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Abstract The recent development of more sophisticated spectroscopic methods allows ac-
quisition of high dimensional datasets from which valuable information may be extracted
using multivariate statistical analyses, such as dimensionality reduction and automatic
classification (supervised and unsupervised). In this work, a supervised classification
through a partial least squares discriminant analysis (PLS-DA) is performed on the hy-
perspectral data. The obtained results are compared with those obtained by the most
commonly used classification approaches.
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1. INTRODUCTION

The recent development of more sophisticated spectroscopic approaches al-
lows the acquisition of high dimensional datasets from which valuable informa-
tion may be extracted via different multivariate statistical techniques. The high
data dimensionality greatly enhances the informational content of the dataset and
provides an additional opportunity for the current techniques for analyzing such
data (Jimenez and Landgrebe, 1998). For example, automatic classification (clus-
tering and/or classification) of data with similar features is an important problem
in a variety of research areas such as biology, chemistry, and medicine (Galvan
et al., 2006; Hardy et al., 2006). When the labels of the clusters are available, a
supervised classification method is applied. Several classification techniques are
available and described in the literature. However, data derived by spectroscopic
detection represent a hard challenge for the researcher, who faces two crucial
problems: data dimensionality larger than the observations, and high correlation
levels among the variables (multicollinearity).
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Usually, in order to solve these problems (i) a first data compression or re-
duction method, such as principal component analysis (PCA) is applied to shrink
the number of variables; then, a range of discriminant analysis techniques is used
to solve the classification problem, while (ii) in other cases, non-parametric clas-
sification approaches are used (Agrawal et al., 1998; Bühlmann and Van De Geer,
2011; Ding and Gentleman, 2005; Jimenez and Landgrebe, 1998; Kriegel et al.,
2009).

In this work, the dataset consists of three different varieties of olives (Moraiolo,
Dolce di Andria, and Nocellara Etnea) monitored during ripening up to harvest
(Bellincontro et al., 2012). Samples contained olives from 162 trees (54 for each
variety), and 601 spectral detections (i.e., dimensions/variables) were performed
using a portable near infrared acousto-optically tunable filter (NIR-AOTF) de-
vice in diffuse reflectance mode from 1100 nm to 2300 nm with an interval of 2.
The use of NIRS on olive fruits and related products is already known; applica-
tions for the determination of oil and moisture content are now considered routine
analyses in comparison with relatively new methodologies, such as nuclear mag-
netic resonance (NMR), or more traditional analytical determinations (Cayuela
and Camino, 2010; Gallardo et al., 2005; Garcia et al., 1996; León et al., 2004).

This paper is based on the use of partial least squares discriminant Analy-
sis (PLS-DA). However, for comparison purposes, we also analyze the results
obtained by other commonly used non-parametric classification models such as
K-nearest neighbor (KNN), support vector machine (SVM) (Balabin et al., 2010;
Joachims, 2005; Misaki et al., 2010; Tran et al., 2006), and some variants of dis-
criminant functions for sparse data as such as diagonal linear discriminant anal-
ysis (DLDA), maximum uncertainty linear discriminant analysis (MLDA), and
shrunken linear discriminant analysis (SLDA). All the three regularization tech-
niques compute linear discriminant functions (Clemmensen et al., 2011; Dudoit
et al., 2002; Fisher and Sun, 2011; Guo et al., 2006; Hastie et al., 1995; Thomaz
et al., 2006).

PLS-DA is a dimensionality reduction technique, a variant of partial least
squares regression (PLS-R) that is used when the response variable is categori-
cal. It is a compromise between the usual discriminant analysis and a discrim-
inant analysis on the principal components of the predictor variables. In partic-
ular, PLS-DA instead of finding hyperplanes of maximum variance between the
response and independent variables finds a linear regression model by project-
ing the predicted variables and the observed variables into a new space. PLS-
DA can provide good insight into the causes of discrimination via weights and

2



loadings, which gives it a unique role in exploratory data analysis, for exam-
ple in metabolomics via visualization of significant variables such as metabolites
or spectroscopic peaks (Brereton and Lloyd, 2014; Kemsley, 1996; Wehrens and
Mevik, 2007).

The paper is structured as follows: in section 2 we provide a background on
the most commonly used non-parametric statistical methodologies to solve the
classification problem of sparse data (i.e., KNN and SVM) and an overview of
different classifiers derived from linear discriminant analysis (LDA), in section 3
we focus on the PLS-DA model with a deeper examination of the PLS algorithm,
in section 4 we show a comparison of the results obtained by the application of
PLS-DA and those obtained by the other common classification methods, and
finally in section 5 we provide some suggestions and ideas for future research.

2. BACKGROUND

In this section, we present a brief overview of different classifiers that have
been highly successful in handling high dimensional data classification problems,
starting with popular methods such as K-nearest neighbor (KNN) and support
vector machines (SVM) (Dudoit et al., 2002; Zhang et al., 2006) and variants of
discriminant functions for sparse data (Clemmensen et al., 2011). We also exam-
ine dimensionality reduction techniques and their integration with some existing
algorithms (i.e., partial least squares discriminant analysis (PLS-DA)) (Brereton
and Lloyd, 2014; Kemsley, 1996).

2.1. K-NEAREST NEIGHBOR (KNN)

The KNN method was first introduced by Fix and Hodges (Fix and Hodges,
1989) based on the need to perform discriminant analysis when reliable parametric
estimates of probability densities are unknown or difficult to determine. In this
method, a distance measure (e.g., Euclidean) is assigned between all points in the
data. The data points, K-closest neighbors (where K is the number of neighbors),
are then found by analyzing a distance matrix. The K-closest data points are then
found and analyzed in order to determine which class label is the most common
among the set. Finally, the most common class label is then assigned to the data
point being analyzed (Balabin et al., 2010).

The KNN classifier is commonly based on the Euclidean distance between
a test sample and the specified training samples. Formally, let xi be an input
sample with J features (xi,1, . . . ,xi,J), and n be the total number of input samples
(i = 1, . . . ,n). The Euclidean distance between sample xi and xl (l = 1, . . . ,n) is
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defined as

d(xi,xl) =
√

(xi,1− xl,1)2 + · · ·+(xi,J− xl,J)2. (1)

Using the latter characteristic, the KNN classification rule is to assign to a test
sample the majority category label of its K nearest training samples. In other
words, K is usually chosen to be odd, so as to avoid ties. The K = 1 rule is
generally called the 1-nearest-neighbor classification rule.

Then, let xi be a training sample and x∗i be a test sample, and let ω be the true
class of a training sample and ω̂ be the predicted class for a test sample (ω, ω̂ =

. . . ,Ω), where Ω is the total number of classes. During the training process, only
the true class ω of each training sample to train the classifier is used, while during
testing the class ω̂ of each test sample is predicted. With 1-nearest neighbor rule,
the predicted class of test sample x∗i is set equal to the true class ω of its nearest
neighbor, where zi is a nearest neighbor to x∗i if the distance

d(zi,x∗i ) = min
j
{d(z j,x∗i )}. (2)

For the K-nearest neighbors rule, the predicted class of test sample x∗i is set equal
to the most frequent true class among the K nearest training samples.

2.2. SUPPORT VECTOR MACHINE (SVM)

The SVM approach was developed by Vapnik (Cortes and Vapnik, 1995;
Suykens and Vandewalle, 1999). Synthetically, SVM is a linear method in a very
high dimensional feature space that is nonlinearly related to the input space. The
method maps input vectors to a higher dimensional space where a maximal sepa-
rating hyperplane is constructed (Joachims, 2005). Two parallel hyperplanes are
constructed on each side of the hyperplane that separates the data and maximizes
the distance between the two parallel hyperplanes. An assumption is made that
the larger the margin or distance between these parallel hyperplanes, the better the
generalization error of the classifier will be.

SVM was initially designed for binary classification. To extend SVM to the
multi-class scenario, a number of classification models were proposed (Wang and
Xue, 2014). Formally, given training vectors xi ∈ℜJ , i = 1, . . . ,n∗, in two classes,
and the label vector Y ∈ {−1,1}n∗ (where n∗ in the size of the training samples),
the support vector technique requires the solution of the following optimization
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problem:

min
w∈H,b∈ℜ,ξi∈ℜ

1
2

wT w+C
n∗

∑
i=1

ξi,

sub ject to yi(wT
ϕ(xi)+b)≥ 1−ξi

ξi ≥ 0, i = 1, . . . ,n∗,

(3)

where w ∈ ℜJ is the weights vector, C ∈ ℜ+ is the regularization constant, and
the mapping function ϕ projects the training data into a suitable feature space H.

For a K-class problem, many methods use a single objective function for
training all K-binary SVMs simultaneously and maximize the margins from each
class to the remaining ones (Wang and Xue, 2014; Weston and Watkins, 1998).
An example is the formulation proposed by Weston and Watkins (Weston and
Watkins, 1998). Given a labeled training set represented by {(x1,y1), . . . ,(xn∗ ,yn∗)},
where xi ∈ℜJ and yi ∈ {1, . . . ,K}, this formulation is given as follows:

min
wk∈H,b∈ℜK ,ξ∈ℜn∗×K

1
2

K

∑
k=1

wT
k wk +C

n∗

∑
i=1

∑
t,yi

ξi,t ,

sub ject to wT
yi

ϕ(xi)+byi)≥ wT
t ϕ(xi)+bt +2−ξi,t ,

ξi,t ≥ 0, i = 1, . . . ,n∗, t ∈ {1, . . . ,K}.

(4)

The resulting decision function is given in Equation 5 (Wang and Xue, 2014).

argmax
k

fm(x) = argmax
k

(wT
k ϕ(xi)+bk). (5)

2.3. DISCRIMINANT ANALYSIS FUNCTIONS

In this section we present a comprehensive overview of different classifiers
derived by Linear Discriminant Analysis (LDA), and that have been highly suc-
cessful in handling high dimensional data classification problems: Diagonal Lin-
ear Discriminant Analysis (DLDA), Maximum uncertainty Linear Discriminant
Analysis (MLDA), and Shrunken Linear Discriminant Analysis (SLDA). All the
three regularization techniques compute Linear Discriminant Functions, by de-
fault after a preliminary variable selection step, based on alternative estimators of
a within-groups covariance matrix that leads to reliable allocation rules in prob-
lems where the number of selected variables is close to, or larger than, the number
of available observations.

The main purpose of discriminant analysis is to assign an unknown subject
to one of K classes on the basis of a multivariate observation x = (x1, . . . ,xJ)

′,
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where J is the number of variables. The standard LDA procedure does not as-
sume that the populations of the distinct groups are normally distributed, but it
assumes implicitly that the true covariance matrices of each class are equal be-
cause the same within-class covariance matrix is used for all the classes consid-
ered (Thomaz et al., 2006; Wichern and Johnson, 1992). Formally, let Sb be the
between-class covariance matrix defined as

Sb =
K

∑
k=1

nk(x̄k− x̄)(x̄k− x̄)T , (6)

and let Sw be the within-class covariance matrix defined as

Sw =
K

∑
k=1

(nk−1)Sk =
K

∑
k=1

nk

∑
i=1

(x̄k,i− x̄k)(x̄k,i− x̄k)
T , (7)

where xk,i is the J-dimensional pattern i from the k-th class, nk is the number
of training patterns from the k-th class, and K is the total number of classes (or
groups) considered. The vector x̄k and matrix Sk are respectively the unbiased
sample mean and sample covariance matrix of the k-th class, while the vector x̄ is
the overall unbiased sample mean given by

x̄ =
1
n

K

∑
k=1

nkx̄k =
1
n

K

∑
k=1

nk

∑
i=1

xk,i, (8)

where n is the total number of samples n = n1 + · · ·+nK .
Then, the main objective of LDA is to find a projection matrix (here defined

as PLDA) that maximizes the ratio of the determinant of the between-class scatter
matrix to the determinant of the within-class scatter matrix (Fisher’s criterion).
Formally,

PLDA = argmax
P

det
(
PT SbP

)
det (PT SwP)

. (9)

It has been shown (Devijver and Kittler, 1982) that Equation (9) is in fact the
solution of the following eigenvector system problem:

SbP−SwPΛ = 0. (10)

Note that by multiplying both sides by S−1
w , Equation (10) can be rewritten as

S−1
w SbP−S−1

w SwPΛ = 0

S−1
w SbP−PΛ = 0

(S−1
w Sb)P = PΛ,

(11)
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where P and Λ are respectively the eigenvector and eigenvalue matrices of the
S−1

w Sb matrix. These eigenvectors are primarily used for dimensionality reduction,
as in principal component analysis (PCA) (Rao, 1948).

However, the performance of the standard LDA can be seriously degraded
if there are only a limited number of total training observations n compared to
the number of dimensions of the feature space J. In this context, in fact the Sw

matrix becomes singular. To solve this problem, Yu and Yang (Thomaz et al.,
2006; Yu and Yang, 2001) have developed a direct LDA algorithm (called DLDA)
for high dimensional data with application to face recognition that diagonalizes
simultaneously the two symmetric matrices Sw and Sb. The idea of DLDA is to
discard the null space of Sb by diagonalizing Sb first and then diagonalizing Sw.

The following steps describe the DLDA algorithm for calculating the projec-
tion matrix PDLDA:

1. diagonalize Sb, that is, calculate the eigenvector matrix V such that V T SbV =Λ;
2. let Y be a sub-matrix with the first m columns of V corresponding to the Sb

largest eigenvalues, where m≤ rank(Sb). Calculate the diagonal m×m sub-matrix
of the eigenvalues of Λ as Db = Y T SbY ;
3. let Z =Y D−1/2

b be a whitening transformation of Sb that reduces its dimension-
ality from J to m (where ZT SbZ = I). Diagonalize ZT SwZ, that is, compute U and
Dw such that UT (ZT SwZ)U = Dw;
4. calculate the projection matrix as PDLDA = D−1/2

w UT ZT .

Note that by replacing the between-class covariance matrix Sb with total covari-
ance matrix ST (ST = Sb+Sw), the first two steps of the algorithm become exactly
the PCA dimensionality reduction technique (Yu and Yang, 2001).

Two other approaches commonly used to avoid both the critical singularity
and instability issues of the within-class covariance matrix Sw are SLDA and the
MLDA (Thomaz et al., 2006). Firstly, it is important to note that the within-
class covariance matrix Sw is essentially the standard pooled covariance matrix Sp

multiplied by the scalar (n−K). Then,

Sw =
K

∑
k=1

(nk−1)Sk = (n−K)Sp. (12)

From this property, the key idea of some regularization proposals of LDA (Camp-
bell, 1980; Guo et al., 2006; Peck and Van Ness, 1982) is to replace the pooled
covariance matrix Sp of the within-class covariance matrix Sw with the following
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convex combination:

Ŝp(γ) = (1− γ)Sp + γλ̄ I, (13)

where γ ∈ [0,1] is the shrinkage parameter, which can be selected to maximize
the leave-one-out classification accuracy (Cawley and Talbot, 2003), I is the iden-
tity matrix, and λ̄ = J−1

∑
J
j=1 λ j is the average eigenvalue, which can be written

as J−1trace(Sp). This regularization approach, called SLDA, would have the ef-
fect of decreasing the larger eigenvalues and increasing the smaller ones, thereby
counteracting the biasing inherent in eigenvalue sample-based estimation (Hastie
et al., 1995; Thomaz et al., 2006).

In contrast, in the MLDA method a multiple of the identity matrix determined
by selecting the largest dispersions regarding the Sp average eigenvalue is used. In
particular, if we replace the pooled covariance matrix Sp of the covariance matrix
Sw (shown in Equation (12)) with a covariance estimate of the form Ŝp(δ ) = Sp +

δ I (where δ ≥ 0 is an identity matrix multiplier), then the eigen-decomposition
of a combination of the covariance matrix Sp and the J× J identity matrix I can
be written as

Ŝp(δ ) = Sp +δ I

=
r

∑
j=1

λ jφ j(φ j)
T +δ

J

∑
j=1

φ j(φ j)
T

=
r

∑
j=1

(λ j +δ )φ j(φ j)
T +

J

∑
j=1

δφ j(φ j)
T ,

(14)

where r is the rank of Sp (note that r ≤ J), λ j is the j-th eigenvalue of Sp,
φ j is the j-th corresponding eigenvector, and δ is the identity matrix multiplier
previously defined. In fact, in Equation (14) the identity matrix is defined as
I = ∑

J
j=1 φ j(φ j)

T . Now, given the convex combination shown in Equation (13),
the eigen-decomposition can be written as

Ŝp(γ) = (1− γ)Sp + γλ̄ I

= (1− γ)
r

∑
j=1

λ jφ j(φ j)
T + γ

J

∑
j=1

λ̄ φ j(φ j)
T .

(15)

The steps of the MLDA algorithm are shown follows:

1. Find the Φ eigenvectors matrix and Λ eigenvalues matrix ff Sp, where Sp =
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(n−K)Sw (from Equation (12));
2. Calculate Sp average eigenvalues as J−1trace(Sp);
3. Construct a new matrix of eigenvalues based on the following largest dispersion
values :

Λ
∗ = diag

[
max(λ1, λ̄ ), . . . ,max(λJ, λ̄ )

]
;

4. Define the revised within-class covariance matrix:

S∗w = (n−K)S∗p = (n−K)(ΦΛ
∗
Φ

T ).

Then, the MLDA approach is based on replacing Sw with S∗w in the Fisherâs crite-
rion formula described in Equation (9).

3. PARTIAL LEAST SQUARES DISCRIMINANT ANALYSIS (PLS-DA)

Multivariate regression methods like principal component regression (PCR)
and partial least squares regression (PLS-R) enjoy large popularity in a wide range
of fields and are mostly used in situations where there are many, possibly cor-
related, predictor variables and relatively few samples, a situation that is com-
mon, especially in chemistry, where developments in spectroscopy since the sev-
enties have revolutionized chemical analysis (Pérez-Enciso and Tenenhaus, 2003;
Wehrens and Mevik, 2007). In fact, the origin of PLSR lies in chemistry (Martens,
2001; Wehrens and Mevik, 2007; Wold, 2001).

In practice, there are not many differences between the use of PCR and PLS-
R; in most situations, the methods achieve similar prediction accuracies. Note that
with the same number of latent variables, PLS-R will cover more of the variation
in Y and PCR will cover more of the variation in X . (Wehrens and Mevik, 2007).

Partial least squares discriminant Analysis (PLS-DA) is a variant of PLS-R
that can be used when the response variable Y is categorical. Under certain cir-
cumstances, PLS-DA provides the same results as the classical approach of Eu-
clidean distance to centroids (EDC) (Davies and Bouldin, 1979) and under other
circumstances, the same as that of linear discriminant analysis (LDA) (Izenman,
2013). However, in different contexts this technique is specially suited to deal with
models with many more predictors than observations and with multicollinearity,
two of the main problems encountered when analyzing hyperspectral detection
data (Pérez-Enciso and Tenenhaus, 2003).

9



3.1. MODEL AND ALGORITHM

PLS-DA is derived from PLS-R, where the response vector Y assumes dis-
crete values. In the usual multiple linear regression model (MLR) approach we
have

Y = XB+F, (16)

where X is the n×J data matrix, B is the J×1 regression coefficients matrix, F is
the n×1 error vector, and Y is the n×1 response variable vector. In this approach,
the least squares solution is given by B = (XT X)−1XTY .

In many cases, the problem is the singularity of the XT X matrix (e.g., when
there are multicollinearity problems in the data or the number of predictors is
larger than the number of observations). Both PLS-R and PLS-DA solve this
problem by decomposing the data matrix X into P orthogonal scores T (n×P)
and loadings matrix P (J×P), and the response vector Y into P orthogonal scores
T (n×P) and loadings matrix Q (1×P). Then, let E and F be the n× J and
n× 1 error matrices associated with the data matrix X and response vector Y ,
respectively. There are two fundamental equations in the PLS-DA model:

X = T PT +E

Y = T QT +F.
(17)

Now, if we define a J×P weights matrix W , we can write the scores matrix as

T = XW (PTW )−1, (18)

and by substituting it into the PLS-DA model, we obtain

Y = XW (PTW )−1QT +F, (19)

where the regression coefficient vector B is given by

B̂ =W (PTW )−1QT . (20)

In this way, an unknown sample value of Y can be predicted by Ŷ = XB̂, i.e.
Ŷ = XW (PTW )−1QT . The PLS-DA algorithm estimates the matrices W , T , P,
and Q through the following steps (Brereton and Lloyd, 2014).
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Algorithm 1 Partial Least Squares
1: Fixed P, initialize the residuals matrices E0 = X and F0 = Y ;
2: for p = 1 to P do
3: Calculate PLS weights vector

Wp = ET
0 F0;

4: Calculate and normalize scores vector
Tp = E0Wp(W T

p ET
0 E0Wp)

−1/2 ;
5: Calculate the X loadings vector

Pp = ET
0 Tp;

6: Calculate Y loading
Qp = FT

0 Tp;
7: Update the X residuals vector

E0 = E0−TpPT
p ;

8: Update the Y residuals vector
F0 = F0−TpQT

p ;
9: end for

10: Obtain output matrices W , T , P, Q.

4. APPLICATION TO REAL DATA

In this section we show an application of the method to real data. In particular,
we compare the results obtained by partial least squares discriminant analysis
(PLS-DA) and the other classification techniques discussed in Section 2.

4.1. DATASET

The dataset consists of 162 drupes of olives harvested in 2010 belonging to
three different cultivars (response variable): 54 Dolce di Andria (low phenolic
concentration), 54 Moraiolo (high phenolic concentration), and 54 Nocellara Et-
nea (medium phenolic concentration). Spectral detection is performed using a
portable NIR device (diffuse reflectance mode) in the 1100–2300 nm wavelength
range, with 2 nm wavelength increments (601 observed variables) (Bellincontro
et al., 2012).

4.2. PRINCIPAL RESULTS

In order to evaluate the prediction capability of the model, the entire data
set has been randomly divided into a training set composed of 111 balanced ob-
servations (i.e., about 70% of the entire sample, with each class composed of 37
elements), and a test set (drawn from the sample) composed of 51 observations
balanced across the three cultivars (i.e., about 30% of the entire sample and each
class composed by 17 elements) (Guyon et al., 1998).
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Figure 1: Representation of spectral detections performed on the 1100–2300
nm wavelength range

The first step of the analysis consists in selecting the optimal number of com-
ponents P, i.e., the number of latent scores to consider for representing the original
variable space. For this purpose, the latent subspace must explain the largest pos-
sible proportion of the total variance to guarantee the best model estimation. Table
1 shows the proportion of the total variance explained by the first five components
identified by PLS-DA.

Table 1: Cumulative proportion of the total variance explained by the first
five components (percent values)

Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5
Exp.Variance 61.152 35.589 0.892 0.982 1.167
Cum. Sum 61.152 96.741 97.633 98.615 99.782

The table shows that the first two components explain about 97% of the to-
tal variance, and only the first two latent scores have a significant contribution.
Thus, it seems that the best latent subspace is represented by the plane composed
of the first two identified components. However, in order to guarantee the best
model estimate, it is also useful to understand its prediction quality with regard
to the different subspace dimensions. In other words, the selection of the optimal
number of components must be related to some criterion that ensures the max-
imum prediction quality of the estimated model. In this paper, we propose the
maximization of the chi-squared test applied on the comparison between the real
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training partition and the predicted training partition (Rao and Scott, 1981). Fig-
ure 2 represents the chi-squared values for different numbers of components (i.e.,
from 2 to 10 selected components).
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Figure 2: Chi-squared values with respect to different choices of components
number

In the scree-plot shown in Figure 2, the chi-squared criterion suggests P =

3 as the optimal number of components, where the maximum value of the chi-
squared test is equal to 153.28. Then, we can select three components to estimate
the model, but we can use the plane composed of the first two latent scores to
represent the estimated groups (i.e., using 97% of the total information in the
data).

Figure 3 shows the loadings distributions and the squared of the loadings
distributions of the three Xs’ latent scores, measured on all the observed variables
(i.e., on the 1100–2300 nm wavelength range).

By observing the behavior of the loadings, we can say that the wavelengths
from about 1100 nm to about 1500 nm have a high negative contribution to the first
two components, while they have a positive contribution to the third component;
the wavelengths from about 1500 nm to about 1900 nm have a negative contribu-
tion to all three components, with the largest contribution to the first component;
finally, the wavelengths from about 1900 nm to about 2300 nm have a positive
contribution to both the first and the third component, while they have a negative
contribution to the second component.

Now, we compare the classification results obtained by the PLS-DA pro-
cedure with results obtained by other classifiers, including K-nearest neighbor
(KNN), support vector machine (SVM), diagonal linear discriminant analysis
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Figure 3: The loadings distributions (top) and squared loadings distributions
(bottom) of the three latent scores measured on all the observed variables

(DLDA), maximum uncertainty linear discriminant analysis (MLDA), and shrunken
linear discriminant analysis (SLDA). For the measurement of the model prediction
quality, we have used mis classification rate (MIS), adjusted Rand Index (ARI)
(Hubert and Arabie, 1985), and the chi-squared test (χ2). The three measures
have been computed on the comparison between the real data partition and the
predicted partition.

Formally, let Table 2 (here called T ) be the K×K confusion matrix where
the real data partition and the predicted partition have been compared, MIS =

1−n−1
[
∑

R
r=1 ∑

C
=1 nrc

]
, while ARI = ∑

R
r=1 ∑

C
=1 (

nrc
2 )−(

n
2)
−1

∑
R
r=1 (

nr.
2 )∑

C
c=1 (

n.c
2 )

1
2 [∑

R
r=1 (

nr.
2 )+∑

C
c=1 (

n.c
2 )]−(

n
2)
−1

∑
R
r=1 (

nr.
2 )∑

C
c=1 (

n.c
2 )

.

Table 2: An example of a confusion matrix between the real data partition
and the predicted partition

Predicted partition
P1 · · · PC

Real partition R1 n11 · · · n1C n1·
...

...
. . .

...
...

RR nR1 · · · nRC nR·
n·1 · · · n·C n

Table 3 shows the results for the quality of the model predictions obtained on
the training set and the test set.
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Table 3: Model prediction quality computed on the training set and the test
set

Training set Test set
MIS ARI χ2 MIS ARI χ2

PLS-DA 0.002 0.880 153.283 0.008 0.710 77.182
KNN 0.027 0.755 151.744 0.157 0.625 65.294
SVM 0.072 0.797 152.688 0.137 0.615 69.750
DLDA 0.241 0.368 101.599 0.255 0.351 46.714
MLDA 0.078 0.734 149.577 0.010 0.699 72.311
SLDA 0.005 0.712 150.456 0.011 0.702 75.899

From the results, we can see that PLS-DA has the best performance on both
the training set and the test set. This result is confirmed by the representation of
the predicted partition on the first two Xs’ latent scores (i.e., on about 97% of
the total data variance) as shown in Figures 4 and 5 (training set and the test set,
respectively). In fact, we can see that, with respect to the other studied method-
ologies, PLS-DA identifies more homogeneous and better-separated classes.
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Figure 4: Representation of the predicted partition on the first two latent
scores (training set)
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Figure 5: Representation of the predicted partition on the first two latent
scores (test set)

5. CONCLUDING REMARKS

Data acquired via spectroscopic detection represent a hard challenge for re-
searchers, who face two crucial problems: data dimensionality larger than the
number of observations, and high correlation levels among the variables. In this
paper, partial least squares discriminant analysis (PLS-DA) modeling was pro-
posed as a method to classify hyperspectral data. The results obtained on real
data show that PLS-DA identifies classes that are more homogeneous and better-
separated than other commonly used methods, such as non-parametric classifiers
and other discriminant functions.
Moreover, we think that PLS-DA is a very important tool in terms of dimension-
ality reduction, as it can maximize the total variance of data using just a few
components (i.e., the Xs’ latent scores). In fact, the PLS-DA components enable
a good graphical representation of the partition, which is not possible with other
approaches.
In future studies, the use of PLS for unsupervised classification could be a useful
tool when both the number and structure of the groups are unknown.
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