P.le Aldo Moro, 5 - I-00185 Rome
paolo.giordani@uniroma1.it

Abstract

A new method for linear regression analysis of interval-valued data is pro-
posed. In particular, the linear relationship between an interval-valued re-
sponse variable and a set of interval-valued explanatory variables is inves-
tigated by considering two regression models, one for the midpoints (the
locations of the intervals) of the response and explanatory variables and the
other one for the radii (the imprecision). The regression coefficients of the
two models are estimated in such a way that those for the midpoints are close
to the corresponding ones for the radii as much as possible. Taking inspira-
tion from the Lasso technique this is done by fixing a threshold expressing
the maximum allowed level of diversity between the two sets of regression
coefficients. The results of a simulation experiment and some applications
to real data are reported in order to show the usefulness of the proposed
method, called Lasso-IR (Lasso-based Interval-valued Regression).

Keywords: Interval-valued data, Linear regression analysis, Lasso

1. Introduction

In regression analysis the relationship between a response variable and
a number of explanatory variables is investigated. The (response and ex-
planatory) variables usually are single-valued. However, in several real-life
situations, the available information is formalized in terms of intervals. The
need for interval-valued data may arise in connection with the imprecision of
measurement devices (for instance, in the case of mineral concentrations) or



with the data fluctuations in the case of recorded measures during a specific
interval of time (for instance, daily pollution, daily stock price). In fact,
considering the minimum and maximum recorded values offers a more com-
plete insight about the phenomenon at hand than considering the average
values. In all these cases, the attributes involved can be expressed by a lower
and an upper bound, providing the boundaries of the interval-valued data.
Therefore, an interval-valued datum z can be characterized by the pair of
values z and z with z ≥ z where z and z denote the lower and upper bound,
respectively. Another representation of an interval can be done in terms
of the so-called midpoint and radius, say zM and zR, with zM = (z+z)

2
and

zR = (z−z)
2

. The midpoint is the center of an interval (the location), whereas
the radius is the half-width of an interval (a measure of the imprecision) with,
of course, zR ≥ 0. In the following we shall adopt the latter representation.
In this work, limiting our attention to the linear case, regression analysis for
interval-valued data is studied. In the literature, the topic has been exten-
sively analyzed especially in the last decade. We can roughly distinguish two
lines of research according to the use of interval arithmetic. For instance, this
is the case for González-Rodŕıguez et al. (2006, 2007), Gil et al. (2007),
Blanco et al. (2008, 2010), whereas the other approach is adopted by Billard
and Diday (2000), Domingues et al. (2010), Lima-Neto and De Carvalho
(2008, 2010). In this paper we are going to introduce a new linear regression
method for interval-valued data that could be assigned to the latter line of re-
search. However, as it will be clarified in the following, a connection with the
some papers belonging to the former line of research can also be highlighted.
The paper is organized as follows. In the next section the above-mentioned
lines of research will be recalled and their features will be discussed. Section
3 contains the here-proposed model. In Section 4 an algorithm to estimate
the parameters of the regression model is provided. In order to show how
the method works in practice the results of a simulation study and of some
applications are discussed in Sections 5 and 6, respectively. Finally, some
concluding remarks are given in Section 7.

2. Linear regression models for interval-valued data

We now recall the regression models by Lima-Neto and De Carvalho
(2010) and by González-Rodŕıguez et al. (2007) and we then discuss their
peculiarities.
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2.1. The Lima-Neto and De Carvalho (2010) model

Let Y be the interval-valued response variable and X1, . . . , Xp be the set
of interval-valued explanatory variables observed on n units. The so-called
Constrained Center and Range Method (CCRM) proposed by Lima-Neto
and De Carvalho (2010) assumes the following linear relationship between
the response and explanatory variables:

YMi = bM0 +
p∑

j=1

bMjXMij + eMi, i = 1, . . . , n,

YRi = bR0 +
p∑

j=1

bRjXRij + eRi, i = 1, . . . , n,
(1)

where YMi and YRi denote, respectively, the midpoint and the radius of Yi

(i = 1, . . . , n), XMij and XRij are, respectively, the midpoint and the radius
of Xij (i = 1, . . . , n, j = 1, . . . , p) and eMi and eRi (i = 1, . . . , n) are the
(single-valued) residuals for the model of the midpoints and for that of the
radii, respectively. Finally, bMj’s and bRj’s (j = 0, . . . , p) are the regression
coefficients for the models of the midpoints and of the radii, respectively.
The optimal parameters are obtained according to the least-squares approach
by minimizing the sum of squared residuals of the two models constraining
the bRj’s (j = 0, . . . , p) to be non-negative in order to guarantee the non-
negativity of the estimated radii of the response variable. We thus have

min
bM0,...bMp,bR0,...bRp

n∑
i=1

[
(eMi)

2 + (eRi)
2],

s.t. bRj ≥ 0, j = 0, . . . , p.
(2)

In matrix notation (1) can be formalized as

yM = XMbM + eM ,
yR = XRbR + eR,

(3)

with yM = (YM1, . . . , YMn)′, yR = (YR1, . . . , YRn)′, XM and XR are the
(n × p + 1) matrices of the midpoints and of the radii of the explanatory
variables with generic element XMij and XRij (i = 1, . . . , n, j = 0, . . . , p),
respectively, assuming that XMij = XRij = 1 when j = 0 (i = 1, . . . , n).
Finally, eM and eR are the vectors of length n of the residuals and bM and
bR are the vectors of the regression coefficients with generic elements bMj
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and bRj (j = 0, . . . , p), respectively. In matrix notation (2) can be rewritten
as

min
bM ,bR

‖eM‖2 + ‖eR‖2 = ‖YM − XMbM‖2 + ‖YR − XRbR‖2 ,

s.t. bR ≥ 0.
(4)

The optimal values of bM can be found by solving an ordinary regression
problem taking into account that the second norm of (4) does not depend on

bM . Therefore, the estimate of bM is b̂M = (X′
MXM)−1 X′

MyM . Similarly,
the first norm of (4) can be considered as a constant for bR. The estimate of
bR is obtained solving a constrained regression problem. This problem can
be recognized as a particular non-negative least-squares (NNLS) problem,
the (iterative) solution of which has been provided by Lawson and Hanson
(1995). Therefore, CCRM consists of solving two separate regression prob-
lems. It follows that CCRM does not take into account jointly the features
of the interval-valued data. Although every interval is characterized by two
measures, namely midpoint (location) and radius (imprecision), CCRM does
not use them jointly when estimating the regression coefficients. This implies
that in some cases the results of the analysis could be incomplete. See, for
further details, Lima-Neto and De Carvalho (2010).

2.2. The González-Rodŕıguez et al. (2007) model

Let Y and X be the response and explanatory variables, respectively.
The Interval Arithmetic-based Linear Model (IALM) proposed by González-
Rodŕıguez et al. (2007) can be formalized as

Y = b1X + e, (5)

where b1 is the single-valued regression parameter and e is the residual which
takes the form of a random interval-valued set such that its expected value
is the interval b0. It follows that E(Y |x) = b1x + b0 for any interval-valued
realization x of X being E the expected value in the Aumann sense. Accord-
ing to (5) we then have that YM = b1XM + eM and YR = |b1|XR + eR with
obvious notation.
Given the interval-valued sample data (xi, yi), i = 1, . . . , n the estimates of
b0 and b1 can be obtained following the least-squares approach. This re-
quires to introduce a suitable metric for intervals, say d2

I . The estimates of
the parameters of (5) can be found by solving the following minimization
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problem:

min
b0,b1

n∑
i=1

d2
I (yi, b0 + b1xi) . (6)

A crucial point concerning the minimization of (6) is that the optimal value
of b1 must be limited to the subset of the single-valued (and real) numbers

such that the Hukuhara difference yi −H b̂1xi is well-defined (i = 1, . . . , n).
The main distinctive features of IALM in comparison with CCRM are that
interval arithmetic is used allowing us to jointly take into account the mid-
point and radius information and probabilistic assumptions are made allow-
ing us to make inference on the results of the analysis. Furthermore, it is
worth mentioning that the parameter b1 does not only play the “standard”
role of slope. In fact, to some extent it informs us as to whether a decreas-
ing or increasing relationship exists between the midpoints of the response
and explanatory variables. Moreover, b1 can also be interpreted as a sort
of “imprecision propagation” factor describing how the imprecisions of the
response and explanatory variables are connected. Therefore, b1 can be seen
as a compromise between a measure of slope and a measure of propagation of
imprecision (see González-Rodŕıguez et al. , 2009, in which the fuzzy coun-
terpart of IALM is proposed). As the authors note (see, e.g., Blanco et al. ,
2010), the applicability of the model can be limited whenever two different
linear relationships for the midpoints and the radii exist. This is so because
if the relationships take the form YM = bM0 + bM1XM and YR = bR0 + bR1XR

with bR1 �= |bM1|, then there is no b1 ∈ R such that the linear relationship
can be expressed by (5). See for further details and for the extension to the
multiple linear regression case González-Rodŕıguez et al. (2007). Finally, it
must be noted that Blanco et al. (2010) propose a possible remedy to such
a drawback introducing two different parameters for the slope and the prop-
agation of the imprecision which, however, are estimated considering jointly
the midpoint and radius information. In order to make the model more flex-
ible a different approach is followed in this paper as it will be discussed in
the next section.

3. A new linear regression model for interval-valued data

In this section we are going to propose a novel regression technique for
interval-valued data. Such a model takes inspiration from the idea underly-
ing IALM in the sense that the attempt to seek a common set of regression
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coefficients for the midpoint and the radius model is pursued even if to some
extent. This will be done by adding specific regression coefficients for the
radii in such a way to cope properly with all those situations in which the
slope is different from the propagation of the imprecision. However, these
additive coefficients are constrained to be as small as possible according to a
tuning parameter to be chosen by the researcher. Differently from González-
Rodŕıguez et al. (2007), the problem will not managed by means of interval
arithmetic. In this respect, the here-proposed technique may resemble the
CCRM approach because the problem is addressed as an optimization prob-
lem involving the constrained minimization of an objective function.

3.1. The model

Let Y and X1, . . . , Xp be the interval-valued response and explanatory
variables observed on a set of n units. In order to study the linear relationship
between Y and X1, . . . , Xp we have:

yM = y∗
M + eM = XMbM + eM (midpoint model),

yR = y∗
R + eR = XRbR + eR = XR (bM + bA) + eR (radius model),

(7)

where yM and yR denote the vectors of length n of the observed midpoints
and of the observed radii of the response variable and y∗

M and y∗
R are the

vectors of the theoretical midpoints and radii of the response variable. XM

and XR are the matrices of order (n×p+1) of the midpoints and of the radii
of the explanatory variables containing the unit vector of length n in their
first column. eM and eR denote the residual vectors. Finally, bM and bR are
the vectors of length (p + 1) of the regression coefficients for the midpoint
and radius models, respectively, where bR = bM +bA being bA the vector of
the additive coefficients. Therefore, the coefficients of the radius model bR

are equal to those of the midpoint model bM up to the additive coefficients
bA.

3.2. The minimization problem

The parameter vectors bM and bA are estimated in such a way to mini-
mize a suitable dissimilarity measure between observed and theoretical data.
For this purpose, the squared distance d2

θ proposed by Trutschnig et al.
(2009) is considered. Given two intervals G and H it is

d2
θ = (GM − HM)2 + θ (GR − HR)2 (8)
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with θ ∈ (0, 1]. When θ = 1, d2
θ compares G and H by the sum of the squared

distances of their midpoints and of their radii. The choice of θ depends on
the relative importance of the radius distance with respect to the midpoint
distance. A reasonable choice seems to be θ = 1

3
. See, for more details,

Trutschnig et al. (2009). Using (8), the loss function to be minimized is

min
bM ,bA

‖eM‖2 + θ ‖eR‖2 = ‖yM − XMbM‖2 + θ ‖yR − XR (bM + bA)‖2 . (9)

The loss function in (9) requires some constraints in order to guarantee that
the estimated radii are non-negative and that the additive coefficients bA are
as small as possible. The former requirement can be achieved setting

XR (bM + bA) ≥ 0. (10)

The latter requirement can be managed using the Lasso technique (see Tib-
shirani , 1996). The Lasso, which is the acronym of Least Absolute Shrinkage
and Selection Operator, is a method for estimation in (single-valued) regres-
sion aiming at shrinking some regression coefficients and setting some others
to 0. This is done by minimizing the residual sum of squares with the con-
straint that the sum of the absolute values of the regression coefficients is
smaller than a threshold. Let y and X be the vector of length n of the
response variable and the matrix of order (n × p + 1) of the explanatory
variables with the unit vector in its first column, respectively. The Lasso
problem is

min
b

‖y − Xb‖2 ,

s.t.
p∑

j=1

|bj| ≤ t,
(11)

where b = (b0, . . . , bp)
′ is the vector of the regression coefficients and t ≥ 0

is a tuning parameter which controls the amount of shrinkage applied to the
estimates. It can be shown that (11) is a quadratic programming problem
with linear inequality constraints, the solution of which can be found in
Lawson and Hanson (1995). As already noted, the nature of the constraint
is such that it tends to produce some coefficients that are exactly zero. For
a better insight into this property we refer to Tibshirani (1996). The use of
the Lasso constraint in the here-proposed model for interval-valued data can
be carried out as

p∑
j=0

|bAj| ≤ t. (12)
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This allows us to limit the magnitude of the additive coefficients as much as
possible according to the choice of t. Note that in (12) the Lasso constraint
is considered for all the additive coefficients including the intercept.
Taking into account (9), (10) and (12) we then get the following constrained
minimization problem:

min
bM ,bA

‖yM − XMbM‖2 + θ ‖yR − XR (bM + bA)‖2 ,

s.t. XR (bM + bA) ≥ 0,
p∑

j=0

|bAj| ≤ t.
(13)

We refer to the problem in (13) as Lasso-based Interval-valued Regression
(Lasso-IR)

3.3. The choice of t

The minimization of (13) requires to choose the shrinkage parameter t.
The possible values of t range from 0 to tMAX. When t = 0 it is bA = 0
and, therefore, the same regression coefficients for the midpoints and the
radii are found. We could state that in this case the hypothesis of IALM
is adopted. However, when t = 0, the solutions from IALM and Lasso-IR
in general differ since, as already noted, the former involves interval arith-
metic (and the latter does not). It should be underlined that, when t = 0,
a feasible solution for (13) always exists using non-negative values for bM .
The value of tMAX can be found as follows. One can first set bM equal to
the unconstrained regression coefficients of yM with respect to XM , say b̂M .
Then, b̂A can be found by determining the optimal constrained regression
coefficients of yR−XM b̂M with respect to XR provided that the estimates of

yR are non-negative. Then tMAX =
p∑

j=0

∣∣∣b̂Aj

∣∣∣, being b̂Aj the j-th element of b̂A

(j = 0, . . . , p). In practice, tMAX is the smallest value such that two separate
regression problems for the midpoint and the radius models are solved. Of
course, if t > tMAX is chosen the same solution for the case with t = tMAX is
obtained. To some limited extent the solution with t ≥ tMAX is comparable
with the CCRM one even if the two solutions differ as explained in Remark 1.

Remark 1
When t ≥ tMAX, it does not necessarily hold that the solution obtained
from Lasso-IR coincides with the CCRM one. In fact, in CCRM, the non-
negativity of the estimated radii is achieved by seeking non-negative regres-
sion coefficients for the radius model. In our model such a constraint is
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relaxed admitting negative regression coefficients for the radius model. In
order to better clarify this point let us consider the following example:

yR =

⎛⎜⎜⎝
0.9
0.5
0.4
0

⎞⎟⎟⎠ XR =

⎛⎜⎜⎝
2.4 5 1
1 3.5 3
0 1 1.2
2 3 0

⎞⎟⎟⎠ .

By applying CCRM we get b̂CCRM
R =

(
0 0.11 0.10

)′
, whereas if we do

not impose the non-negativity of the regression coefficients a perfect fit so-
lution with b̂R =

( −1.5 1.0 −0.5
)′

is found.

Prior knowledge on the data under investigation could facilitate the choice of
t. If the value of t chosen by the researcher is close to 0, then approximately
the same linear relationships for midpoints and radii are assumed. The oppo-
site comment holds when t is high. However, in order to choose t, we suggest
to consider cross-validation techniques, such as the k-fold cross-validation
procedure (see, e.g., Efron and Tibshirani , 1993) in which the data are split
into k subsets of (approximately) equal size. Then, the model is fitted to
the data consisting of k− 1 subsets (training set) and its predictive accuracy
is assessed using the remaining subset (test set). This process is repeated k
times in such a way that the k subsets are used once as test set. In Lasso-IR
for different values of t ranging from 0 to tMAX we can compute the predictive
accuracy as

CV (t) =
1

n

n∑
i=1

[(
yMi − ŷMi

(−k(i)) (t)
)2

+ θ
(
yRi − ŷRi

(−k(i)) (t)
)2

]
, (14)

where ŷM
(−k(i))
i and ŷR

(−k(i))
i denote the i-th fitted midpoint and radius, re-

spectively, computed setting t and removing the k-th part of the data. Then
the optimal value of t is

tOPT = arg min
0≤t≤tMAX

CV (t) . (15)

4. The estimation procedure

To solve the minimization problem in (13) an alternating least squares
algorithm is proposed. It consists of updating separately the vectors bM and
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bA keeping fixed the remaining one. Whenever a vector is updated, the loss
function to be minimized decreases. After updating both the vectors, if the
loss function value decreases less than a specified percentage (e.g. 0.0001%)
from the previous function value, we consider the algorithm converged, oth-
erwise we repeat the updates of bM and bA. The function in (13) has a lower
bound and, therefore, the function value converges to a stable value. The
updates of bM and bA are described below.

Update of bM

First of all it should be noted that the constraints in (13) do not play an
active role in the update of bM . Therefore, from (13) the optimal value of
bM can be found as

min
bM

‖yM − XMbM‖2 + θ ‖yR − XR (bM + bA)‖2 , (16)

where bA is fixed. The function in (16) can be rewritten as∥∥∥∥[
yM

θ1/2 (yR − XRbA)

]
−

[
XM

θ1/2XR

]
bM

∥∥∥∥2

= ‖c − DbM‖2 , (17)

where c and D are implicitly defined in (17), from which we get

b̂M = (D′D)
−1

D′c. (18)

Update of bA

In order to update bA and starting from (13) it is easy to see that the problem
to be solved is

min
bA

‖yR − XR (bM + bA)‖2 ,

s.t. XR (bM + bA) ≥ 0,
p∑

j=0

|bAj| ≤ t,
(19)

keeping bM fixed. The problem in (19) can be recognized as a constrained re-
gression problem where the response variable is yR−XRbM and the explana-
tory ones are XR. The first set of constraints requires that the n estimates
of yR are non-negative. The second set of constraints can be exploited as
2p+1 inequality constraints corresponding to the 2p+1 different possible signs
for the bAj’s. This allows us to rewrite (19) as

min
bA

‖(yR − XRbM) − XRbA‖2 ,

s.t.

[
XR

H

]
bA ≥

[ −XRbM

t12p+1

]
,

(20)
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in which 12p+1 is the unit column vector of length 2p+1 and H is a (2p+1×p+1)
matrix containing in its rows all the 2p+1 combinations of length (p + 1) of
±1. The problem in (20) is a particular case of a linear least squares problem
with inequality constrains of the form

min
w

‖z − Vw‖2 ,

s.t. Fw ≥ g,
(21)

where z, w and g are vectors of length q, r and s, respectively, and V and F
are matrices of order (q×r) and (s×r), respectively. It is straightforward to
see that (20) coincides with (21) when z = yR − XRbM , V = XR, w = bA,

F =

[
XR

H

]
and g =

[ −XRbM

t12p+1

]
.

In the literature there exist several methods to solve (21) and, therefore, (20).
See, for instance, Lawson and Hanson (1995) and Gill et al. (1981). A more
relevant point is connected with the computational burden of (20) since the
number of constraints is exponentially related to the number of explanatory
variables. In particular, the total number of constraints is n (from (10)) +
2p+1 (from (12)). It is clear that, from a computational point of view, the
number of the Lasso constraints can represent a problem. This has been
already recognized by Tibshirani (1996), who suggests two procedures to
overcome it. Both the procedures can easily be adapted to solve (20). How-
ever, in our analyses based on the method of Gill et al. (1981), we saw that
the algorithm seemed to converge quickly. In this respect, some results are
reported in the simulation experiment of Section 5.

The algorithm can be summarized as follows.
Step 1 (Inizialization): Randomly generate initial values for bA fulfilling the
constraints in (13). For instance the elements of bA can be generated ran-
domly from U[0,1] rescaling them if necessary.
Step 2 (Update of bM): Minimize (17) using (18).
Step 3 (Update of bA): Minimize (20) using the procedure provided by Gill
et al. (1981).
Step 4 (Convergence): Check convergence.

The above described algorithm has been implemented using Matlab (see the
appendix). Note that the update of bA requires the Matlab routine lsqlin

that can be found in the Matlab toolbox optim.

11



5. Simulation experiment

A simulation study has been carried out in order to evaluate the perfor-
mance of Lasso-IR. Specifically, the simulation study aims at offering a better
insight into the efficiency of the algorithm, its tendency to hit the global opti-
mum, the reproducibility of the solution and the recovery performance. For
this purpose interval-valued data sets were randomly generated and noise
was added. We considered different numbers of units (n = 60, 90, 120, 150)
and of explanatory variables (p = 6, 9, 12, 15 including the intercept). The
midpoints and the radii of the explanatory variables were generated from
U[-1,1] and U[0,1], respectively. They were stored in the matrices XM and
XR, which contained all 1’s in their first column. The regression parameters
in bM and bA were randomly generated according to six different cases (C1–
C6). In cases C1–C3 the elements of bM and bA were generated from U[-1,1].
Furthermore, in Cases 1 and 2, respectively 2

3
and 1

3
of the elements of bA

were set to 0. A similar set-up was considered for cases C4–C6 but the coef-
ficients were generated from U[0,1]. Finally, noise vectors for the midpoints
nM (generated from U[-1,1]) and for the radii nR (generated from U[0,1])
were added. To tune the level of noise added we used e = 0.1 (low level), 0.5
(medium level), 1.0 (high level). Summing up, the randomly generated data
sets took the form

yM = XMbM + εnM ,
yR = XR (bM + bA) + εnR.

(22)

Note that we scaled nM and nR in such a way that their sum of squares was
equal to the sum of squares of XMbM and XR (bM + bA), respectively. Also
note that, in the data generation process, we discarded and replaced every
generated data set for which at least one radius of the response variable took
a negative value.
For every level of every design variable five replications were considered. The
design was fully crossed. Therefore, the total number of randomly generated
data sets was 4 (numbers of units) × 4 (numbers of variables) × 3 (levels of
noise added) × 6 (structures of the coefficients) × 5 (replications) = 1440.
To limit the risk of hitting local optima we ran the algorithm considering five
random starts and we chose the solution corresponding to the lowest value

of the loss function. Finally, note that we set t =
p∑

j=0

|bAj|.
Concerning the frequency of hitting the global optimum we checked, for each
data set, how many times the function vale was less than 0.1% bigger than
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the lowest one (the one corresponding to the global optimum). We observed
very satisfactory results. In fact, during the entire simulation study the
global optimum was always attained. For each data set, we found negligible
differences (lower than 10−4) among the regression coefficients obtained using
different random starts. It follows that the solution was fully reproducible.
The results about the computation time are reported in Table 1 in which
the average computation time for every level of every design variable is given
The average computation time was 7.42s. As expected it mainly depended

Table 1: Average computation time for every level of every design variable (seconds)
n = 60 n = 90 n = 120 n = 150 p = 6 p = 9 p = 12 p = 15
8.51 7.53 7.21 6.41 0.07 0.29 2.14 27.16

ε = 0.1 ε = 0.5 ε = 1.0 C1 C2 C3 C4 C5 C6
7.18 9.25 5.82 11.34 4.97 4.25 9.21 7.18 7.55

on the number of variables passing from 0.07s when p = 6 to 27.16s when
p = 15. Also note that only 195 times (out of 7200) the algorithm took more
than 60s and just once more than 120s.
To investigate the recovery of the regression parameters bM and bA we used
the mean absolute difference (MAD)

MADM =
p∑

j=1

∣∣∣bMj − b̂Mj

∣∣∣/p,

MADA =
p∑

j=1

∣∣∣bAj − b̂Aj

∣∣∣/p.

(23)

Table 2 contains the average MAD values for the coefficients of the midpoints
and for the additive ones distinguished with respect to every level of every
design variable. From Table 2 we can see that the recovery performance of
the coefficients of the midpoint model was better than that of the additive
coefficients. The average MAD values increased when the level of noise added
increased and seemed to be affected by the structure of the coefficients. In
particular, in cases C4–C6 the average MADM values were higher than those
in cases C1–C3 and the same comment holds for MADA in cases C5 and C6
in comparison with cases C1–C4.
Finally, we investigated the ability of the method to detect the coefficients
in bA set to 0. For this purpose, we checked the average percentage of times
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Table 2: Average MADM and MADA values for every level of every design variable
n = 60 n = 90 n = 120 n = 150 p = 6 p = 9 p = 12 p = 15

MADM 0.15 0.13 0.12 0.11 0.11 0.12 0.14 0.15
MADA 0.32 0.32 0.30 0.30 0.29 0.31 0.32 0.32

ε = 0.1 ε = 0.5 ε = 1.0 C1 C2 C3 C4 C5 C6
MADM 0.02 0.11 0.26 0.09 0.09 0.09 0.17 0.17 0.17
MADA 0.09 0.36 0.47 0.14 0.20 0.24 0.22 0.42 0.62

in which coefficients set to 0 were estimated by 0 and the average MAD
values limited to the coefficients set to 0. The values are reported in Table
3 distinguishing with respect to the number of variables and the structure
of the coefficients. By observing Table 3 we can state that the method well

Table 3: Recovery of the additive coefficients set to 0: average percentage of times of
obtained estimates equal to 0 and average MADA values distinguished with respect to
the numbers of variables and the structures of the coefficients

p = 6 p = 9 p = 12 p = 15
% MADA % MADA % MADA % MADA

C1 70.00 0.08 73.61 0.08 62.71 0.08 69.80 0.08
C2 55.00 0.12 61.66 0.08 50.00 0.11 36.33 0.12
C4 81.67 0.12 88.33 0.13 89.58 0.13 91.50 0.12
C5 88.34 0.15 87.22 0.20 84.58 0.31 90.00 0.25

recovered coefficients set to zero, although it tended to underestimate their
number. Nonetheless, by inspecting the average MAD values, it is worth
mentioning that the estimated values of the coefficients set to zero were in
general quite low in absolute sense with the exception of case C5. This
suggested that the estimates of coefficients set to zero usually were zero
or values close to zero. Furthermore, it must be noted that an abnormal
number of coefficients estimated by 0 has been observed in some specific
conditions regardless whether their known-in-advance values were 0 or not.
More specifically, we sometimes observed a tendency of the method to give
only one estimated additive coefficient different from 0 (and equal to t). Such
a poor performance was mainly observed (95% of times) when the level of
noise added was high (note that, when ε = 1.0, 100%, of noise was added to
the data) and the structure of the coefficients were defined by cases C4–C6.
We did not extensively analyze this problem, but we found that it depended
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on a low value of t and, therefore, can be solved by increasing t.

6. Applications

In this section the results of two applications to real data are discussed.
Both data sets refer to the values of three cardiological variables, namely the
pulse rate, the systolic pressure and the diastolic pressure observed on a set
of patients. The two data sets can be found in Lima-Neto and De Carvalho
(2010) and González-Rodŕıguez et al. (2007), respectively, and, hence, are
not reported here.

6.1. Cardiological data set (Lima-Neto and De Carvalho , 2010)

The recorded values take the form of an interval and concern n = 11
patients. In order to study the linear dependence of the pulse rate (Y )
with respect to the systolic pressure (X1) and the diastolic pressure (X2)
we applied Lasso-IR. Since the number of units is low, the leave-one-out
procedure (i.e. k-fold with k = 1) has been considered for determining
the tuning parameter t, where tMAX = 1.29 has been obtained according to
Section 3.3. The CV (t) values for increasing values of t from 0 to 1.29 with
increasing step equal to 0.01 are reported in Figure 1, from which we can
see that the optimal value of t was tOPT = 0.79. By setting t = 0.79 we got
b̂M =

(
11.12 −0.07 0.90

)′
and b̂A =

(
0 0 −0.79

)′
from which

YM = 11.12 − 0.07X1M + 0.90X2M ,
YR = 11.12 − 0.07X1R + 0.11X2R.

The value of b̂A2 suggested that there exist different linear relationships be-
tween Y and X2 for the midpoints and for the radii. Conversely, since b̂A1 = 0
the same relationship for the midpoints and the radii was found with regard
to Y and X1. The same comment holds for the intercept. By comparing
the obtained results with the CCRM ones, we can note that the negative
relationship between the pulse rate and the diastolic pressure is not captured
by CCRM due to its constraints.

6.2. Cardiological data set (González-Rodŕıguez et al. , 2007)

The values of the pulse rate and of the systolic and diastolic pressures were
observed on a sample of n = 59 patients in an hospital in Asturias (Spain)
from a population of 3000 patients hospitalized per year (González-Rodŕıguez
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Figure 1: CV (t) values for t ∈ [0, 1.29] with increasing step = 0.01
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et al. , 2007). In this case, the linear relationship of the diastolic pressure
(Y ) with respect to the pulse rate (X1) and the systolic pressure (X2) was
analyzed. We determined the optimal value of t by k-fold cross-validation
with k = 5 and we estimated the regression coefficients. The optimal value
of t was tOPT = 0.10 varying t from 0 to tMAX = 1.62 with increasing step
0.01 (see Figure 2). Setting t = 0.10 we got b̂M =

(
10.94 0.08 0.45

)′
and

b̂A =
(

0 0 −0.10
)′

from which

YM = 10.94 + 0.08X1M + 0.45X2M ,
YR = 10.94 + 0.08X1R + 0.35X2R.

The Lasso-IR method does not involve probabilistic assumptions. Nonethe-
less, since the data were a random sample, we were interested in assessing the
statistical validity of the obtained regression coefficients. The standard errors
of the estimates of the regression parameters were found by a non-parametric
bootstrap procedure. B = 1000 bootstrap samples of size n were generated.
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Figure 2: CV (t) values for t ∈ [0, 1.62] with increasing step = 0.01
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Using tOPT previously obtained, for each bootstrap sample b (b = 1, . . . , B),

the regression parameters were estimated. Denoting by b̂b
M and b̂b

A the esti-
mates of bb

M and bb
A , respectively, for the b-th bootstrap sample, the standard

errors were computed as

ŝe
(
b̂Mj

)
=

√
B∑

b=1

(
b̂b
Mj − b̂Mj

)/
B, j = 0, . . . , p,

ŝe
(
b̂Aj

)
=

√
B∑

b=1

(
b̂b
Aj − b̂Aj

)/
B, j = 0, . . . , p,

(24)

where b̂Mj =
B∑

b=1

bb
Mj

/
B and b̂Aj =

B∑
b=1

bb
Aj

/
B, j = 0, . . . , p. We got

ŝe
(
b̂M

)
=

(
2.78 0.10 0.05

)′
and ŝe

(
b̂A

)
=

(
0.00 0.03 0.03

)′
. By

comparing the bootstrap estimates of the standard errors with the corre-
sponding estimates we can gather some evidence that the intercept and the
coefficients of X2 were accurate estimates of the corresponding population
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coefficients. On the contrary, less accurate estimates were found for X1. This
suggested that the population linear relationship between Y and X1 was not
clearly detected by the sample data. Note that such results are consistent
with the ones by González-Rodŕıguez et al. (2007), who decided to include
only X2 in the estimated model.

7. Conclusions

In this paper we proposed a tool called Lasso-IR for performing linear re-
gression analysis of interval-valued data. It consists of two regression models,
one for the midpoints of the intervals and the other one for the radii. The
two regression models are characterized by the same regression coefficients
as much as possible according to a given criterion based on the Lasso tech-
nique. Namely, taking inspiration from González-Rodŕıguez et al. (2007), we
look for a unique set of regression coefficients. A unique set of coefficients is
desirable for the sake of parsimony. Unfortunately, this can limit the applica-
bility of the model in some cases. Thus, to make the model more flexible than
IALM, the regression coefficients for the radii are allowed to differ to some
extent from the ones for the midpoint model. This is achieved by introduc-
ing additive coefficients for the radius model such that their sum in absolute
value is not bigger than a shrinking parameter t that can be either fixed in
advance or chosen by cross-validation techniques. A relevant difference be-
tween Lasso-IR and IALM is that the latter is based on interval arithmetic.
In the simple linear case, the estimates of the regression coefficients can be
found exactly. Instead, in the multiple linear case, a stepwise algorithm can
be adopted for finding reasonable estimates. See, for more details, González-
Rodŕıguez et al. (2007). In our method, no distinction is needed between the
simple and multiple linear cases. In this respect, Lasso-IR seems to be more
related to CCRM proposed by Lima-Neto and De Carvalho (2010). Both
the methods consist of two linear regression models for the midpoints and the
radii and the optimal regression coefficients are obtained in such a way that
a given loss function is minimized and the estimated radii of the response
variable are non-negative. Nonetheless, two relevant distinctive features be-
tween CCRM and Lasso-IR can be found. The first one is that in CCRM
two distinct sets of coefficients for the midpoint and the radius models are
assumed, whereas, in Lasso-IR a common set of coefficients is sought as much
as possible for the sake of parsimony. The second one concerns the way to
constrain the estimated radii of the response to be non-negative. To achieve
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it CCRM requires that all the regression coefficients for the radius model
are non-negative, whereas in Lasso-IR the non-negativity of the estimated
radii is guaranteed without imposing non-negative regression coefficients. It
follows that Lasso-IR is more flexible than CCRM because it allows us to
handle those situations in which a negative relationship between the radii of
the response variable and of the explanatory ones occurs.
In the near future it will be interesting to further investigate the probabilistic
properties of Lasso-IR in order to make inference on its results.

Appendix A. Matlab routine of Lasso-IR

function[bMh,bAh,bRh,yMh,yRh,lfv,cpt]=lassoir(yM,yR,XM,XR,theta,rs,t);

% Lasso-based interval-valued regression

% Note: lassoir requires lsqlin (MATLAB Optimization Toolbox)

% Input:

% yM: vector of the midpoints of the dependent variable

% yR: vector of the radii of the dependent variable

% XM: matrix of the midpoints of the independent variables

% XR: matrix of the radii of the independent variables

% rs: number of random starts

% t: shrinkage parameter for the lasso penalization term

% Output:

% bMh: vector of the estimated coefficients for the midpoints

% bAh: vector of the estimated additive coefficients

% bRh: vector of the estimated coefficients for the radii

% yMh: vector of the estimated midpoints of the dependent variable

% yRh: vector of the estimated radii of the dependent variable

% lfv: vector of the loss function values

% cpt: vector of the computation times

eps=10^-10; fopt=10^6; [n,p]=size(XM); CONST=ones(2^p,p);

options=optimset(‘Display’,‘off’,‘LargeScale’,‘off’);

for col=1:p;

CONST(1:2^(p-col),col)=-ones(2^(p-col),1); inc=1;

while 2^(p-col)+2*inc*2^(p-col)<=2^p;

CONST(1+2*inc*2^(p-col):2^(p-col)+2*inc*2^(p-col),col)=-ones(2^(p-col),1);

inc=inc+1;

end;

end;
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for st=1:rs;

bA=rand(p,1); if sum(bA)>t; bA=bA/sum(bA)*t; end;

func=10^6; fold=func+2*eps*func; iter=1; tic;

while abs(fold-func)>eps*func;

fold=func;

y=[yM;(yR-XR*bA)*theta^.5]; X=[XM;XR*theta^.5]; bM=inv(X’*X)*X’*y;

G=[-XR; CONST]; h=[XR*bM; t*ones(2^p,1)]; bRold=bR;

[bA,nr,r,ef]=lsqlin(XR,yR-XR*bM,G,h,[],[],[],[],[],options);

if ef==-2;

bA=bAold;func=sum((yM-XM*bM).^2)+theta*sum((yR-XR*(bM+bA)).^2);

fold=func;

else

iter=iter+1;

func=sum((yM-XM*bM).^2)+theta*sum((yR-XR*(bM+bA)).^2);

end;

end;

cpt(st)=toc; lfv(st)=func;

if func<fopt;

fopt=func; bMh=aM; bAh=bA; bRh=bMh+bAh;

end;

end;

yMh=XM*bMh; yRh=XR*bRh;
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Gil, M.A., González-Rodŕıguez, G., Colubi, A., Montenegro, M., 2007. Test-
ing linear independence in linear models with interval-valued data. Com-
putational Statistics and Data Analysis 51, 3002–3015.

Gill, P.E., Murray, W., Wright, M.H., 1981. Practical Optimization. Aca-
demic Press, London.
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Trutschnig, W., González-Rodŕıguez, G., Colubi, A., Gil, M.A., 2009. A new
family of metrics for compact, convex (fuzzy) sets based on a generalized
concept of mid and spread. Information Sciences, 179 3964–3972.

22


