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Abstract

Recent developments in the interplay between Operational Research and Statis-

tics allowed to exploit advances in Mixed Integer Optimization (MIO) solvers to

improve the quality of statistical analysis. In this work we tackle Canonical Cor-

relation Analysis (CCA), a dimensionality reduction method that summarises

multiple data sources jointly, retaining their dependency structure. We propose

a new technique to encode Sparsity in CCA by means of a new mathematical

programming formulation which allows to obtain an exact solution using read-

ily available solvers (like Gurobi). We show a preliminary investigation of the

performance of our proposal through a simulation study, which highlights the

potential of our approach.

Keywords: Canonical Correlation Analysis, Mixed Integer Optimization,

Sparsity

1. Introduction

Despite the great deal of overlap between Operational Research (OR) algorithms

and Data Science (DS) methods, the interaction between the two fields is still

under-exploited. In recent years there have been more efforts on both sides to

borrow from each others literature, bridging the gap between the two disciplines.5
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From the OR side, Machine Learning (ML) techniques have been used to im-

prove solver performances. Among the contributions in this direction we recall

as examples [1], which recasts the solver’s algorithm selection for Mixed-Integer

Quadratic Programming (MIQP) as a classification procedure; [2], which adopts

supervised learning to predict if a Mixed-Integer Programming (MIP) instance10

will be solved within a given time limit; [3], which provides a survey on ML

approaches to variable and node selection in Branch-and-Bound algorithms.

On the other side, the one this work falls in, OR methods have been instrumen-

tal in both developing and improving fitting procedures of statistical models.

Among the most established strategies to improve statistical fitting procedure15

by means of advances in the OR literature, we recall [4] where a mixed integer

quadratic optimization (MIQO) approach has been adopted for designing high

quality linear regression models balancing many competing desired properties;

[5] which presents a novel Mixed-Integer Linear Programming (MILP) formula-

tion of the optimal classification tree problem or [6] that proposes a Branch-and-20

Bound algorithm, based on principles of Mixed-Integer Optimization (MIO), to

solve the Sparse Principal Component Analysis (SPCA) to optimality, just to

mention a few. Indeed, improvements in hardware and in optimization methods

in the last 30 years produced impressive advances in MIO solver performances.

Consequently, several statistical problems that have a natural MIO formulation25

considered intractable in the past, now can be solved to optimality.

In this work, inspired by [4], we adopt a mathematical programming approach

to recast sparsity in Canonical Correlation Analysis (CCA), a dimensionality

reduction method that allows to summarise multiple sources of data simulta-

neously while retaining their dependency structure. We propose a new fitting30

procedure which, exploiting advances of MIO, provides an exact solution for

Sparse CCA, a problem which, to the best of our knowledge is only approx-

imated in the DS literature. More in details, we implement our proposal in

Gurobi 9.0, whose latest update includes a bilinear solver for problems with

quadratic constraints. This new solver has the noticeable advantage of being35

able to find a global optimum, which guarantees the exactness of the solution
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to our problem. The remainder of this paper is organized as follows. Section 2

reviews the OR literature on sparsity for different statistical methods and the

general MIO framework in which the sparsity can be embedded. Section 3 first

recalls the CCA technique and the meaning of sparsity in this context and then40

presents the proposed MIQO formulation. Section 4 reports the results obtained

testing the model on simulated data sets.

2. State of the Art

Nowadays large quantities of data, related to every field, like in marketing, social

networks, telecommunications, medicine and health care and others, are avail-45

able. However, in order to extract useful knowledge from them, it is necessary

to summarise such huge amount of information and discard all non-informative

elements. To this end the concept of sparsity is very important in statistical

models. Indeed, sparsity is the property which guarantees that only a reduced

number of parameters (or predictors) play an important role in the statisti-50

cal model under consideration, thus greatly improving its interpretability. It

is therefore no coincidence that in the research area that studies the use of

advances in operational research techniques to improve the performance of sta-

tistical models, sparsity was one of the first properties to be analyzed under a

“modern optimization lens”.55

In this section we focus on the articles related to sparsity embedded in optimiza-

tion approaches proposed to improve the quality of several statistical models and

on the main contributions of this work. After the seminal work [4], by Bertsimas

and King, on MIQO formulations of linear regression, in [6] a MIO approach

to sparse principal component analysis has been presented. The authors pro-60

posed a Branch-and-Bound algorithm able to prove optimality or to find high

quality solutions in seconds, depending on the sample size, explaining a higher

portion of variance with respect to other existing methods in literature. In [7]

the sparse regression problem has been reformulated as a pure integer convex

optimization problem. A cutting plane algorithm to solve it on instances with65
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number of samples and regressors in the 100000s is presented. Moreover, the

authors observed that the sparse regression problem has the property that, as

the sample size (n) increases, the problem becomes easier in the resolution per-

fectly recovering the support of the true signal, faster than LASSO, whereas for

small n values, their approach takes a large amount of time to solve the problem.70

Similarly, in [8] the sparse principal component analysis model has also been

reformulated as a convex mixed-integer semidefinite optimization problem. The

authors designed a cutting-plane method which solves to optimality instances

with 10 selected covariates from 300 variables and provides solutions with small

gap for larger scale instances. Moreover, they proposed two convex relaxations75

and randomized rounding schemes to obtain feasible solutions of high quality

(very close to the optimal one) within minutes for a number of variables p =

100s or hours for p = 1000s. In [9] the authors formulated the cardinality con-

strained maximum likelihood problem for the sparse inverse covariance matrix

as a MIO model and proposed a combination of outer-approximation algorithm80

and first-order methods to solve it. Their approach provides near optimal so-

lutions fast, and a guarantee on the solutions suboptimality if the method is

terminated early. It delivers near optimal solutions in a matter of seconds, and

provably optimal solutions in a matter of minutes for p in the 100s and k in

the 10s. The algorithm also provides high-quality solutions to problems in the85

1000s, but a certificate of optimality is more computationally expensive for those

sizes. In [10] Blanquero et al. studied sparse optimal randomized classification

trees adopting a new optimization approach based on the one presented in [11]

with oblique cuts. This is a continuous optimization model which is able to

find a trade-off between accuracy and global sparsity. Indeed, the problem of90

building optimal decision trees is NP-complete and for this reason in literature

greedy procedures have been proposed in which at each branch node of the

tree, some purity criterion is (locally) optimized like CARTs. However, these

approaches provide good local sparsity making classic decision trees locally easy

to interpret but this is not true at a global level. Mathematical optimization95

is again the key to build optimal, deterministic and randomized classification
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trees and address issues like global sparsity as shown in [10]. Another recent

example to be mentioned among the works in literature focusing on sparsity in

statistical models dealt with an optimization approach is [12]. It focuses on the

sparse polynomial regression problem, also named sparse hierarchical regression100

problem, which consists in determining a polynomial of degree r that depends

on at most k inputs counting at most l monomial terms minimizing the sum

of squares of its prediction errors. For this problem the authors presented a

two-step approach: first a fast input ranking heuristic discards the irrelevant

inputs, then a cutting plane method solves the integer nonlinear optimization105

model used to formulate the remaining reduced sparse hierarchical regression

problem. The experimental results show that the proposed method is able to

deal with problems of practical size (n=10000 and p=1000), for which its com-

putational complexity is on par with LASSO, outperforming heuristic methods

in both finding all relevant non-linearities as well as rejecting obfuscating ones.110

In this paper, we study another statistical model, Canonical Correlation Anal-

ysis, for which we embed sparsity by adopting a mathematical programming

approach. To the best of our knowledge this is still an uncovered topic by the

existing literature related to OR advances application for improving fitting and

quality of statistical methods. The main contributions of this work are a new115

MIO formulation for Sparse Canonical Correlation Analysis and experimental

results based on simulated dataset showing that the proposed approach is able

to discern between informative and non informative variables.

2.1. Mixed Integer Optimization and Sparsity

In this section we give a glimpse of mixed integer optimization (MIO) and of its120

use in modelling sparsity.

The general formulation of a MIO problem is as follows:

minxTQx+ qTx (1)

s.t.

Ax = b (2)
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l ≤ x ≤ u (3)
125

xTQtx+ qTt x ≤ bt t = 1, .., p (4)

xi ∈ {0, 1} or ∈ Z ∀i ∈ J (5)

xi ∈ R+ ∀i /∈ J (6)

where q ∈ Rm, b ∈ Rk, Q ∈ Rmxm (positive semidefinite), Qt ∈ Rmxm, qt ∈ Rm

and bt ∈ R.

MIO models with a quadratic objective but without quadratic constraints are130

called Mixed Integer Quadratic Optimization (MIQO) problems. MIO models

with quadratic constraints are called Mixed Integer Quadratically Constrained

Optimization (MIQCO) problems. Models without any quadratic features and

linear objective and constraints are referred to as Mixed Integer Linear Opti-

mization (MILO) problems. This framework is flexible enough to include a vast135

class of statistical problems, typically characterized by different matrices Q, as

well as different penalisations, voted to enforce some desirable statistical prop-

erties. We focus in particular on the case of sparsity, that is when we require

some of the variables to be set to 0, following the approach defined by Bertsimas.

According to [13], the notion of sparsity can in fact be formalized by considering140

the variable x = (y, z) by composed of two subsets of equal dimension. The first

one y = (y1, . . . , yp) ∈ Rp represents the statistical parameters of interest, while

the second one z = (z1, . . . , zp) ∈ {0, 1}p can be taken as auxiliary variables,

which allow to identify which elements of the first subset are different than 0.

Under these assumptions, the problem (1)-(6) can be rewritten to enforce sta-145

tistical sparsity as follows:

min yTQy + qT y (7)

s.t.

Iz = k (8)

Ay = b (9)
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−Mz < y < Mz (10)
150

xTQtx+ qTt x ≤ bt t = 1, .., p (11)

The presence of sparsity is guaranteed by constraints (10), which imply some of

the elements of y are automatically set to zero, while the amount of sparsity is

regulated by constraint (8).

In the past decades, because of the difficulty in scaling solution algorithms for

MIO problems, the research to deal with statistical sparsity focused on methods

which solve convex approximation of the original problem. We now briefly recall

the most famous example of this approach, the LASSO [14], in which a penalty

based on the L1 norm is used to regularize the standard least square fit of a

regression problem.

Given a sample of n observations, the standard linear regression model can be

written as

y = Xβ + ε

where y = (y1, . . . , yn) is the response (or dependent) variable, ε = (ε1, . . . , εn)

is the stochastic error term and X is (n × p) the matrix containing the values

of p independent variables (also known as covariates, or predictors) observed on

the sample and β = (β1, . . . , βp) their corresponding coefficients. The standard

approach to fit this model is to minimize the error term, typically l2.155

min
β

(y −Xβ)T (y −Xβ) (12)

Sparsity is enforced in the coefficients β by adding the following constraint

p∑
i=1

I{βi 6= 0} ≤ k (13)

The rationale for inducing sparsity in this kind of model is, in fact, reducing the

number of predictors by assessing which independent variables are relevant for

recovering the dependent one. Each element βi of the coefficient β represents

the impact of the i−th covariate on the response y. If βi is 0, the corresponding160

covariate does not play any role in explaining the dependent variable y. Solving
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12-13 was not considered to be approachable directly, as it is a NP hard problem.

The basic idea of the LASSO thus consisted in approximating it by

min
β

(y −Xβ)T (y −Xβ) (14)

s.t.

p∑
i=1

|βi| ≤ k (15)

While the LASSO rightfully enjoys popularity in the statistical community due165

to its good predictive properties, and depending on the signal-to-noise ratio in

the data, it may even outperform an exact solution of 12-13 [15], it still provides

only an approximated solution to the original problem of sparsity. However, [13]

showed that it is possible to obtain an exact solution to the problem 12-13 by

adding a binary variable z and reformulating it as a MI(Q)O problem:170

min
β,z

(y −Xβ)T (y −Xβ) (16)

s.t.

−Czi ≤ βi ≤ Czi i = 1, . . . , p (17)

zi ∈ {0, 1} i = 1, . . . , p (18)

p∑
i=1

zi ≤ k (19)

where the parameters C and k represent respectively the maximum value coeffi-

cients βi can take and the maximum number of non zero β coefficients. Variable175

zi is equal to 0 when the corresponding coefficient βi is 0 and 1 otherwise. Con-

straint 17 insures that if zi is 0, βi is 0 as well. It is easy to see that (16)-(19)

is a special case of the framework of (7)-(11). In the last 30 years the compu-

tational power of MIO solvers increased together with the speed improvements

in hardware (supercomputers). Consequently, the use of MIO approaches for180

statistical problems is no longer practically irrelevant. Moreover, MIO solvers

provide lower bound improvements during the resolution process. This means

that, even if the MIO solver is stopped before reaching the optimal solution,
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it provides a certificate of suboptimality of the current feasible solution. Thus,

in Section 3.1 we present the bilinear quadratically constrained mixed integer185

optimization model which incorporates the sparsity property for CCA and, in

Section 4, the experimental results obtained solving it on simulated data through

Gurobi 9.0.

3. A MIQO formulation for Canonical Correlation Analysis

Canonical Correlation Analysis (CCA) is a multivariate statistical technique de-

signed to investigate the relationship between two sets of variables. The basic

framework of CCA is that where we have two datasets X1 ∈ Rn×p1 and X2 ∈

Rn×p2 , taken to be i.i.d. realization of two random vectors x1 ∈ Rp1 , x2 ∈ Rp2 .

Each component of these vectors, and therefore each column of the datasets,

represents a different source of information or attribute. Example of interest in

CCA are the cases of genomic data [16], microbiome data [17] and EEG [18].

In its original formulation, given two scaled datasets X1 and X2, CCA’s goal is

to find a lower dimensional linear representation X1w1 = Y1 and X2w2 = Y2 so

that the resulting transformed variables Y1 ∈ Rn and Y2 ∈ Rn are maximally

correlated. After imposing that X1 and X2 are centered, i.e. they have colum-

nwise 0 mean, the empirical correlation between the two new variables Y1 and

Y2 can be expressed as

ρ1,2 =
wt1X

t
1X2w2√

wt1X
t
1X1w1

√
wt2X

t
2X2w2

The coefficients w1 ∈ Rp1 and w2 ∈ Rp2 that guarantee that the correlation190

between Y1 and Y2 is maximized, can thus be found by solving the following

optimization problem

max
w1,w2

wt1X
t
1X2w2√

wt1X
t
1X1w1

√
wt2X

t
2X2w2

(20)

s.t.

wt1X
t
1X1w1 = wt2X

t
2X2w2 = 1 (21)
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where the constraints 21 are imposed to ensure identifiability, since solutions to

problem 20 are invariant with respect to orthogonal rotation. Notice that, as a195

consequence of these constraints, formulation 20-21 can be simplified as:

max
w1,w2

wt1X
t
1X2w2 (22)

s.t.

wt1X
t
1X1w1 = wt2X

t
2X2w2 = 1 (23)

The new variables Y1 and Y2, usually called Canonical Variables, provide a

vector representation of the original matrices X1 and X2, and can be used as

lower dimensional proxies. The Canonical Vectors (or Weights) w1 and w2200

assess the importance of each column component of respectively X1 and X2 in

explaining the association with the other dataset, and are thus instrumental for

the interpretation of the canonical variables and for untangling the relationship

between X1 and X2. Elements of w1 and w2 that are large (in absolute values)

indicate which columns, i.e. attributes, are highly relevant in explaining the205

linear association between X1 and X2. On the other hand, values of w1 and w2

that are close to 0, identify attributes that can be neglected for explaining the

dependence between the two sets.

In the context of CCA, inducing sparsity consists of forcing some elements of

the coefficients w1 and w2 to be 0. Considering only a subset of the original210

attributes in our analysis, thus constraining the number of non-zero coefficients

to be smaller than a maximum acceptable value, can lead to more informative

Canonical Weights and Variables. This especially true when p1 and p2 become

large, and the interpretability of the weights, as well as the Canonical Variables,

becomes harder.215

As in the case of the LASSO for regression problems, sparsity has most often be

induced by adding a regularization term based on the L1 norm in CCA as well.

The most common formulation for Sparse CCA in the statistical and machine

learning literature is thus the following:

max
w1,w2

wt1X
t
1X2w2 (24)
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s.t.220

wt1X
t
1X1w1 = wt2X

t
2X2w2 = 1 (25)

pj∑
i=1

|wj,i| ≤ kj (26)

Several algorithms have been introduced to efficiently solve this convex opti-

mization problem. For example [19] propose an approach based on a penalized

matrix decomposition and the resulting regularized version of the singular value

decomposition. In [20], the solution to the problem 24-26 is obtained by means225

of a linearized Bregman iterative method. Similar problems to 24-26 is also

considered in [21] and more recently in [22] and in [23]. In a Bayesian fashion,

probabilistic approaches to sparse CCA have also been considered [24]. Methods

that tackle sparsity by means of L0 loss, and are thus more similar in spirit to

our work, are far less common in the literature. Among these, [25] introduces a230

provable algorithm for estimating canonical vector with an L0 penalization, but

it is limited by the assumption that each of the two data objects X1 and X2,

although dependent from the other object, consists of independent variables.

[26] introduces a two stage procedure to solve sparse CCA, and provides an

algorithm to identify active entries of the L0-penalized canonical vectors, i.e.235

non-zero elements of w1 and w2. Values of these active entries must be then

computed through a separate procedure. Finally, [27] suggests an alternating

iterative algorithm to solve the L0 sparse CCA formulation by using a sparse

projection strategy.

3.1. The MIQO formulation240

In order to obtain an exact solution to Sparse Canonical Correlation, we recast

problem 24-26 as a MIQO, adding auxiliary binary variables in the fashion of

[13]. The resulting mathematical programming formulation is as follows:

max
w1,w2,z1,z2

wt1X
t
1X2w2 (27)

s.t.
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wt1X
t
1X1w1 = wt2X

t
2X2w2 = 1 (28)

245

−Cjzj,i ≤ wj,i ≤ Cjzj,i i = 1, . . . , pj j = 1, 2 (29)

zj,i ∈ {0, 1} i = 1, . . . , pj j = 1, 2 (30)

pj∑
i=1

zj,i ≤ kj j = 1, 2 (31)

where w1 ∈ Rp1 and w2 ∈ Rp2 are sets of continuous variables bounded by

[−C1, C1] and [−C2, C2] respectively and z1 ∈ {0, 1}p1 and z2 ∈ {0, 1}p2 are

sets of binary variables representing which elements of w1 and w2 are non-zero.250

Parameters C1 and C2 are positive constants defining the range of variation of

w1 and w2, while k1 and k2 represent the maximum number of non-zero compo-

nents of w1 and w2. Since the objective function (27) is bilinear in w1 and w2

and because of constraints 28, the formulation 27-31 is a bilinear quadratically

constrained model and can be solved through the adoption of the most recent255

Gurobi module for this class of problems.

4. Experimental Results & Discussion

We evaluate the performance of our proposal on simulated data. Following [19]

we generate data according to the model

Xi = uwti + εi i = 1, 2

where each component of the error matrix εi follows a Normal distribution with260

mean 0 and standard deviation 0.1. We consider 2 different scenarios w.r.t the

number of variables p1 and p2 and test them at different levels of sparsity: a

standard one and extreme one. Details are given in Table 1.

We generate the u vector from a n variate normal distribution, with 0 mean

vector and identity and variance-covariance matrix. We also consider 3 different265

values for the sample size n: 50, 150, 500.

Even though still very limited, results shown in Figures 1-4 highlight the poten-

tial of our proposal. The sparsity pattern appears to be captured well in almost
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Scenario 1 Scenario 2

p1 = 5 p2 = 3 p1 = 20 p2 = 9

Sparse k1 = 3 k2 = 2 k1 = 4 k2 = 3

Very Sparse k1 = 1 k2 = 1 k1 = 1 k2 = 1

Table 1: Dimension and sparsity of the Canonical Vectors to be recovered in the simulation

study.
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Figure 1: Estimated canonical weights for Scenario 1 - Sparse setting. Black stars represent

the true value of the coefficients, while colored dots represent estimates

all settings. Moreover the direction of the association, represented by the sign

of the Canonical Vectors, is always correctly identified.270

Interestingly, the model performances seem to be affected by the sample size

more than the sparsity level, and they are reassuring even in presence of extreme

sparsity. Figure 4 shows in fact how the model seems to be able to deal with

a sparsity level of more than 90%. As we could expect, the estimated values,

denoted by the coloured circles, become closer to the real values, indicated by275

the black star, as the sample size n increases. This is because when the sample

size is small, the empirical covariance Xt
1X2 in the objective function (27) is
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Figure 2: Estimated canonical weights for Scenario 1 - Very Sparse setting. Black stars

represent the true value of the coefficients, while colored dots represent estimates
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Figure 3: Estimated canonical weights for Scenario 2 - Sparse setting. Black stars represent

the true value of the coefficients, while colored dots represent estimates

a less reliable measure of dependence between the random variables we are

trying to summarize. As the sample size increases, Xt
1X2 better captures the
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Figure 4: Estimated canonical weights for Scenario 2 - Very Sparse setting. Black stars

represent the true value of the coefficients, while colored dots represent estimates

association between the random mechanisms generating the different datasets,280

and the Canonical Vectors obtained by maximising (27) are less affected by

spurious association created by the Gaussian noise.

In conclusion, additional investigation is needed, but these preliminary results

suggest that our approach is promising and encourage us to further explore it

in more challenging settings as well as real data examples.285
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