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Abstract

This paper considers a stochastic model for managing spread risk by time changing the jump Cox-Ingersoll-
Ross (JCIR) process with a random clock, which has a mean reverting jump component that leads to mean
reversion in the level of credit spread in addition to the smooth mean reversion force. In order to calibrate
the model we use the particle filtering technique, which allows for the estimate of real-world and risk-neutral
probability distributions from time series of credit spread observations.

I. Introduction

Directive 2009/138/CE of the European parlia-
ment and of the council (Solvency II) requires
insurance companies to have a level of Own
Funds consistent with the risks to which they
are exposed, at least equal to Solvency Capital
Requirement (SCR), which is defined as the
Value-at-Risk (VaR) of the one-year distribu-
tion of the company’s Basic Own Funds (BOF),
with a probability level of 99.5%.

The approaches proposed for calculating
the SCR include, among others, the Standard
Formula - a predefined model calibrated on
data relating to the European insurance mar-
ket - and the Internal Model, which should
represent undertaking risk profile as accu-
rately as possible. Both approaches require
that balance sheet items should be evalu-
ated according to a market consistent method.
Therefore, in accordance with the principles
of the Directive, valuation of BOF is carried
out using risk-neutral probabilities and, on the
other hand, valuation of VaR of the one-year
distribution of the company’s BOF should be
based on real-world probabilities of risk fac-
tors affecting BOF. In order to comply Di-
rectives principles, calibration of the models
should be carried out on the basis of time se-

ries of market values, from which both proba-
bility distributions can be inferred.

Among the risks covered by SCR, in this pa-
per we analyzed spread risk, defined as "the
sensitivity of the values of assets, liabilities
and financial instruments to changes in the
level or in the volatility of credit spreads over
the risk-free interest rate term structure"1 . Al-
though many factors can affect the level or
the volatility of credit spread, such as counter-
party risk, tax effects and liquidity risk (Elton
et al. 2001, Dignan 2003 and Driessen 2003),
we assume that only counterparty risk is rel-
evant, leaving other components as residuals.
Counterparty risk can be defined as the risk
that, in the context of a credit transaction, a
debtor fails to meet his obligations (repay the
principal and/or interest), even partially. The
additional return required by the creditor, i.e.
the risk premium for default risk, is composed
by arrival risk, timing risk, and recovery risk
(Schönbucher 2003). Arrival risk is a term for
the uncertainty whether a default will occur or
not; timing risk refers to the uncertainty about
the precise time of default; recovery risk de-
scribes the uncertainty about the severity of
the losses if a default has happened.

1Article 105 of the Directive.
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Considering the above assumptions, in or-
der to manage spread risk we use an intensity-
based model, developed by Li et al. 2016 in
the context of electricity spot price modelling,
properly adapted to model counterparty risk.
Set up within the one-dimensional Markovian
framework, the model is based on the Cox-
Ingersoll-Ross (CIR) diffusion process, inter-
spersed with compound Poissons jumps with
exponentially distributed jump size and a sub-
ordinated process as a random clock. These
results allow to obtain both tractability and
interesting features in sample paths: process’
jumps are state-dependent and contribute to
the return to the long-time average level, to-
gether with the mean-reversion drift compo-
nent.

Estimation on market data of the model pa-
rameters is carried out through maximum like-
lihood estimation (MLE), where the likelihood
function is calculated via particle filter tech-
nique (Bolviken and Storvik 2001); this ap-
proach allows to estimate both probability dis-
tributions as a whole.

The rest of this paper is organized as follow.
Section (2) describes the modelling framework.
Section (3) provides a brief description of the
general theory of filtering; in this section we
introduce the filter and we mention the sit-
uations in which particles are necessary. In
section (4) we apply the particle filtering tech-
nique to calibrate the model; here we analyze
the results of the calibration phase by compar-
ing some statistics related to the market and
model time series.

II. Spread risk model

The model. Let (Ω, F, P) a probability space
equipped with a filtration {Ft}t≥0, such that
∀t Ft ⊂ F and, for s < t we have Fs ⊂ Ft. We
define P as the real-world probability.

Under (Ω, F, P), we model the instanta-
neous default intensity as:

λ
ϕ
t = λTt (1)

where (λt)t is a JCIR process and Tt is a ran-
dom clock.

A JCIR process is the unique solution to the
following SDE:

dλt = α(γ − λt)dt + ρ
√

λtdZP
t + dJt (2)

where α, γ, ρ > 0 and λ0 = λ(0) > 0. We
also impose the Feller condition 2αγ ≥ ρ2, so
that zero is an unattainable boundary for (λt)t;
(Jt)t is a compound Poisson process, indepen-
dent from (Zt)t, with arrival rate ω > 0 and
the jump size which follows an exponential
distribution with mean µ > 0.

We choose the random clock Tt as an addi-
tive subordinator, i.e. a non-negative and non-
decreasing additive process (Sato 1999). In
particular, let Tt be a Gamma process (Madan,
Carr, and Chang 1998), independent from
(λt)t; its Lévy measure is given by:

ν(dτ) =
m2/υ

τ
e−

m
υ τdτ, (3)

where m = E[T1]− γT and υ =Var[T1] are
the mean and variance rate of the stochastic
part of the Gamma process respectively, while
γT ≥ 0 is the drift of T. In the rest of this pa-
per, we adopt the following parametrization:

ν(dτ) =
C
τ

e−ητdτ, (4)

where C =
m2

υ
and η =

m
ν

.

The Laplace transform of the Gamma pro-
cess is given by:

E[e−wTt ] = eψ(w)t, (5)

with the Laplace exponent:

ψ(w) = wγT + C ln(1 +
w
η
). (6)

Following Li et al. 2016, we call (λ
ϕ
t )t

"GMAC-JCIR process". We now calculate the
Laplace transform of the GMAC-JCIR process
(λ

ϕ
t )t.
First, the Laplace transform of the JCIR pro-

cess (λt)t is well known (Duffie and Singleton
1999):
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Eλ[e−zλt ] = C(z, t)A(z, t)e−B(z,t)λ, (7)

where:

C(z, t) = (e−αt +
(2α + zρ2)(1 − e−αt)

2α(1 + zµ)
)−ωa,

(8)

B(z, t) =
2αz

2α + (2α + zρ2)(eαt − 1)
, (9)

A(z, t) = (
2αeαt

2α + (2α + zρ2)(eαt − 1)
)b, (10)

and

a =
2µ

ρ2 − 2µα
, b =

2αγ

ρ2 . (11)

Therefore, the Laplace transform of (λ
ϕ
t )t

can be written as:

E[e−zλϕ
] =

∫ +∞

0
Ex[e−zλu ]qs,t(du). (12)

Now, let gt(du) be the transition probabil-
ity distribution of a Gamma subordinator with
zero drift, mean and variance rate m and ν,
then gt(du) is given by the following Gamma
distribution:

gt(du) =
ηCt

Γ(C)
uCt−1e−ηudu (13)

Equation (12) can be rewritten as:

E[e−zλϕ
] =

∫ +∞

0
Ex[e

−zλγT (t−s)+u ]gt−s(du)

(14)
The integral (14) can be efficiently com-

puted by the Gauss-Laguerre quadrature. A
high level of accuracy can be obtained with a
small number of quadrature points.

Availability of the Laplace transform of λ
ϕ
t

allows to recover the transition probability
density of the process through an efficient nu-
merical Laplace inversion algorithm.

Equivalent measure change for GMAC-JCIR
process. It can be shown that (λ

ϕ
t )t is a

Markov semimartingale on (Ω, F, P). Li et al.
2016 derive general explicit conditions under
which (λ

ϕ
t )t is Markov semimartingale on (Ω,

F, Q), where Q a probability measure equiva-
lent to P.

In general, for the tempered stable family
of Lévy subordinators - which includes the
Gamma process as a special case - the Lévy
measure ν(dτ) is given by:

ν(dτ) = Cτ−1−pe−ητdτ (15)

Let (α̂, γ̂, ρ̂, ω̂, µ̂, Ĉ, p̂, η̂, γ̂) be the parameters
which identifies the probability distribtion of
λ

ϕ
t under Q, when the random clock belongs

to the tempered stable family of Lévy subor-
dinator. Suppose the following conditions are
satisfied:

• p̂ = p
• γ̂ρ̂2 = γρ2

• Ĉρ̂2p̂ = Cρ2p

Then Q|Ft
∼ P|Ft

for every t ≥ 0 (Li et al.
2016).

Pricing under counterparty risk. In a mar-
ket model defined with a probability space (Ω,
F, P) equipped with a filtration {Ft}t≥0, the
value at time t of a contract X with maturity
in T is:

Xt = EQ{e−
∫ T

t rudu1{κ>T}XT

+ e−
∫ κ

t rudu1{κ≤T}gκ |Ft}
(16)

where Q is a martingale measure equivalent
to P, κ is the instant of default, 1A is the indi-
cator function of event A, gκ is the value of
the contract in case of default, and the spot
rate (rt)t uniquely determines term structure
of interest rates. Assuming that gκ is a deter-
ministic fraction δ (Recovery Rate) of the value
of the contract at the instant immediately pre-
ceding the default:

g(κ) = δXκ− δ ∈ [0, 1) (17)
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The price of the contract can be rewritten as
(Duffie and Singleton 1999):

Xt = EQ{e−
∫ T

t

[
ru+(1−δ)λ

ϕ
u

]
duXT |Gt}, (18)

where λ
ϕ
u is the default intensity.

Now, let v(t, t + τ) be the value at time t
of a unit risk-free zero-coupon bond with ma-
turity t + τ and vR(t, t + τ) the value at time
t of a risky zero-coupon bond, issued by an is-
suer with rating R, with maturity t + τ and
conditional on the issuer not going bankrupt
in [0; t]. From (18), assuming independence
beetween interest rate risk and counterparty
risk, we have:

vR(t, t + τ) = EQ{e−
∫ t+τ

t

[
ru+(1−δ)λ

ϕ
u

]
du|Ft}

= v(t, t + τ)EQ{e−
∫ t+τ

t (1−δ)λ
ϕ
u du|Ft}

(19)

And the yield-to-maturity intensities for the
maturity t + τ are given by:

h(t, t + τ) = − 1
τ

log v(t, t + τ) (20)

hR(t, t + τ) = − 1
τ

log vR(t, t + τ) (21)

Therefore, credit spreads can be defined as
follows:

sR(t, t + τ) = hR(t, t + τ)− h(t, t + τ)

= − 1
τ

EQ{e−
∫ t+τ

t (1−δ)λ
ϕ
u du|Ft}

:= − 1
τ

Q(t, t + τ)

(22)

for every t and τ > 0. In the rest of this
paper, we omit the reference R of the rating
for credit spreads.

III. Particle filtering technique

General issues. State space modelling pro-
vides a unified methodology for treating a

wide range of problems in time series analy-
sis. It is assumed that the development over
time of a dynamic system is determined by
an unobserved series of quantities with which
are associated a series of observations, where
the relation between the unobserved and the
observed ones is specified by the state space
model. In general, the main purpose of state
space analysis is to infer the relevant proper-
ties of unobserved quantity from the charac-
teristics of the observations (Durbin and Koop-
man 2001)

In our framework, the dynamic system for
which measurements are available is repre-
sented by the market, where the measure-
ments can happen in discrete time instants.
From the independence between interest rates
and credit spread, at every time the state of
the dynamic system is determined only via the
instantaneous default intensity: in this way,
changes in the dynamic system are governed
by real-world probability distribution of the
instantaneous default intensity, while the risk-
neutral probability distribution allows to take
into account the relationship between the state
of the system and the measurements, i.e. the
observed credit spreads.

Filtering in state-space models concerns
computing a series of linked numerical inte-
grals, where output from one is input to the
other (Bucy and Senne 1971). Particle filtering,
in particular, can be regarded as a technique
for solving these integrals by discrete approx-
imations, based on particles (Kitagawa 1996).
In the following we only consider the case of
deterministic particle filtering. In contrast to
Monte-Carlo filtering, it could be the preferred
method when the state process has low dimen-
sion and high numerical accuracy is desired
(Bolviken and Storvik 2001).

Exact filter. Suppose we deal with a Markov
stochastic process (λ

ϕ
t )t, observed indirectly

through a discrete-time process:

(sobs
t )t := (sobs(t, t + τ))t (23)

for some τ > 0. We also define:
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sobs
t1 :T := {sobs(t1, t1 + τ), ..., sobs(T, T + τ)}

(24)
Let p(λϕ

t |λ
ϕ
t−1) be the state equation, which

represents the trasition probability distribu-
tion of the state variable λ

ϕ
t and describes the

dynamic characteristics of the system at time
t. The state equation is governed by the real-
world probability distribution.

Let p(st|λϕ
t ) be the observation equation,

which represents the likelihood and describes
the relationship between the latent variable
and the observed ones at time t. The observa-
tion equation is governed by risk-neutral prob-
ability distribution.

The exact filter for the process (λ
ϕ
t )t can be

written as a set of recursive integration equa-
tions. Starting with:

p(λϕ
0 |s0) := p(λϕ

0 ) (25)

as the prior distribution of the state variable
at time t = 0, we can calculate recursively:

p(λϕ
t |s1:t−1)

=
∫
ℜ+

p(λϕ
t |λ

ϕ
t−1)p(λϕ

t−1|s1:t−1)dλ
ϕ
t−1,

(26)

p(λϕ
t |s1:t)

= C−1
t p(st|λϕ

t )p(λϕ
t |s1:t−1)

(27)

for t ≥ 1. The normalisation constants Ct is
defined as follows:

Ct =
∫
ℜ+

p(st|λϕ
t )p(λϕ

t |s1:t−1)dλ
ϕ
t (28)

and produces the log-likelihood function of
the observations (st)t through:

log(p(s1:T)) =
T

∑
t=1

log(Ct) (29)

Deterministic particle filter. Computation
of the integral in equations (26), (27) and (28)
can be difficult. When all distributions are

Gaussian and the relationship between the ob-
served variables and the latent one is repre-
sented by a linear function, then there are
closed-form solutions to the recursive equa-
tions (Kalman 1960, Kalman and Bucy 1961,
Kalman and Bucy 1963). In general, when
the integrals must be calculated with numer-
ical techniques or the relationship is not linear,
the recursive equations do not admit a closed-
form solution. In this case we must deal with
particle filter, a methodology that allows to cal-
culate numerically the integrals through dis-
crete approximations, based on the definition
of points (particles) over the integration set.

In the context of deterministic particle fil-
ter, i.e. when the points are defined through
a non-stochastic approach, evaluations of in-
tegrals can be efficiently carried out by Gaus-
sian quadrature. The simplest among these
rules is the Gauss-Legendre method (Golub
and Welsch 1969). In this way, quadrature fil-
ters are constructed by replacing the densities
in (26) and (27) by a particle approximation
based on the quadrature formulas.

Let (i)λ
ϕ
t be the particles (abscissas) defined

over the integration set and (i)ϵ be the cor-
respondent positive wheigts, for i = 1, ..., N.
Since with the particle filter we replace a con-
tinuous random variable with a discrete one,
if p̂ is some discrete analogue to the exact
density p, we have the following recursive
scheme:

p̂((i)λ
ϕ
t |s1:t−1)

=
N

∑
j=1

p((i)λ
ϕ
t |(j)λ

ϕ
t ) p̂((j)λ

ϕ
t−1|s1:t−1)

(30)

p̂((i)λ
ϕ
t |s1:t)

=
p(st|(i)λ

ϕ
t ) (i)ϵ p̂((i)λ

ϕ
t |s1:t−1)

Ĉt

(31)

for t ≥ 1, i = 1, ..., N and:

Ĉt =
N

∑
i=1

p(st|(i)λ
ϕ
t ) (i)ϵ p̂((i)λ

ϕ
t |s1:t−1) (32)
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p̂((i)λ
ϕ
0 |s0) = (i)ϵp((i)λ

ϕ
0 ) (33)

Then, the approximate likelihood function
is defined as:

log p̂(s1:t) =
t

∑
k=1

log Ĉk (34)

IV. Model calibration

Calibration procedure. The calibration pro-
cedure consists of maximization of the likeli-
hood function (34), which depends on param-
eters of both probability distributions. There-
fore, the calibration procedure can be defined
as:

max
ψ∈Ψ

log( p̂(s1:t)) (35)

where ψ = (ψP, ψQ).
The state equation p(λϕ

t |λ
ϕ
t−1) is derived by

Laplace inversion of (14), through the algo-
rithm proposed by Abate and Whitt 1992. By
Li et al. 2016, we note that the parameters of
the GMAC-JCIR model are identified up to a
constant. Hence, in our calibration procedure
we set γT = 1 for the jump-diffusion specifica-
tion to fix the scale. Then, the state equation
depends on real-world parameters, identified
by:

ψP = (α, γ, ρ, ω, µ, m, ν) (36)

On the other hand, we assume for the obser-
vation equation p(st|λϕ

t ) a Gaussian distribu-
tion:

p(st|λϕ
t ) ∼ N(st, Σ) (37)

where st is defined by (22) and Σ is a di-
agonal matrix, Σ = σ2 I. For the GMAC-JCIR
process the quantity Q in (22) cannot be ob-
tained in closed form, so the credit spreads st
can be derived through Monte-Carlo simula-
tion (Li et al. 2016). The observation equation
depends on risk-neutral parameters, identified
by:

ψQ = (α̂, γ̂, ρ̂, ω̂, µ̂, m̂, ν̂, σ2) (38)

We set ψP and ψQ in order to meet the con-
ditions for which Q|Ft

∼ P|Ft
.

For the maximization problem, we assume
the following:

• P(λϕ
t ∈ [0, 0.05]) ∼= 1;

• Over the integration set [0, 0.05], we de-
fine N = 128 particles for the Gauss-
Legendre method;

• λ
ϕ
0 ∼ Uni f [0; 0.05].

The calibration procedure is implemented
in R. For the solution of the optimum is
used the library "nloptr", in particular the
derivative-free algorithm Cobyla (Constrained
Optimization By Linear Approximations) pro-
posed by Powell 2007. The choice is justi-
fied by the fact that the likelihood function is
very irregular and a gradient optimization al-
gorithms do not allow stability of the solution.
The maximum number of iterations has been
set equal to 1000.

Calibration example. We calibrate our
model on daily term structure of credit
spreads from Bloomberg, belonging to the
"A" rating class and the "finance" sector, from
July 1, 2009 to December 30, 2016, and for
maturities equal to 1, 2, 3, 4, 5, 6, 7, 8, 9 and
10 years.

Figure 1 shows that the correlation is very
high between the spreads when maturities are
near, while it decreases when credit spreads
with short and long maturities are considered.

Calibration results. Results of the maximiza-
tion problem (35) are displayed in tables 1 and
2). It can be noted that the real-world estimate
is located on the boundary of the parameter

space, i.e. we have
2αγ

ρ2 ∼= 1.

The estimate of the parameters of the model
allows to estimate the state variable λ

ϕ
t for

each t ≥ 1, as the expected value of the (ap-
proximated) posterior distribution p̂(λϕ

t |s1:t)
(figure 2), that allows for calculation of model
credit spread over the entire time horizon, via
(22).
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In figures 3, 4, 5 and 6, model and mar-
ket values of credit spreads are reported for
a set of maturities. It can be seen that the filter
produces good results; however for lower and
higher maturities the adaptation is less precise.
In fact, a model which is governed by a unique
factor allows for constant correlations among
the term structure, unlike what is observed in
the market.

Mean and variance analysis is reported in
tables 3 and 4, and in figures 7 and 8, where
several model and market statistics are com-
pared.

In figures 9, 10, 11 and 12, distributions of
residuals for a set of maturities are reported,
while qq-plots of residuals are displayed in
figures 13, 14, 15 and 16. It can be seen that
residuals are inconsistent with the hypothesis
of Gaussian distribution.

The overall prediction error is measured by
the Root Mean Squared Error (RMSE), defined
as follows:

RMSE =

√√√√ 1
N

N

∑
i=1

e2
i , (39)

where ei = si − si. Results are reported in
table 5 for all maturities. The goodness of fit
of the model is better when central maturities
are considered.

V. Conclusions

Results show the goodness of the estimates
made by particle filtering technique: data used
for calibration are satisfactory reproduced by
the model, especially when intermediate ma-
turities are considered.

The implementation of the particle filtering
also affects the speed and the stability of the
solution. Further analysis involves the depen-
dence of the solution on the time series and
with respect to the local mimima of the likeli-
hood function.
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Tables and figures

Figure 1: Correlation of market credit spreads

Table 1: Estimation result for the model

Estimate

α 0.17
γ 0.00318
ρ 0.0325
ω 31.37
µ 0.00018
C 2.77
η 0.1718

Table 2: Estimation result for the model

Estimate

α̂ 0.03999
γ̂ 0.08744
ρ̂ 0.0325
ω̂ 0.05236
µ̂ 0.02513
Ĉ 2.77
η̂ 14.716
σ 0.0012

Figure 2: Estimate of λ
ϕ
t

Figure 3: Comparison between historical and
model credit spreads
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Figure 4: Comparison between historical and
model credit spreads

Figure 5: Comparison between historical and
model credit spreads

Table 3: Means of historical market and model
values

Maturity Means MKT (b.p) Means MDL (b.p.)

1 42.39 54.91
3 66.96 63.34
5 76.65 72.40
10 95.01 95.56

Figure 6: Comparison between historical and
model credit spreads

Table 4: Standard deviations of historical mar-
ket and model values

Maturity SD MKT (b.p) SD MDL (b.p.)

1 44.01 36.35
3 40.94 36.26
5 36.28 36.02

10 36.09 35.47

Table 5: RMSE of the residuals

Maturity RMSE (b.p)

1 26.79
3 8.45
5 6.51

10 13.40
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Figure 7: Mean analysis of historical and
model credit spreads

Figure 8: Standard deviation analysis of his-
torical and model credit spreads

Figure 9: Distribution of the residuals: his-
togram

Figure 10: Distribution of the residuals: his-
togram
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Figure 11: Distribution of the residuals: his-
togram

Figure 12: Distribution of the residuals: his-
togram

Figure 13: Distribution of the residuals: qq-
plot

Figure 14: Distribution of the residuals: qq-
plot
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Figure 15: Distribution of the residuals: qq-
plot

Figure 16: Distribution of the residuals: qq-
plot
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