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Introduction

The Solvency II [6] regulatory regime provides the calculation of a capi-
tal requirement, the Solvency Capital Requirement (SCR), for the insur-
ance and reinsurance companies. This requirement, based on market-
consistent evaluation of the balance sheet, should reflect a level of eli-
gible own funds that enables insurance and reinsurance undertakings to
absorb significant losses and that gives reasonable assurance of the com-
pany solvency to policy holders and beneficiaries. In fact, the Solvency
Capital Requirement should be determined as the economic capital to be
held by insurance and reinsurance undertakings in order to ensure that
ruin occurs no more often than once in every 200 cases (probability of at
least 99,5%). In practice, the SCR shall correspond to the Value-at-Risk
of the basic own funds of an insurance or reinsurance undertaking with
a confidence level of 99,5% over a one-year time horizon.
European Insurance and Occupational Pensions Authority (EIOPA) pro-
poses three methods to evaluate the SCR: the Standard Formula, a
modular approach that provides predetermined model and parameters,
the Undertaking Specific Parameters approach that provides a predeter-
mined model but parameters calibrated by the undertaking and the In-
ternal Model, a more sophisticated model developed by the undertaking
to evaluate as accurately as possible its risk profile and the consequent
requirement.
Therefore the SCR calculation requires the Basic Own Funds (BOF)
probability distribution forecast over a one-year time horizon and, to
ensure the market consistency, must contemplate the use of both real-
world1 probability distributions of risk factors to evolving their values
over the one-year time horizon required by the directive and risk-neutral

1The real-world probability measure is used primarily for risk management pur-
pose and SCR assessment; instead the risk-neutral one is used primarily for market-
consistent valuations, e.g. for pricing of financial and insurance products.
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probability distributions to evaluate the BOF. This framework brings
out the issue of using calibration techniques based on market prices
time series, which allow to calibrate jointly the parameters under both
probability measures. Specifically, this work uses the calibration tech-
nique known as Particle Filtering, widely used in the financial field and
discussed in literature from a theoretical and practical point of view (re-
fer to [15], [14], [4] and [5]).

This paper focuses on the spread risk only, one of the market risks con-
sidered by the regulations. Particularly, the spread risk is considered as
defined by the Directive: “the sensitivity of the values of assets, liabili-
ties and financial instruments to changes in the level or in the volatility
of credit spreads over the risk-free interest rate term structure.” [6].
The model chosen to evaluate the spread risk is an extension of the
model proposed by Lando [13] and that proposed by Jarrow, Lando e
Turnbull [9]. This extension is also used by Gambaro et al.[7] and models
the credit rating transition and the default process using an extension of
a time-homogeneous Markov chain; this model explicitly considers the
credit rating transitions, defining the price of a zero coupon bond (ZCB)
with maturity T and rating i at time t as:

vi(t, T ) = EQ
[
e−

∫ T
t r(s) ds(1− P iDEF (t, T ))|Ft

]
where r(t) is the risk-free spot rate process and P iDEF (t, T ) is the default
probability for an i-rated issuer over the time horizon (t, T ].
The paper is structured as follows. In section 1 the Markov chains and
the Cox processes are briefly described to introduce the model for the
spread risk. In section 2 the model for the spread risk is presented,
starting from the Lando model framework. In section 3 the calibration
technique, i.e. the Particle Filtering, is presented and its application in
this work is described. In section 4 the case study is presented. Finally,
in the section 5 the results of the calibration procedure are presented
focusing on the goodness of fitting.
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1 On the Markov chains and the Cox processes

This section presents the main theoretical elements underlying the model
used in the paper. Specifically, in the paragraph 1.1 the Markov chains
are presented, both in the discrete-time and in the continuous-time case.
Instead, in the paragraph 1.2 the Cox processes are presented in the
Lando’s paper [13] framework.

1.1 The Markov chains

A Markov process is a stochastic process for which the Markov property
holds, that is a stochastic process whose future behavior can be deter-
mined only by the current state of the process and it is independent of
the past. If the state space is finite or countable, a Markov process is
called a Markov chain.
Markov chains play a fundamental role in the context of rating-based
credit risk models, as the Jarrow, Lando e Turnbull model [9] and
Lando model [13], which model the transitions between the different
rating classes through a Markov chain defined on finite state space,
S = {1, · · · ,K}, which contains all the rating classes and the absorbing
default state K.
In general, changes in an issuer’s or a security’s rating are governed by
transition probabilities that can be collected in a transition matrix such
as the following:

Rating Aaa Aa A Baa Ba B Caa Ca/C WR Default

Aaa 0.8771 0.07943 0.0058 0.00072 0.00023 3e-05 0 0 0.03668 0
Aa 0.00818 0.85154 0.08514 0.00424 0.00062 0.00035 0.00017 1e-05 0.04954 2e-04
A 0.00052 0.02464 0.86784 0.05369 0.00484 0.00106 4e-04 5e-05 0.04643 0.00052
Baa 0.00033 0.00143 0.0412 0.85715 0.03787 0.00687 0.00154 2e-04 0.05173 0.00167
Ba 6e-05 0.00041 0.00422 0.06116 0.76321 0.07172 0.00706 0.00111 0.08222 0.00883
B 7e-05 0.00029 0.0014 0.00448 0.04778 0.73486 0.06615 0.00521 0.10704 0.03272
Caa 0 9e-05 0.00022 0.00084 0.00344 0.06512 0.67874 0.02852 0.14348 0.07955
CaC 0 0 0.00049 0 0.00558 0.02289 0.08943 0.39387 0.22116 0.26658

Table 1: Example of transition frequencies matrix - Source: Moody’s.

The discrete-time Markov chain
Let {Xtk , k = 0, 1, · · · , n} be a discrete-time stochastic process with
state space is N = Z ≡ {· · · ,−2,−1, 0, 1, 2, · · · }. In this work N
is made up of the different rating classes and default state K, i.e.
N = {1, 2, · · · , 7, 8,K} = {Aaa, Aa, A, Baa, Ba, B, Caa, Ca/C, De-
fault}. This process is a discrete-time Markov chain if the distribution
of Xtn+1 depends only on the current state Xtn , not on the whole history
{Xt0 , · · · , Xtn}, that is if for each time tk and every state i0, · · · , in:

P [Xtn+1 = j|Xt0 = i0, · · · , Xtn = in] = P [Xtn+1 = j|Xtn = in] . (1)
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Markov chains are governed by transition probabilities matrix, one-
period or multi-period, that is the probabilities of passing from a generic
state i to a generic state j within one or more periods. Specifically, these
are the following conditional probabilities:

- pij = P [Xtk+1 = j|Xtk = i] represents the one-period probability
of passing from the state i to the state j;

- p
(n)
ij = P [Xtk+n = j|Xtk = i] represents the n-period probability

of passing from the state i to the state j.

These probabilities are generally collected in the so-called transition
probabilities matrix or, more simply, transition matrix. According to
the state space N defined above for this work, it can be represented as
follows:

P =


p11 · · · p1K
...

. . .
...

pi1 · · · piK
...

. . .
...

pK1 · · · pKK


with

-

K∑
j=1

pij = 1 for i = 1, · · · ,K

- pij ≥ 0 ∀i, j = 1, · · · ,K.

Generically, the n-period transition matrix can be achieved multiplying
the one-period transition matrices of different periods:

P(tk, tk+n) = P(tk, tk+1)×P(tk+1, tk+2)× · · · ×P(tk+n−1, tk+n).

If the time-homogeneity property holds, the calculation of the multi-
period transition matrix is simplified: indeed, a Markov chain is time-
homogeneous if the probability P [Xtn+1 = j|Xtn = i] doesn’t depend on
n, that is if the one-period transition matrix is constant over time. The
consequent n-period transition matrix is given by:

P(tk, tk+n) = Pn (2)

where P is the one-period transition matrix. The generic element of
P(tk, tk+n) is given by:

p
(n)
ij = P [Xtk+n = j|Xtk = i] = (Pn)ij . (3)
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The continuous-time Markov chain
The definitions given for the discrete-time case can be extended to the
continuous-time one.
A continuous-time stochastic process {Xt, t ≥ 0} with state spaceN = Z
is a time-continuous Markov chain if satisfies the following property for
each t, s ≥ 0 and for each state j:

P [Xt+s = j|Xt = i, {Xu : 0 ≤ u < t}] = P [Xt+s = j|Xt = i] . (4)

The time homogeneity property becomes:

P [Xt+s = j|Xt = i] = P [Xt+s+k = j|Xt+k = i] (5)

In the continuous-time case one needs to consider the probability dis-
tribution of the holding time Si, that is the time that an issuer spends
in rating grade i. Because of the Markov property this distribution is
exponential:

Si ∼ exp(λi · t).

with λi a positive constant. Since Si follows an exponential distribution2,
the probability that one transition occurs during a short interval ∆t is
given by:

P [Xt+∆t 6= i|Xt = i] = λi ·∆t+ o(∆t) (6)

and is possible to define the transition rate from the state i to the state
j as:

λij = lim
∆t→0

P [X∆t = j|X0 = i]

∆t
, (7)

that by definition must be non-negative, and the holding rate in the
state i as:

λi =
K∑

j=1,j 6=i
λij . (8)

A time-homogeneous continuous-time Markov chain can be defined by
the K ×K generator matrix:

Λ =


−λ1 · · · λ1K

...
. . .

...
λi1 · · · λiK
...

. . .
...

λK1 · · · −λK


which satisfies the following properties:

-
K∑
j=1

λij = 0, for 1 ≤ i ≤ K

2Then the number of jump events follows a Poisson distribution.
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- 0 ≤ −λii = λi, for 1 ≤ i ≤ K

- λij ≥ 0, for 1 ≤ i, j ≤ K with i 6= j.

Then the relation between the generator matrix and the transition ma-
trix is:

P(t, s) = exp ((s− t)Λ) . (9)

For further details, refer to [8] and [11].

1.2 The Cox processes

A Cox process is a generalization of the Poisson process in which the
intensity can be random on condition that, given a particular realization
of the intensity, l(s, ω), the jump process is an inhomogeneous Poisson
process3 with intensity l(s, ω).
In [13] Lando proposes a random intensity on the form of a function of
the current level of the state variables X, that is a Rd-valued stochastic
process:

l(s, ω) = λ(Xs)

with λ : Rd → [0,+∞).
Formally, let (Ω,F , P ) a probability space large enough to support an
Rd-valued stochastic process X = {Xt : 0 ≤ t ≤ Tf} and a unit expo-
nential random variable E1 which is independent of X. Let’s assume
that λ : Rd → R is non-negative and continuous. Then the default time
τ is defined as

τ = inf

{
t :

∫ t

0
λ(Xs) ds ≥ E1

}
(10)

and can be considered the first jump time of a Cox process with intensity
process λ(Xs).
From the previous definitions derive the following probabilities:

P [τ > t|{Xs}o≤s≤t] = e−
∫ t
0 λ(Xs) ds t ∈ [0, Tf ] (11)

P [τ > t] = E
[
e−

∫ t
0 λ(Xs) ds

]
t ∈ [0, Tf ] (12)

3An inhomogeneous Poisson process N with non-negative intensity function l(·)
satisfies:

P [Nt −Ns = k] =

(∫ t
s
l(u) du

)k
k!

e−
∫ t
s l(u) du

and, assuming N0 = 0,

P [Nt = 0] = e−
∫ t
s l(u) du.

To simulate the first jump time τ of N is possible to define

τ = inf

{
t :

∫ t

0

l(u) du ≥ E1

}
with E1 that is a unit exponential random variable.
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To extend this framework in order to model a Cox process past the
first jump, essential to consider multiple rating transitions, it’s neces-
sary to consider a probability space (Ω,F , P ) large enough to support a
standard unit rate Poisson process N with N0 = 0 and a non-negative
stochastic process λ(t) which is independent of N and assumed to be
right-continuous and integrable on finite intervals, i.e.

Λ(t) :=

∫ t

0
λ(s) ds <∞ t ∈ [0, T ].

The new process Ñt := N(Λ(t)) is a Cox process with intensity Λ.

2 The model for the spread risk

This section presents first, in the paragraph 2.1, the variables relevant
for pricing defaultable bonds, such as the risk-free and risky yield to
maturity and the yield spread. Then, in the paragraph 2.2 the model
extension proposed in [7] and used in this paper is presented.

2.1 Relevant variables for pricing defaultable bonds

Let τ be the random time at which default occurs and Ft be the filtration
that includes the information at time t about the market state variables
and the default. In more detail, Ft contains the information about the
evolution of the market state variables up to time t and about whether
default has occurred up to time t.
This filtration can be disassembled in two sub-filtrations:

Ft = Gt ∨Ht

with: Gt = σ{Xs : 0 ≤ s ≤ t}, the market state variables filtration, and
Ht = σ{1{τ≤s} : 0 ≤ s ≤ t}, the default filtration.
Let:

- v(t, T ) be the price of a unitary risk-free ZCB with maturity T 4

at time t;

- vi(t, T ) be the price of a unitary risky ZCB with maturity T 5 issued
by a firm with credit rating i at time t;

Under the model assumptions6, vi(t, T ) is defined by [9] as:

vi(t, T ) = EQ
[
e−

∫ T
t r(Xu) du

(
δ1{τ≤T} + 1{τ>T}

)
|Ft
]

(13)

4The ZCB that pays surely a unit of currency at time T .
5The ZCB that pays a unit of currency at time T , if the default of the issuer occurs

after the maturity T . If the default occurs before the maturity, the bond pays only
δ < 1 units of currency.

6The markets for the risk-free and risky bond are complete and arbitrage-free.
The recovery rate δ is an exogenous constant.
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where Xu is the level of the state variables at the time u, δ is the recovery
rate, i.e. the amount by the ZCB if the default occurs, and 1{τ≤T} is
the indicator function of the event {τ ≤ T}.
Under the further assumption that the default process is independent of
the risk-free spot rate, the equation (13) becomes:

vi(t, T ) = EQ
[
e−

∫ T
t r(Xu) du|Gt

]
EQ [(δ1{τ≤T} + 1{τ>T}

)
|Ht
]

= v(t, T )
(
δ + (1− δ)PQ

t [τ > t])
)
,

(14)

Starting from v(t, T ) and vi(t, T ) definitions, the yields to maturity risk-
free and risky for the maturity s are defined respectively as:

h(t, s) = − 1

s− t
log v(t, s), (15)

hi(t, s) = − 1

s− t
log vi(t, s). (16)

From the equations (15) and (16) is possible to define the credit spread
in terms of yield to maturity:

σi(t, s) = hi(t, s)− h(t, s). (17)

This variable plays a fundamental role in this work, as the calibration
procedure works on the credit spreads in terms of yield to maturity.

2.2 The model for the spread risk

The model used in this paper is an extension of the models described
in [9] and [13]. The model incorporates state dependence in transition
rates and risk premia so that stochastic variations in credit spreads are
possible even staying in the same rating class.
The credit rating transition and the default process are modelled with an
extension of the classical time-homogeneous Markov chain: the dynamic
of a credit rating of a bond Y (t) is a Markov process on a finite state
space S = {1, 2, · · · ,K} governed by the transition matrix

PX(s, t) = eA(τ(t)−τ(s)), (18)

where K is the absorbing state of default, A is the generator7 matrix of
a time-homogeneous Markov chain and τ(t) is a stochastic time. This
process conditionally on the evolution of the state variables, τ(t), is a
inhomogeneous Markov chain and the transition probabilities satisfy the
Kolmogorov’s backward equation:

∂PX(s, t)

∂s
= −AX(s)PX(s, t). (19)

7A is a matrix with a non-negative off-diagonal elements and zero row sums.
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In order to obtain greater clarity, from now on the dependence on state
variables in formulas is omitted.
Under the assumptions that the time-dependent generator matrix A is
diagonalizable and then has the representation

A = B D B−1 (20)

where B is a K × K matrix whose columns are the K eigenvectors of
the generator matrix A and D is a diagonal matrix with the eigenvalues
of A as the diagonal elements8, the transition matrix can be written as

P(s, t) = B eD(τ(s)−τ(t))B−1 (21)

and continues to satisfy the Kolmogorov’s backward equation.

In order for the model to be consistent, the process τ is a stochastic
time:

- τ is a real positive and increasing right continuous process with
left limits;

- for every t ≥ 0, τ(t) is a stopping time;

- for every t ≥ 0, τ(t) is finite almost surely;

- τ(0) = 0;

- lim
t→+∞

τ(t) =∞.

τ(t) has stationary non-negative independent increments then is a subor-
dinator of the subordinated process Y , that is unconditionally a Markov
chain.
Gambaro et al. in [7] define τ(t) as an integral of a positive stochastic
intensity λ(t):

τ(t) =

∫ t

0
λ(s) ds, (22)

then the equation (19) becomes

∂P(s, t)

∂s
= −Aλ(s)P(s, t). (23)

and the generator matrix of Y is Aλ(t) = Aλ(t).
For further analytical details, refer to [13] and [7].

The process λ is modelled as a CIR model [3], i.e. the real-world dynamic
is:

dλ(t) = α(γ − λ(t))dt+ σ
√
λ(t)dZP(t), λ(0) = λ0 (24)

8D = diag(d1, · · · , dK−1, 0).
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where dZP(t) is a standard Brownian motion under the real-world mea-
sure while under the risk-neutral9 one become:

dλ(t) = α̂(γ̂ − λ(t))dt+ σ
√
λ(t)dZQ(t), λ(0) = λ0, (25)

where dZQ(t) is a standard Brownian motion under the risk-neutral mea-
sure.
Under the CIR model assumption for λ(t), the real-world and risk-
neutral transition probabilities follow a non-central Chi-squared distri-
bution:

p(λt+∆t|λt) ∼ χ2
nc

(
λt+∆t; 2ν, µ(λt)

)
, (26)

where

ν =
2αγ

σ2

µ(λt) = λt
4αe−α∆t

(1− e−α∆tσ2)

and the parameters are respectively real-world and risk-neutral.
The non-centrality parameter, as can been seen, depends on the λt value
then the process is not-stationary.

Then the price at time t of a ZCB with maturity T , issued by a firm
with rating i and zero recovery rate is:

vi(t, T ) = EQ
t

[
e−

∫ T
t r(s) ds (1−P(t, T )i,K)

]
=

K−1∑
j=1

−bijb−1
jKEQ

t

[
e−

∫ T
t r(s) ds edj

∫ T
t λ(s) ds

]
,

(27)

where r(t) is the risk-free spot rate, P(t, T )i,K is the transition proba-
bility from a credit rating i at time t to a default state at time T , bij
and b−1

ij are respectively the (i, j) elements of the matrices B and B−1

and dj is the j-th diagonal element of the matrix D.
Under the assumption that the process r and λ are independent, the
equation (27) becomes:

vi(t, T ) = v(t, T )
K−1∑
j=1

−bijb−1
jKEQ

t

[
edj

∫ T
t λ(s) ds

]
, (28)

where v(t, T ) is the price of the risk-free bond with maturity T .
Under the CIR model hypothesis, the expectation in equation (28) has
an analytical expression given by [10]:

EQ
t

[
edj

∫ T
t λ(s) ds

]
= A(u)e−B(u)(−dj)λt , u = T − t (29)

9Gambaro et al. in [7] use a CIR++ model.
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where:

A(x) =

[
2 b e

α̂+b
2
x

(α̂+ b)(eb t − 1) + 2b

]ν
,

B(x) =
2 (eb T − 1)

(α̂+ b)(eb x − 1) + 2b
,

b =
√
α̂2 + 2(−dj)σ2.

As proposed in [7], a more flexible dependence structure among the
credit ratings can be obtained adding a rating-specific liquidity spread
to the ZCB price formula (28):

vi(t, T ) = v(t, T )EQ
t

[
e−

∫ T
t li(s) ds

]K−1∑
j=1

−bijb−1
jKEQ

t

[
edj

∫ T
t λ(s) ds

]
, (30)

where rating-specific liquidity spread intensity li(t) can be modelled in
several ways, but this additional term represents an extension of the
model in (28) and its study is deferred to future works.

3 The Particle Filter

This section presents the Particle Filter calibration technique. First,
from a theoretical point of view (paragraph 3.1), i.e. the Bayes’ theorem-
based algorithm to calculate the likelihood value and to estimate the op-
timal parameters vector. Then, the Particle Filter is presented applied
in the framework of this paper (paragraph 3.2).

3.1 Theoretical aspects

The state space Hidden Markov Model (HMM) are compatible with this
structure:

- a multidimensional χ-valued discrete-time Markov process {xn}n≥0,
unobservable, called hidden or state variable;

- a multidimensional Y-valued process {yn}n≥0, observable, whose
observations are conditionally independent, given xn value ({yn|xn}).
This process is called observation variable.

It is assumed that:

1. in n = 0 (initial time), the state variable has an initial probability
density pθ(x0); this can be considered the Bayesian prior distribu-
tion.

2. for n ≥ 1, the state variable evolves according to the the transition
probability density pθ(xn|xn−1): this is called state equation.
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3. for n ≥ 1, the observation variable has marginal probability den-
sity pθ(yn|xn): this is called measure equation and provides the
observation likelihood.

The assumptions 1-2 define the prior distribution of the state process
{xn}n≥0, that is:

pθ(x1:n) = pθ(x0)
n∏
k=1

pθ(xk|xk−1). (31)

The third assumption, instead, defines the likelihood function:

pθ(y1:n|x1:n) =

n∏
k=0

pθ(yk|xk). (32)

The problem of filtering consists of characterising the distribution and
the full trajectory of the state variable of the HMM at the present time,
given the observations up to the present time. Particle Filtering is pro-
posed as one of the techniques used for this purpose.

The posterior distribution pθ(x1:n|y1:n) satisfies the following recursive
relation:

pθ(x1:n|y1:n) =
pθ(x1:n−1|y1:n−1) pθ(xn|xn−1) pθ(yn|xn)

pθ(yn|y1:n−1)
. (33)

In the literature, the recursive relation for the marginal posterior distri-
bution pθ(xn|y1:n)10 is presented as:

pθ(xn|y1:n) =
pθ(yn|xn) pθ(xn|y1:n−1)

pθ(yn|y1:n−1)
(34)

where pθ(yn|xn) is the likelihood and it’s defined by assumption 3,
whereas

pθ(xn|y1:n−1) =

∫
Ωx

pθ(xn|xn−1) pθ(xn−1|y1:n−1) dxn−1 (35)

is the conditional distribution of the state variable xn, given the infor-
mation up to n− 1, and

pθ(yn|y1:n−1) =

∫
Ωx

pθ(yn|xn) pθ(xn|y1:n−1) dxn (36)

is the constant that allows to compute the marginal likelihood, i.e.:

L(θ) = pθ(y1)

n∏
k=2

pθ(yk|y1:k−1) (37)

Starting from pθ(x0) and using recursively equation (35), known as the
prediction step, and equation (34), known as updating step, is possible
to compute {pθ(xn|y1:n)} sequentially11 so to obtain the marginal like-

10Obtained integrating out x1:n−1 in equation (33).
11Starting from pθ(xn−1|y1:n−1).
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lihood L(θ).

Specifically, the Particle Filter is a particular method belonging to the
class of filtering methods in which the integrals are solved with numer-
ical methods. Alternatively, if the distributions are Gaussian and the
relation between the state variable and the observation variable is lin-
ear, then analytical solutions to recursive equations are provided and
the method is known as Kalman Filter.

3.2 The Particle Filter applied to the model

In this work, two calibration procedures are proposed, or rather the
same calibration procedure is applied to different data (single-rating and
multi-rating12 calibration). In both cases the Particle Filter is used:

1. the state variable is the subordinator intensity λ(t) and the state
equation follows a non-central Chi-squared distribution.

2. the observation variable is the term structure of credit spread in
terms of yield to maturity σi(t, s), defined in equation (17), either
way and the measure equation is assumed Gaussian:

p(yt|xt) = p(σit(s)|xt) ∼ N(σit(s),Σ), (38)

where Σ is a diagonal variance-covariance matrix and each non-
zero element is the constant parameter ω2.

For the modelling assumptions made, the integrals in equations (35) and
(36) have no closed formula solution and therefore must be solved using
numerical methods, in particular the Gauss-Legendre quadrature with
n = 1024 nodes in the range [0,10].
Then the filter recursive equations become:

p̂θ

(
xjt |σi1:t−1(st)

)
=

n∑
k=1

pθ

(
xjt |xkt−1

)
p̃θ

(
xkt−1|σi1:t−1(st)

)
wk (39)

and

p̃θ

(
xjt |σi1:t(st)

)
=

pθ

(
σit(st)|x

j
t

)
p̂θ

(
xjt |σi1:t−1(st)

)
∑n

k=1w
k pθ

(
σit(st)|xkt

)
p̂θ
(
xkt−1|σi1:t−1(st)

) . (40)

where θ is the model parameters vector, w(k) are the quadrature weights
and xkt are the quadrature nodes. Then the marginal likelihood in equa-
tion (37) becomes:

L(θ) = max
θ∈Θ

T∏
t=1

pθ(σ
i
t(s)|σi1:t−1(s)). (41)

12Further details about these two calibration procedure are provided in section 4.
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The calibration procedure is implemented using the software R and the
programming language C++; specifically the library nlopt and the opti-
mization algorithm cobyla13 are used.

4 Case study

This section presents the data and the metrics involved in the calibration
technique applied to the model. Specifically, in the paragraph 4.1 the
two calibration procedures are described; in the paragraph 4.2 market
data used for the calibration procedure and for the assessment of model
goodness of fit are presented; in the paragraph 4.3, instead, the metrics
used to assess the model goodness of fit to those data are described.

4.1 Calibration procedures

The two calibration procedures, respectively named single-rating and
multi-rating calibration, provide for the estimation of parameters vector
of the subordinator intensity λ and the ω parameter.
Given that we reasonably assuming a unique transition matrix therefore
the λ process must also be unique, two paths are followed:

1. single-rating calibration: the parameters are calibrated on the his-
torical series of spread of a single rating class. Then this set of
parameters is used, jointly with the historical series of λt recon-
structed by the filter, is tested also on the other rating classes for
which calibration has not been carried out.
This calibration is performed for each available rating and is con-
figured with a maximum number of iterations of 250.

2. multi-rating calibration: the parameters are calibrated on the his-
torical series of the spreads of all ratings14 at the same time.
This calibration, on the other hand, is configured with a maximum
number of iterations of 1000 due to the larger amount of data it
has to process.

4.2 Reference database

In this section the input data to the estimation process, i.e. the spreads
time series (subparagraph 4.2.1) and the transition matrix (subpara-
graph 4.2.2), are analysed.

13Constrained Optimization BY Linear Approximations proposed by Powell in [17]
and [18].

14All available ratings.
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4.2.1 Spreads time series

The spreads time series used in the calibration process are provided
by Bloomberg. Specifically, the time series of yield spreads related to
currency Euro, economic sector Finance and ratings Aa, A and Baa
(according to Moody’s Investors Service ratings system) are used. They
are identified by the following tickers respectively: IGEEFD Index, IGEEFA
Index and IGEEFB Index.
The yield curves are constructed daily with bonds that have BVAL15

prices at the market close. The BVAL curves are populated with EUR
denominated senior unsecured fixed rates bond issued by European Fi-
nancial companies with a BBG composite rating respectively of Aa+,
Aa or Aa- (IGEEFD Index), A+, A or A- (IGEEFA Index) and Baa+, Baa
or Baa- (IGEEFB Index)[1].

The valuation date is 30/06/2018 and the historical depth of the time
series is 9 years, the maximum available on Bloomberg16. The residual
maturities considered are s = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.
Therefore the total number of input data is 67474: 23220 for IGEEFD

Index, 23220 for IGEEFA Index and 21034 for IGEEFB Index.
The figures 1 represent the market spreads surfaces. Summary statistics
(means, standard deviations and 99.5% quantiles) calculated over the
full time span are reported in table 2, instead the same statistics calcu-
lated over 1-year time span are reported in tables 3, 4 e 5.
From the analysis of the time series statistics it can be seen that the
means have an increasing trend in the first years and then drastically col-
lapsed in 2011 for IGEEFD Index17 and in 2013 for the other two indices.
As for volatilities, on the other hand, they are much more fluctuating
but they too record a sharp drop starting from 2012 for IGEEFD Index
and from 2013 for the other indices. This highlights the non-stationary
nature of the spreads over time.

4.2.2 The transition matrix

The Average One-Year Letter Rating Migration Rates, 1970-2017 [16]
was chosen as the transition matrix, reported in table 6.
This matrix is adjusted by removing the Without Rating column and
by normalizing the matrix again. The normalization is carried out by
dividing the element of the original matrix by the one’s complement of

15BVAL is the standard for pricing transparency and quality in the fixed income
valuation market.

16More specifically, starting from 01/07/2009 for IGEEFD Index and IGEEFA Index
and from 02/12/2010 for IGEEFB Index.

17For IGEEFD Index the mean even displays negative value for the 1-year maturity.
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the probability of transition to the class Without Rating :

padj
i,j =

pi,j∑
j 6=WR pi,j

(42)

where pi,j is the generic element of the original transition matrix. The
resulting adjusted matrix is reported in table 7.
The corresponding generator matrix is obtained through the Quasi-
Optimization algorithm [12] using the R package ctmcd and it’s reported
in table 8. This matrix satisfies the generator properties defined in para-
graph 1.1.

4.3 The quality metrics

The calibration quality is assessed through several quality metrics. For
the in-sample performance, in order to evaluate the goodness of fit,
model time series plots superimposed on market time series plots are
used for some representative maturities {3, 5, 8, 10} years and for all
three rating classes used in the calibration. In addition, model and
market means and standard deviations are compared and histograms of
residuals, defined as the difference between market and model values,
are analysed.
Several synthetic indicators are then calculated:

- the Root Mean Square Error (RMSE ), that is an absolute risk
metric;

- the Coefficient of Determination (R2), that it’s a relative risk met-
ric;

- the Coefficient of Determination on the standardised data (R2
std)

18;

- the Coefficient of Determination for the single rating classes (R2
i )

19;

- the ω parameter which is used to capture market imperfections
due, for example, to liquidity effects.

18Only for multi-rating calibration
19Only for multi-rating calibration
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5 Results

This section presents the results of the calibration procedure for both
the single-rating and the multi-rating case.

5.1 Single-rating calibration

Section 7.3 shows tables and figures about the results of the single-rating
calibration procedure in all its possible configurations. The estimated
parameters are difficult to compare with available market data, as they
concern the subordinator intensity λ.
Otherwise, all three configurations behave similarly. For the actually
calibrated rating class, the parameters are adequate and provide a good
fit: R2 values (reported in tables 10, 12 and 14) are respectively 0.84,
0.85 and 0.84 and the graphical analysis (figures 2, 6 and 10) shows a
good adaptation of the model values to the market values, while for the
remaining two ratings, the calibration is inadequate (R2 values much
lower: 0.50 or below).
The ω values, instead, are low in all three cases.
These results prompt us to consider a calibration procedure that consid-
ers data from all available rating classes to try to obtain an appropriate
estimate for all three rating classes.

5.2 Multi-rating calibration

Section 7.4 shows tables and figures about the results of the multi-rating
calibration procedure.
The convenience of switching to a multi-rating calibration is confirmed
by the statistics in table 16: the overall R2 is good (0.85) and it’s in line
with that of single-rating calibrations relative to the calibrated rating
classes, the standardised R2 is still good (0.75) and especially the single-
rating R2 are significantly higher than those of single-rating calibrations
(Aa: 0.68, A: 0.68, Baa: 0.84).
In addition, the RMSE and the ω parameter have low values.
Turning to the graphical analysis of the comparison between model and
market data (figures 11, 12 and 13), it can be seen that model time
series, reconstructed by the filter, can adequately replicate market time
series, especially for Baa rating class and for middle maturities.
This behaviour is also confirmed by the graphical analysis of the model
statistics (figures 14, 15 and 16), the model means are substantially in
line with the market ones, as are the volatilities, except for the shorter
maturities. This can be justified by the fact the three rating classes
have different historical volatilities, especially for shorter maturities, as
shown in table 2.
The analysis of the residuals (figures 17, 18 and 19) shows that the
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normality hypothesis is not respected, however they have a mean not
significantly different from 0.

6 Conclusion

This paper aimed to present the application of the Particle Filtering cal-
ibration technique to the Markovian model for the spread risk presented
in [7] with two different approaches, focusing on the in-sample analysis.
These analyses show that the Particle Filter returns acceptable esti-
mates, specially for the multi-rating calibration that manages to repli-
cate quite well the market data. However, model volatilities for shorter
maturities are too low. Therefore in order to improve this aspect, as well
as the goodness of fit further, the model can be extended by introducing
a rating-specific liquidity component (formula 28), thus increasing the
number of available parameters.
As was to be expected, given the volume of data processed and the
complexity of the numerical resolution of the integrals provided by the
Particle Filter, calibration times were much longer than those for cross-
section calibrations but still acceptable.

Further analysis referred mostly to the out-of-sample performances, the
assessment of the Solvency Capital Requirement and the extension of
the model are deferred to future work.
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7 Plots and tables

This section contains the graphs and tables of the previous sections.

7.1 Market data plots and statistics

7.1.1 Market spreads surfaces
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(a) IGEEFD Index time series.
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(b) IGEEFA Index time series.
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(c) IGEEFB Index time series.

Figure 1: Spread structures trend - 01/07/2009 to 30/06/2018.
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7.1.2 Market spreads statistics

IGEEFD0 Index IGEEFA Index IGEEFB Index
Maturity Mean Std Dev. Quantile 99.5% Mean Std Dev. Quantile 99.5% Mean Std Dev. Quantile 99.5%

1 17.82 39.68 197.44 36.30 42.56 271.45 85.65 75.43 368.06
2 24.16 28.73 157.19 49.37 42.15 261.46 114.01 89.39 425.33
3 29.98 25.61 138.76 57.91 42.70 238.76 129.46 94.40 444.05
4 36.52 26.69 137.45 63.90 42.12 227.05 138.76 92.80 434.60
5 42.56 28.05 137.90 67.32 39.44 207.52 144.87 86.90 417.01
6 48.45 29.36 141.76 69.76 36.44 184.17 144.82 77.25 413.18
7 55.75 32.03 147.44 73.55 34.82 177.12 146.07 72.49 416.86
8 62.10 34.57 157.22 78.83 36.97 180.61 133.62 64.35 418.94
9 67.59 36.85 166.19 84.50 40.04 185.04 129.70 63.03 391.71

10 69.19 35.20 166.36 86.35 38.66 183.40 136.96 69.69 420.94

Table 2: Means, standard deviations and 99.5% quantiles of observed
data (b.p.).
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7.2 Rating transition matrix

Rating Aaa Aa A Baa Ba B Caa Ca/C WR Default

Aaa 0.8771 0.07943 0.0058 0.00072 0.00023 3e-05 0 0 0.03668 0
Aa 0.00818 0.85154 0.08514 0.00424 0.00062 0.00035 0.00017 1e-05 0.04954 2e-04
A 0.00052 0.02464 0.86784 0.05369 0.00484 0.00106 4e-04 5e-05 0.04643 0.00052
Baa 0.00033 0.00143 0.0412 0.85715 0.03787 0.00687 0.00154 2e-04 0.05173 0.00167
Ba 6e-05 0.00041 0.00422 0.06116 0.76321 0.07172 0.00706 0.00111 0.08222 0.00883
B 7e-05 0.00029 0.0014 0.00448 0.04778 0.73486 0.06615 0.00521 0.10704 0.03272
Caa 0 9e-05 0.00022 0.00084 0.00344 0.06512 0.67874 0.02852 0.14348 0.07955
CaC 0 0 0.00049 0 0.00558 0.02289 0.08943 0.39387 0.22116 0.26658

Table 6: Average One-Year Letter Rating Migration Rates, 1970-2017 -
Moody’s

Rating Aaa Aa A Baa Ba B Caa Ca/C Default

Aaa 0.91051 0.08246 0.00602 0.00075 0.00024 3e-05 0 0 0
Aa 0.00861 0.89593 0.08958 0.00446 0.00065 0.00037 0.00018 1e-05 0.00021
A 0.00055 0.02584 0.91011 0.0563 0.00508 0.00111 0.00042 5e-05 0.00055
Baa 0.00035 0.00151 0.04345 0.90392 0.03994 0.00724 0.00162 0.00021 0.00176
Ba 7e-05 0.00045 0.0046 0.06664 0.83158 0.07815 0.00769 0.00121 0.00962
B 8e-05 0.00032 0.00157 0.00502 0.05351 0.82295 0.07408 0.00583 0.03664
Caa 0 0.00011 0.00026 0.00098 0.00402 0.07603 0.79244 0.0333 0.09288
Ca/C 0 0 0.00063 0 0.00716 0.02939 0.11482 0.50571 0.34228
Default 0 0 0 0 0 0 0 0 1

Table 7: Adjusted transition matrix.

Rating Aaa Aa A Baa Ba B Caa Ca/C Default

Aaa -0.09419 0.09131 0.00209 0.00057 0.00022 0 0 0 0
Aa 0.00951 -0.11175 0.09927 0.00185 0.00043 0.00034 0.00017 0 0.00018
A 0.00046 0.02861 -0.09709 0.06199 0.00437 0.00083 0.00038 0 0.00046
Baa 0.00039 0.00099 0.04787 -0.10421 0.04586 0.00621 0.00146 0 0.00143
Ba 0 4e-04 0.00334 0.07673 -0.1893 0.09426 0.005 0.0013 0.00826
B 0 0.00034 0.00157 0.0033 0.0647 -0.20229 0.09145 0.00641 0.03453
Caa 0 1e-04 0.00017 0.00087 0.00167 0.09363 -0.24104 0.05203 0.09256
Ca/C 0 0 0.00075 0 0.00925 0.03572 0.17864 -0.68752 0.46315
Default 0 0 0 0 0 0 0 0 0

Table 8: Generator matrix.
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7.3 Single-rating calibration results

IGEEFD Index (Rating class: Aa)

IGEEFD Index

Par0 Plow Pupp Parfit

α 0.005 0.001 5 0.010021
γ 2 0 3.2 3.116302
σ 2 0.01 3 0.249897
α̂ 0.15 0.001 3 0.122024
γ̂ 0.5 0 4 0.911254
λ0 5 0 10 7.883151
ω 0.01 1e-04 0.1 0.001488

Table 9: Starting values (Par0 ), lower bounds (Plow) , upper bounds
Pupp e calibrated values (Parfit) of model parameters - IGEEFD Index
(Rating class: Aa).

IGEEFD Index IGEEFA Index IGEEFB Index

Synthetic indicator Value Value Value

R2 0.84 0.45 -0.26
ω 14.88 (p.b.) 14.88 (p.b.) 14.88 (p.b.)

Table 10: Means, standard deviations and 99.5% quantiles of observed
data (b.p.) - IGEEFD Index (Rating class: Aa).
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Figure 2: Comparison of model time series and market time series for
maturities 3, 5, 8, 10 years - IGEEFD Index (Rating class: Aa).

25



14500 15500 16500 17500

0.
00

0
0.

01
0

0.
02

0

Maturity: 3 years

Date

σ(
t, 

t+
ta

u)

Market
Model

14500 15500 16500 17500

0.
00

0
0.

01
0

0.
02

0

Maturity: 5 years

Date

σ(
t, 

t+
ta

u)

Market
Model

14500 15500 16500 17500

0.
00

0
0.

01
0

0.
02

0
0.

03
0

Maturity: 8 years

Date

σ(
t, 

t+
ta

u)

Market
Model

14500 15500 16500 17500

0.
00

0
0.

01
0

0.
02

0
0.

03
0

Maturity: 10 years

Date

σ(
t, 

t+
ta

u)

Market
Model

Figure 3: Comparison of model time series and market time series for
maturities 3, 5, 8, 10 years - IGEEFA Index (Rating class: A).
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Figure 4: Comparison of model time series and market time series for
maturities 3, 5, 8, 10 years - IGEEFB Index (Rating class: Baa).
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IGEEFA Index (Rating class: A)

IGEEFA Index

Par0 Plow Pupp Parfit

α 0.005 0.001 5 0.009194
γ 2 0 3.2 2.769328
σ 2 0.01 3 0.225632
α̂ 0.15 0.001 3 0.21007
γ̂ 0.5 0 4 0.80557
λ0 5 0 10 9.910955
ω 0.01 1e-04 0.1 0.00146

Table 11: Starting values (Par0 ), lower bounds (Plow), upper bounds
Pupp e calibrated values (Parfit) of model parameters - IGEEFA Index
(Rating class: A).

IGEEFD Index IGEEFA Index IGEEFB Index

Synthetic indicator Value Value Value

R2 0.51 0.85 0.46
ω 14.60 (p.b.) 14.60 (p.b.) 14.60 (p.b.)

Table 12: Means, standard deviations and 99.5% quantiles of observed
data (b.p.) - IGEEFA Index (Rating class: A).
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Figure 5: Comparison of model time series and market time series for
maturities 3, 5, 8, 10 years - IGEEFD Index (Rating class: Aa).
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Figure 6: Comparison of model time series and market time series for
maturities 3, 5, 8, 10 years - IGEEFA Index (Rating class: A).
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Figure 7: Comparison of model time series and market time series for
maturities 3, 5, 8, 10 years - IGEEFB Index (Rating class: Baa).
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IGEEFB Index (Rating class: Baa)

IGEEFB Index

Par0 Plow Pupp Parfit

α 0.005 0.001 5 0.008384
γ 2 0 3.2 2.565675
σ 2 0.01 3 0.207389
α̂ 0.15 0.001 3 0.229926
γ̂ 0.5 0 4 0.811948
λ0 5 0 10 6.4365
ω 0.01 1e-04 0.1 0.002755

Table 13: Starting values (Par0 ), lower bounds (Plow), upper bounds
Pupp e calibrated values (Parfit) of model parameters - IGEEFB Index
(Rating class: Baa).

IGEEFD Index IGEEFA Index IGEEFB Index

Synthetic indicator Value Value Value

R2 0.47 0.17 0.84
ω 27.54 (p.b.) 27.54 (p.b.) 27.54 (p.b.)

Table 14: Means, standard deviations and 99.5% quantiles of observed
data (b.p.) - IGEEFB Index (Rating class: Baa).
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Figure 8: Comparison of model time series and market time series for
maturities 3, 5, 8, 10 years - IGEEFD Index (Rating class: Aa).
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Figure 9: Comparison of model time series and market time series for
maturities 3, 5, 8, 10 years - IGEEFA Index (Rating class: A).
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Figure 10: Comparison of model time series and market time series for
maturities 3, 5, 8, 10 years - IGEEFB Index (Rating class: Baa).
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7.4 Multi-rating calibration results

Multi-rating

Par0 Plow Pupp Parfit

α 0.15 0.001 5 0.010700
γ 2 0 3.2 3.186956
σ 2.5 0.001 3 1.997080
α̂ 0.2 0.001 3 0.106476
γ̂ 3.5 0 4 1.983650
λ0 9.5 1e-04 0.1 9.184817
ω 0.01 0 10 0.002749

Table 15: Starting values (Par0 ), lower bounds (Plow), upper bounds
Pupp e calibrated values (Parfit) of model parameters - Multi-rating.

Synthetic indicator Value

R2 0.85
R2
std 0.75

R2
Aa 0.68
R2
A 0.68

R2
Baa 0.84

RMSE 34.17 (p.b.)
ω 27.49 (p.b.)

Table 16: Means, standard deviations and 99.5% quantiles of observed
data (b.p.) - Multi-rating.
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Figure 11: Comparison of model time series and market time series for
maturities 3, 5, 8, 10 years - IGEEFD Index (Rating class: Aa).
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Figure 12: Comparison of model time series and market time series for
maturities 3, 5, 8, 10 years - IGEEFA Index (Rating class: A).
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Figure 13: Comparison of model time series and market time series for
maturities 3, 5, 8, 10 years - IGEEFB Index (Rating class: Baa).
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Figure 14: Comparison of model means and standard deviations and
market means and standard deviations - IGEEFD Index (Rating class:
Aa).
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Figure 15: Comparison of model means and standard deviations and
market means and standard deviations - IGEEFA Index (Rating class:
A).
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Figure 16: Comparison of model means and standard deviations and
market means and standard deviations - IGEEFB Index (Rating class:
Baa).
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Figure 17: Residuals distribution for maturities 3, 5, 8, 10 years - IGEEFD
Index (Rating class: Aa).
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Figure 18: Residuals distribution for maturities 3, 5, 8, 10 years - IGEEFA
Index (Rating class: A).
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Figure 19: Residuals distribution for maturities 3, 5, 8, 10 years - IGEEFB
Index (Rating class: Baa).
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