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Abstract

This paper focuses on the potential of machine learning tools in micro-level
reserving by using individual claim data, which is more and more available
nowadays. This is especially relevant for non-life insurance, but it could also
be useful for some specific life business branches.
After a brief introduction to the problem of reserve estimation in non-life,
we will describe the algorithms behind some of the fundamental machine
learning tools such as regression methods, naive Bayes, k-nearest neighbors,
CARTs, and neural networks. All of them will be used to estimate closing
delay and payment amount for individual claims of a specific automobile
bodily injury claim dataset. Theoretically, these estimations represent the
foundation for a triangle-free, machine-learning-based approach to non-life
reserving.
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1. Introduction1

Actuarial practice in non-life reserving is traditionally based on aggre-2

gate claims data structured in triangles. In fact, this has been proved (for3

instance, in [2] and [11]) to be an effective approach as long as we face high-4

probability low-impact claims such as those of motor insurance. Run-off5

triangles - like that in Figure 1 - are fundamentally based on the assumption6

that the reserve on future claim payments depend on the reporting year (or7

accident year) and closing delay only.8

Actually, it is far to be true, unless the claims tend to be extremely homoge-9

neous. And even in that case, triangle-based estimations will neglect relevant10

information about individual claims. This was necessary when actuaries had11

to use data in times of strong computational limits. Nowadays, this is no12

longer a major constraint. This is the reason why more and more studies13

promote micro-level reserving based on individual claims data, for instance14

[1], [7], [9], [12], [13], and [15]. To some extent, all of them assumes a rather15

fixed structural form for the timing or the amount of the payments. Unfor-16

tunately, such approaches are as rigid as any other parametric method, and17

cannot take into account all the available details for claims.18

In the recent years, some researchers tried to introduce machine learning in19

actuarial practice by tackling classical problems with new techniques. In20

fact, such data-driven tools can ultimately overcome the issues explained so21

far in this section about more traditional approaches. Restricting ourselves22

to non-life practice, it is worth citing23

[18] which applies classification trees to estimate number of future payments24

varying by accident year and reporting delay,25

[19] which utilizes neural network to handle heterogeneity in data and im-26

prove Chain-Ladder reserving,27

[20] which presents machine learning tools in non-life pricing.28

This paper is especially inspired by [18], whose author uses decision trees to29

predict the number of payments by accident year and closing delay. On our30

side, we will try to extend those ideas by directly predicting claim amounts31

using a wider range of machine learning tools, in order to choose the most32

accurate one. However, a major difference with respect to [18] and, more gen-33

erally, actuarial practice in non-life reserving, regards the concept of reserve34

we are going to refer to. Even if the results will be reported in the traditional35
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Fig. 1: Run-off triangle of payed amounts, and related reserve estimations (in red)

reporting-year-per-closing-delay format, our final goal is NOT the estimation36

of the ultimate loss reserve as at year end. By contrast, we are interested37

in estimating the so-called case reserve, that is, the final cost of each single38

claim on its own.39

After a brief introduction to the reserving problem in non-life insurance (see40

Section 2) and the probabilistic model at the base of our analysis (see Section41

3), we will recall some features of the machine learning tools we intend to use42

(see Section 4). All of them will be applied to publicly available automobile43

bodily injury claim data, in order to estimate individual case reserves. The44

analysis is presented in Section 5. In line with the underlying model, the45

results will be broken down into three steps:46

1. closing delay estimation of individual claims through naive Bayes, k-47

nearest neighbors, and classification tree (see Subsection 5.2)48

2. payment amount estimation of individual claims through generalized49

regression, regression tree, and neural network (see Subsection 5.3)50

3. case reserve estimation of individual claims through some combinations51

between tools in 1. and tools in 2. (see Subsection 5.4).52

While no machine learning tool will be able to explain a relevant amount53

of variance at the closing delay’s step, payment amount estimations will be54

quite accurate though. More specifically, as pointed out in Section 6, the es-55

timations returned by decision trees and neural networks will be significantly56

more accurate than those from generalized regression. Of course, this is not57
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to prove that machine learning can always outperform more traditional ap-58

proaches. Nonetheless, it should provide actuaries with further techniques to59

better estimate reserves when it comes with skewed and heavy-tailed claim60

distributions.61

2. Understanding claim timeline62

Generally, a claim is triggered by an accident causing a damage covered63

by the insurance contract. In an ideal world, the related benefit is paid as64

soon as the accident occurs, but often this is not the case in non-life insur-65

ance. In fact, a number of years may pass between the effective occurrence66

and the final claim payment (or payments). This time gap represents the67

reason why insurance companies must allocate reserve sufficient to cover any68

future payments for outstanding loss liabilities.69

Assume the premium is paid in t0 for an insurance protection that is immedi-70

ately effective for a period T . During that period, an accident occurs at time71

ta < T , the so-called accident date. Ideally, the accident is immediately re-72

ported to the company, but for a number of reasons it may happen differently,73

that is, the accident is reported at any time tr ≥ ta, the so-called reporting74

date. The difference Γ := tr − ta is the reporting delay. If it is small, say75

days, it does not really represent a problem to the company. However, if the76

reporting delay extends for years, it generates an unknown outstanding loss77

liability for the company, which is backed by the so-called Incurred-But-Not-78

Yet-Reported reserve - or IBNYR reserve. Actually, the related claims are79

not in the company’s systems yet, so data-driven tools are hardly adaptable80

to this problem. For this reason, we will not estimate the IBNYR reserve in81

this paper - it will be shortly discussed in Section 6 as a topic for further82

development.83

As soon as the accident is reported, the company is able to collect informa-84

tion about it, which represents the starting point for our analysis. Typically,85

the claim cannot be settled immediately for a number of reasons, includ-86

ing further investigation, new information, court decisions, and so on. As a87

consequence, the claim is actually closed only at a future date tc ≥ tr, the88

so-called closing date. The difference ∆ := tc − tr is the closing delay, which89

may have very different features depending on the specific non-life business90

involved as well as the claim severity. For standard claims, it might be very91

small, like in health insurance contracts for the employees of a firm: the92

company receives standard claim documentation from the policyholder, ap-93
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Fig. 2: Graphical representation of the claim timeline

prove it quickly, and refund him/her with one single payment. On the other94

hand, more severe claims often lead to more tortuous - and longer - closing95

delay: sometimes no payment is due, sometimes a final payment is due, and96

sometimes company’s investigation justifies claim benefits all the way along97

and a series of cash-flows is correspondingly paid. At reporting date, the98

company must allocate reserve to cover the payments expected during the99

closing delay. Such a reserve is the so-called Reported-But-Not-Yet-Settled100

reserve - or RBNYS reserve. Given that it is allocated at reporting date,101

when some information about the claim is already known, we can use it to102

build our individual reserve estimation.103

The process described in this section is represented in a sort of timeline in104

Figure 2.105

3. Assumptions and model106

Since our valuation date is the reporting date, we can assume that all107

the information about the claim is known at that date, and thus it can108

be used to predict future payments. This is a first simplification, which109

may be unacceptable in some specific cases. In fact, one of the causes of110

the closing delay is the further investigation by the company, which could111

discover new information at a later date. For sake of simplicity, we will ignore112

this possibility.113

According to the explanation in Section 2, the company pays an amount to114

the policyholder as soon as it is justified by the aforementioned investigation,115

thus generating a series of cash-flows. The emerging of such cash-flows is116
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modeled in [18]. However, it would be a further complication for us, and the117

available data does not include those details. Therefore, we will assume one118

single, aggregate payment for each claim due at closing date.119

Once these two assumptions are accepted, the model is a rather simple one.120

Assume that the closing delay ∆ is a discrete variable measured in years, say121

0, . . . ,m. That means: no payment is delayed more than m years after the122

reporting date. Moreover, consider a number of predictors x1, . . . , xn, that is,123

information about the policyholder, the claim, or any other relevant details.124

They are all available at reporting date, so they can be used to predict how125

likely the payment related to the claim i occurs after k years, that is, ∆i = k.126

Using a proper classification tool, formally represented by a function pk(·) of127

the predictors, we will estimate P (∆i = k) for each admissible k:128

P̂ (∆i = k) := pk(xi1, . . . , xin), ∀k ∈ [0,m]. (1)

Now, we can still use the same predictors xi1, . . . , xin to estimate the payment129

amount due for the claim i; additionally, we will also use the information130

about ∆i. Using a proper regression tool, formally represented by a function131

f(xi1, . . . , xin|∆i) of the closing delay and the predictors, we will estimate132

the payment amount:133

Ĉi(∆i) := f(xi1, . . . , xin|∆i). (2)

providing us with an estimation conditioned to ∆i, which is unknown at134

reporting date. To overcome this limit, we first calculate the following esti-135

mations:136

Ĉi(k) := f(xi1, . . . , xin|k), ∀k ∈ [0,m] (3)

and then estimate the payment amount for the claim i as follows:137

Ĉi :=
m∑
k=0

P̂ (∆i = k)Ĉi(k) =
m∑
k=0

pk(xi1, . . . , xin)f(xi1, . . . , xin|k) =

=
m∑
k=0

pk(xi)f(xi|k) (4)

which is an unconditioned estimation.138

In the next sections, we will present some of the machine learning techniques139

that can be used to estimate pk and f . We will separate them because of140

their different nature: while pk estimates the probabilities related to the141
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categorical variable ∆i, f estimates the claim amount Ci(k). The former142

refers to a classification problem, whereas the latter refers to a regression143

problem.144

4. Fundamental machine learning tools145

The closing delay estimation is a classification problem, that is, the goal146

is the prediction of how likely a claim will be closed - and the related amount147

payed - after k years from the reporting date. By contrast, the claim amount148

estimation is a regression problem since the target variable is numerical. Sim-149

ilarly, the closing delay estimation would have been treated as a regression150

problem too, if we had assumed k as a continuous time variable. However,151

this would complicate the model, being inconsistent with the traditional as-152

sumption of a discrete k with some upper limit m, just like in any triangle-153

based reserve calculation exercise.154

Although we will distinguish between tools used for closing delay estimation155

and tools used for claims amount estimation as described at the end of Sec-156

tion 1, this distinction is not strict. In fact, most of the fundamental machine157

learning tools we will recall in the following subsections - generalized regres-158

sion, naive Bayes, k-nearest neighbors, decision trees, and neural networks -159

are flexible enough to be used for both classification and regression problems.160

4.1. Generalized regression161

Regression models are by far the most used fitting tools in industry.162

They rely on a unique combination of theoretical solidity and practical in-163

terpretability, which makes them one of the favorite tools among actuaries.164

For the same reasons, regression models do not represent a powerful machine165

learning tool. Unfortunately, the assumption set they require causes a sort166

of rigidity that limits the ability of learning from data. Nonetheless, since we167

are going to use - among others - a generalized regression model to predict168

claim amounts (see Subsection 5.3), it is worth providing a brief description.169

Very generally, we can assume that the target variable y is a function of some170

predictors, that is, the explanatory variables of the ith record:171

yi := φ(xi1, . . . , xin), ∀i. (5)

If we can rely on an algorithm that estimates φ by building a new regular172

function f , we will get an estimation of the target variable:173

ŷi = φ(xi1, . . . , xin) + ui = f(xi1, . . . , xin), ∀i (6)
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where ui denotes the estimation error (notice the similarities between (3) and174

(6)). Quite intuitively, the function f will be somehow estimated in order175

to minimize the errors ui, or, more precisely, a relevant combination of them176

representing the overall error of the model. However, the shape of f should177

be defined as an assumption. In multiple linear regression, for instance, its178

shape is linear:179

ŷi = β0 +
n∑
j=1

xijβj, ∀i (7)

where βj denotes the estimation parameter related to the jth predictor. Re-180

member that the linearity refers to the coefficients β0, . . . , βn, not to the181

predictors xi1, . . . , xin. In other terms, we can use the predictors as they182

appear in the dataset as well as any transformation or interaction of them,183

linear or nonlinear: in any case, the model will still be linear. Defining184

y :=

 y1

...
yN

 , X :=

 1 x11 . . . x1n

...
...

. . .
...

1 xN1 . . . xNn

 , β :=

 β1

...
βn

 , u :=

 u1

...
uN


(8)

the model (7) may be also expressed in a matricial form:185

y = Xβ + u (9)

and186

ŷ = Xβ̂. (10)

The shape of f is not the only assumption of the model. Rather, the follow-187

ings should hold too:188

1. r(X) = n189

2. E[u] = 0190

3. V ar[u] = σ2IN .191

In other words, the rank of X is the maximum possible rank so that no re-192

dundant information is there (assumption 1.), the random variables of the193

estimation error are null on average (assumption 2.), and they are also inde-194

pendent and homoscedastic with variance σ2 (assumption 3.). In particular,195

the assumption 2. directly implies the followings:196

2a. E[y] = E[y|X] = Xβ = ŷ197
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2b. V ar(y) = V ar(y|X) = σ2IN .198

Once the assumptions have been verified, the vector of parameters β can be199

estimated through the least squares method. It is based on the minimization200

of the sum of squared error u2
i :201

Q(β) :=
N∑
i=1

u2
i =

N∑
i=1

(yi − ŷi)2 = (y −Xβ)T (y −Xβ) =

= yTy − βTXTy − yTXβ + βTXTXβ =

= yTy − 2yTXβ + βTXTXβ (11)

which is a quadratic function, thus its minimum is necessarily its only sta-202

tionary point, that is, the solution of the following system:203

∂Q(β)

∂β
=
∂yTy − 2yTXβ + βTXTXβ

∂β
= −2XTy + 2XTXβ = 0 (12)

that is204

β̂ = (XTX)−1XTy. (13)

Using (10), we also get205

ŷ = X(XTX)−1XTy (14)

and using (9)206

û = y − ŷ = y −X(XTX)−1XTy = [IN −X(XTX)−1XT ]y. (15)

Actually, we got a model now, that is, we are able to calculate ŷ by using207

β̂ in (10), as long as all the aforementioned assumptions hold. However, the208

traditional multiple linear regression includes a further, crucial assumption:209

u ∼ N(0, σ2IN) (16)

which implies210

y ∼ N(Xβ, σ2IN). (17)

Thanks to the normality of the vector u of the residuals, a whole range211

of relevant statistics can be deduced from the model, including parameter212

distributions, confidence interval, and so on. Among others, for instance, it213

can be easily proved that β̂ is normally distributed with mean β, and ŷ is214

normally distributed with mean y.215
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Once the model has been defined, we want an effective way to evaluate its216

performance. The theoretical framework helps us to define a rather intuitive217

but rigorous tool for performance evaluation. First, the total deviance is218

defined as219

DT (y) :=
N∑
i=1

(yi − E[y])2 (18)

and it represents a measure of the information contained into the data. The220

(18) may be further manipulate as follows:221

DT (y) =
N∑
i=1

(yi − ŷi + ŷi − E[y])2 =
N∑
i=1

(yi − ŷi)2 +
N∑
i=1

(ŷi − E[y])2 =:

=: DE(y) +DR(y) (19)

where the explained deviance DE(y) measures the information explained by222

the model, while the residual deviance DR(y) measures the residual infor-223

mation that the model could not detect. Naturally, the greater DE(y), the224

smaller DR(y), the better the model. In fact, the coefficient of determination225

- known as R-squared and defined by the deviance measures - is the most226

common performance evaluation tool for multiple linear regression:227

R2(y) :=
DE(y)

DT (y)
= 1− DR(y)

DT (y)
(20)

which is a value in [0, 1]. Once again, the greater DE(y), the greater R2(y),228

the better the model, but the R2 has the additional advantage of the normal-229

ization. In practice, it means that the R2 makes possible a fair performance230

comparison among different models.231

Using (17), the model definition (9) may be written differently:232

y = E[y] + u (21)

which is a direct consequence of the normality assumed. However, if we relax233

that assumption, it can be more generally assumed that there is a regular (i.e.,234

invertible and derivable) link function g - different to the identity function -235

mapping E[y] to Xβ:236

g(E[y]) = Xβ (22)

so that, using (21),237

y = g−1(Xβ) + u. (23)
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The main reason why such a generalized regression is very useful in practice is238

that g maps from some subset X ⊆ R to R, that is, g−1 transforms the linear239

predictor Xβ ∈ R to the target variable prediction in X. In fact, generalized240

regression is able to handle target variables defined in a specific subset of R.241

This is not possible in multiple linear regression, unless we operate a proper242

transformation of the target variable itself (this is sometimes enough, but it243

introduces transformation bias into the model). For instance, if the target244

variable represents a positive amount, the quickest ways to use regression are245

• convert amounts to logaritmic amounts, predict the latter through mul-246

tiple linear regression, and convert the predictions back by using the247

exponential function;248

• choose a link function g : (0,+∞) → R, and predict the amounts249

through the related generalized regression.250

Actually, the choice of the link function is not direct, rather it is a conse-251

quence of the distribution we assume for the target variable. This is possible252

since generalized regression assumes that such a distribution belongs to the253

exponential family, whose density is:254

fe(yi; θi, φ) := e
yiθi−c(θi)

φ
+h(yi,φ) (24)

where θi denotes the canonical parameter varying by observation, while φ255

denotes the dispersion parameter that is constant for all observations. In256

other words, the distribution constraint is not completely eliminated, rather257

it is “generalized” to a wider range of distributions - a distribution family.258

When it comes with prediction of amounts, whose distributions are often259

nonnegative and heavy-tailed, a common choice is the Gamma distribution,260

defined by a shape parameter ϕ > 0 and a scale parameter ϑi > 0:261

fΓ(yi;ϑi, ϕ) :=
yϕ−1
i e

− yi
ϑi

ϑϕi Γ(ϕ)
. (25)

which can be easily rearranged as follows:262

fΓ(yi;ϑi, ϕ) = e
− yi
ϑi
−ϕ lnϑi+(ϕ−1) ln yi−ln Γ(ϕ)

. (26)

If we define θi := − 1
ϕϑi

and φ := 1
ϕ

, then263

fΓ(yi;ϑi, ϕ) = e
yiθi
φ
− 1
φ

ln (− 1
ϕθi

)+( 1
φ
−1) ln yi−ln Γ( 1

φ
)

=

11



= e
yiθi
φ
− 1
φ

ln (− 1
θi

)+( 1
φ
−1) ln yi+ϕ lnϕ−ln Γ( 1

φ
)

=

= e
yiθi−ln(− 1

θi
)

φ
+( 1

φ
−1) ln yi− 1

φ
lnφ−ln Γ( 1

φ
) (27)

which belongs to the exponential family in (24) with264

c(θi) := ln
(
− 1

θi

)
, h(yi, φ) :=

(1

φ
− 1
)

ln yi −
1

φ
lnφ− ln Γ

(1

φ

)
. (28)

This is important because it implies that265

E[yi] =
dc(θi)

dθi
=

d

dθi
ln
(
− 1

θi

)
= − d

dθi
ln θi = − 1

θi
= ϕϑi (29)

V ar(yi) = φ
d2c(θi)

dθ2
i

= −φ d

dθi

1

θi
=

φ

θ2
i

= ϕϑ2
i . (30)

All in all, how should we define the link function starting from these consider-266

ations? First, notice that the normal distribution belongs to the exponential267

family too, because268

fN(yi;µ, σ) =
1√

2πσ2
e−

(yi−µ)
2

2σ2 = . . . = e
yiµ−

µ2

2
σ2

− y2i
2σ2
−ln
√

2πσ2

(31)

thus we should define θi := µ and c(θi) := c(µ) = µ2

2
, so that269

E[yi] =
dc(µ)

dµ
= µ = θi. (32)

Actually, if the target variable is normally distributed, we will be back to the270

multiple linear regression. In such a case, we may use (21) to write:271

y = E[y] + u = θ + u (33)

so a generalized regression model might be simply redefined as272

y = g−1(θ) + u. (34)

In fact, the link function is now the function that maps E[y] to the vector θ273

of the canonical parameters:274

g(E[y]) = θ (35)
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but if the target variable is distributed as a Gamma, we also know that275

E[yi] = ϕϑi and θi = − 1
ϕϑi

, so276

g(ϕϑi) = − 1

ϕϑi
(36)

which means that g may be simply defined as g(x) := − 1
x
. This is a somewhat277

natural choice, coming directly from the theory, thus it is called canonical link278

function. For generalized regression models, it is always possible to define g279

in a canonical way, that is, imposing (35), and this choice implies a range280

of desirable features in our model. However, others link functions might be281

rather used, and sometimes there are good reasons to.282

Unfortunately, parameters of generalized regression models cannot be explic-283

itly calculated as in the multiple linear regression. In this case, we can only284

look for maximum likelihood estimates by using numerical methods.285

At the beginning of this subsection, we implicitly assumed to know the range286

of explanatory variables x1, . . . , xn. Of course, we know the explanatory vari-287

ables in the dataset, but how should we select them as x1, . . . , xn? Because288

of multicollinearity among potential explanatory variables, we cannot simply289

run the regression on all of them, and then select only the most significant290

ones based on their p-values. Rather, we should somehow select different291

sets of explanatory variables and run the related regression: the model with292

the highest R2 will be selected. The different sets of explanatory variables293

depend on the algorithm used to select them. There are mainly three popular294

iterative search algorithms.295

In forward selection, we start with no predictors, and then add them one by296

one. Each added predictor is that (among all predictors) that has the larges297

contribution to R2 on top of the predictors that are already in it. The algo-298

rithm stops when the contribution of additional predictors is not statistically299

significant.300

In backward selection, we start with all predictors, and then eliminate the301

least useful one at each step according to statistical significance. The algo-302

rithm stops when all the remaining predictors have significant contributions.303

Finally, stepwise selection is like forward selection except that at each step304

we consider dropping predictors that are no longer statistically significant,305

as in backward selection. In the Subsection 5.3, our data will be regressed306

through stepwise selection.307

To finally conclude the section, some practical remarks are to be highlighted.308
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Whatever the specific regression model, its assumptions make it theoreti-309

cally strong, but VERY weak from a practical perspective. Actually, We310

may condensate them with the following, practical premises:311

• no allowance for nonlinear relationships312

• no allowance for dependencies among predictors313

• no allowance for outliers.314

They somewhat simplify the original assumptions, but give a fair idea of what315

those assumptions really mean, i.e. we can hardly expect good performance316

from regression methods when information is far to be regular. Data is317

generally affected by missing values, redundancies, correlations, heavy tails,318

asymmetries, nonlinearities, and any other kind of distortion. In fact, as we319

will discuss in Subsection 5.1, our data is no exception.320

4.2. Naive Bayes321

This tool is surely one of the easiest machine learning techniques. It is322

a transformation of the well-known Bayesian classifier. Given the values for323

the predictor vector xi related to the claim i, the Bayes’ theorem returns the324

(exact) Bayesian classifier:325

pk(xi) = P (∆i = k|x = xi) =

=
P (∆i = k)P (x = xi|∆i = k)∑m
h=0 P (∆i = h)P (x = xi|∆i = h)

, ∀k = 1, . . . ,m. (37)

This approach is theoretically correct, but presents a fundamental limit. The326

predictor in (37) implicitly assumes that we can find a sufficient number of327

records in the sample sharing the same vector xi. Perhaps, this is reasonable328

when there are VERY few predictors in the dataset, otherwise it is completely329

impracticable.330

A straight modification to (37) represents a very simple solution to such a331

problem. If we give up to the assumption that the best probability estimation332

is solely returned by those records matching the record to be classified, we333

will be able to use the whole dataset for the estimation. As a consequence334

of this assumption, the classifier in (37) changes as follows:335

pk(xi) = P (∆i = k|x = xi) =
P (∆i = k)P (x = xi|∆i = k)∑m
h=0 P (∆i = h)P (x = xi|∆i = h)

=

=
P (∆i = k)

∏n
j=1 P (xj = xij|∆i = k)∑m

h=0 P (∆i = h)
∏n

j=1 P (xj = xij|∆i = h)
, ∀k = 1, . . . ,m(38)
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which is, indeed, the so-called naive Bayes classifier.336

This approach is extremely simple to understand and to use. Moreover, it337

presents no computational issues: it is just a formula to apply as it is, rather338

than a complex algorithm. Unfortunately, this simplicity hides a major draw-339

back, that is, the assumption of stochastic independence among predictors.340

In effect, that is exactly the assumption which allows us to move from the341

Bayesian classifier in (37) to the naive Bayes classifier in (38). Comparing342

the two formulas, we can easily notice this point. However, this is seldom343

the case.344

Moreover, some studies (see, for instance, [10]) point out the strengths of such345

a classifier when it comes with record ranking, but also its weaknesses when346

it comes with probability estimation. In practice, naive Bayes classifier’s347

probability estimation can be very biased by the assumption of stochastic348

independence. If the same bias is shared by each record, the classification349

can be still good, but of course we cannot rely on the estimated probability.350

This is the reason why this classifier often outperforms more sophisticated351

classifiers as a classification tool, and it is still widely used in several fields352

(see, for instance, the spam filtering case in [14]).353

A last drawback is quite relevant. Actually, what if some predictor category354

is not present in the training dataset (for instance, it could be very rare)?355

In this case, P (xj = xij|∆i = k) = 0 for some j and k, thus pk(xi) = 0,356

which is clearly wrong. In fact, the naive Bayes classifier works well if each357

and every category is well represented. That has a two-fold meaning. First,358

the training dataset should be large enough to well represent each and every359

category. Second, more importantly, numerical predictors are not admissible360

at all by definition, that is, we can use it for closing delay estimation (which361

is a classification problem), but not for claim amount estimation (which is a362

regression model). For the latter, we need the methods described in the next363

subsections.364

4.3. K-nearest neighbors365

The idea behind the k-nearest neighbors algorithm is very intuitive, but366

it still guarantees a high level of adaptability to data. To score a new record,367

the method relies on finding the most “similar” records - the so-called “neigh-368

bors” - in the training dataset. In fact, this is a pure nonparametric method:369

no assumption needs to be established, no parameter needs to be estimated,370

no functional form needs to be assumed.371

The sole issue regards the choice of a measure to calculate the “distance”372
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between two records, that is, their grade of similarity. The most popular373

measure is the Euclidean distance: given the vectors of predictors for two374

different records, say xi = (xi1, . . . , xin) and xj = (xj1, . . . , xjn), the Eu-375

clidean distance between them is defined as follows:376

d(xi,xj) :=

√√√√ n∑
k=1

(xik − xjk)2, ∀i, j. (39)

It is worth noting that this definition of distance would give much more377

weight to higher scales than lower scales, so all the predictors should be first378

standardized before computing the (39). Otherwise, the k-nearest neighbors379

algorithm could result in extremely biased predictions.380

Once we have chosen a distance measure, we can calculate the distance be-381

tween any pair of records, but we still need a rule to score new records. The382

simplest rule is: a new record is classified in the same category of its closest383

neighbor. Therefore, given the predictors of such a record, we will compute384

all the distances between it and the records in the training dataset. Among385

them, pick up that with the smallest distance to the new record: its category386

will be assigned to the new record itself. In effect, we have just applied a387

1-nearest neighbors algorithm.388

Nonetheless, the approach might be easily generalized to any number k of389

neighbors. Instead of picking up the closest record only, pick up the k closest390

records, and assign the majority class among them to the new record. In391

practice, the usage of more neighbors tends to reduce misclassification error.392

If we use one neighbor only, it could be the case that a record is the closest393

one to the new record only by chance: there could be noise there, rather394

than information. To some extent, the greater the k, the lower the error, the395

greater the predictive power. On the other hand, however, if k is too high,396

we will miss out on the method’s ability to capture the local structure in the397

data, that is, we will ignore information.398

Anyway, the choice of k is straightforward. First, choose an upper limit K399

for k. Then, score each record in the validation dataset using the closest400

record in the training dataset (1-nearest neighbors algorithm), and calculate401

the validation error ε1. Likewise, score each record in the validation dataset402

using the two closest records in the training dataset (2-nearest neighbors403

algorithm), and calculate the validation error ε2. Repeat the process until404

the K-nearest neighbors algorithm, that is, the last admissible algorithm405

according to our upper limit. At the end, we will get the validation errors406
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ε1, . . . , εK . Finally, pick up the k related to the smallest validation error, say407

kmin, and use the kmin-nearest neighbors algorithm for scoring.408

Remember that εk denotes the validation error of k-nearest neighbors algo-409

rithm. Correspondingly, we could compute the training error as well, that is,410

the error committed when scoring each record in the training (rather than411

validation) dataset using the k closest records in the training dataset itself.412

The training error, however, cannot be used for scoring because the smallest413

training error always relates to the 1-nearest neighbors algorithm: whichever414

the training record to be scored, its closest training record is obviously the415

record itself!416

Of course, the k-nearest neighbors classifier is as simple as the naive Bayes417

classifier. As already discussed at the beginning of this section, its main ad-418

vantage is the lack of parametric assumptions. Unfortunately, there are some419

drawbacks. For instance, from a computational perspective, this algorithm420

can be very expensive. Sometimes, data scientists try to reduce predictors421

by using other, less expensive machine learning tools before applying the k-422

nearest neighbors algorithm to their datasets. Dimension reduction my be423

performed, among others, by classification trees, which is the topic of the424

next subsection.425

4.4. Classification and regression trees (CARTs)426

Decision trees were used as a machine learning tool in [3] for the very427

first time to segment a population by splitting up the dataset through bi-428

nary rules. The algorithm is now referred to as classification tree. Since one429

of our goals is the categorical classification among the closing delay classes,430

this tool is a good candidate for us. By contrast, we should properly adapt it431

to regression problems, if we want to use it to predict the claim amount. In432

this case, we call it a regression tree. However, given that the basic algorithm433

does not change, we can always refer to classification and regression trees, or434

CARTs.435

CARTs are based on recursive partitioning, which divides up the multidi-436

mensional space (that is, the dataset) of the explanatory variables into non-437

overlapping multidimensional rectangles. This division is accomplished re-438

cursively, i.e. operating on the results of the prior divisions. An example of439

CART is in Figure 3. First, one of the explanatory variables is selected, say440

xk(0) (the first node of the tree, so-called root), and a value of xk(0), say sk(0)),441

is chosen to split the n-dimensional space into two parts: one part contains442

all the records with xk(0) ≤ sk(0), say n(1, 1) records, while the other with all443
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Fig. 3: Example of CART produced by recursive partitioning

the records with xk(0) > sk(0), say n(1, 2) records. The two sub-datasets rep-444

resent the first level of the tree. Let’s consider one of them: it could be either445

pure - i.e. it contains only records sharing the same value of the independent446

variable - or impure. In the first case, no further split is possible, so the447

sub-dataset will represent a leaf of the tree. In the second case, other splits448

are possible, so the sub-dataset will represent another node of the tree. In449

Figure 3, leaves are denoted by green rectangles, while nodes are denoted by450

blue circles. Unless both of the sub-datasets generated by the root node are451

pure, one of them (at least) will be divided in a similar manner by choosing a452

variable again, and a split value for the variable. In Figure 3, where both of453

the sub-datasets of the first level are impure, they represent the two nodes of454

the first level, and the initial dataset is further partitioned into four regions:455

• the first one contains the n(2, 1) records with xk(1,1) ≤ sk(1,1), and it will456

represent a node for the next level using xk(2,1) as a splitting variable457

• the second one contains the n(2, 2) records with xk(1,1) > sk(1,1), and458

it will represent a node for the next level using xk(2,2) as a splitting459

variable460

• the third one contains the n(2, 3) records with xk(1,2) ≤ sk(1,2), and it461

will represent a leaf for the next level containing all the records with462

target variable equal to yh(2,3)463
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• the fourth one contains the n(2, 4) records with xk(1,2) > sk(1,2), and464

it will represent a node for the next level using xk(2,4) as a splitting465

variable.466

Since some splits are still possible, the recursive partitioning goes on, getting467

smaller and smaller sub-datasets, either nodes or leaves. Sooner or later, we468

will have divided the whole dataset up into pure sub-datasets (of course, this469

is not always possible, as there may be records that belong to different classes470

but have exactly the same values for everyone of the predictor variables).471

In the case of closing delay estimation, the dataset will be partitioned into472

sub-datasets which contain either claims closed in the reporting year (closing473

delay 0), or claims closed the year after (closing delay 1), or claims closed474

two years after (closing delay 2), . . ., or claims closed m years after (closing475

delay m). In fact, the classification tree resulting from recursive partitioning476

is a pure tree: all the closing delay categories are perfectly separated.477

The main problem of recursive partitioning is the choice of the splitting478

rule node by node, that is, the choice of xk(·,·) and sk(·,·) at each step of479

the algorithm. Assume to define an impurity function i(A) as an impurity480

measure of some rectangle A, or its related node. A specific splitting rule481

on A results in two sub-rectangles AL and AR, which are generally impure,482

that is, i(AL) and i(AR) are both nonzero. Intuitively, we want to choose483

the splitting rule in order to minimize some combination of i(AL) and i(AR).484

The most natural choice is the function485

I(AL, AR) :=
|AL|
|A|

i(AL) +
|AR|
|A|

i(AR) (40)

which is the average of the two impurity measures, weighted by the number486

of observations in each rectangle. By comparing the reduction in I(AL, AR)487

across all possible splits in all possible predictors, the next split is chosen.488

What about the impurity function i? In our application and in most of them,489

one uses the Gini index (as defined in [14]):490

i(A) := 1−
m∑
k=0

p2
k(A) (41)

where pk is the proportion of records in rectangle A that are closed after k491

year from the reporting. However, other impurity measures are also widely492
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used, for example the entropy index (as defined in [14]):493

E(A) := −
m∑
k=0

pk(A) log2[pk(A)]. (42)

All in all, so far the algorithm is quite intuitive as well as its application in494

classifying new records. For instance a new observation, whose explanatory495

values are known, will be dropped down the tree until it reaches a leaf. So496

the new observation will be simply classified on the base of the specific leaf’s497

classification.498

As discussed at the beginning of the section, the algorithm can be easily499

adapted to predict numerical variables. We only need some changes. First,500

the response value assigned to a record in a leaf is determined by the av-501

erage of the response variable among the records in that leaf (by contrast,502

in a classification tree, it is determined by one of the possible category of503

the response variable). Second, given that we cannot use discrete measure of504

impurity such as the Gini index and the entropy index, the typical impurity505

measure used in regression problems is the sum of squared deviations from506

the mean, that is, the sum of squared errors.507

By definition, recursive partitioning produces a tree which classify the records508

without errors. Actually, we used a training dataset to train the classification509

tree, which perfectly predict closing delay on that dataset. But what if we510

use the same tree on the validation dataset? In general, the predicted values511

on the validation dataset will result in a positive misclassification error. In512

fact, the error cannot be zero on datasets other than the training dataset513

itself. However, our full classification tree has a major drawback represented514

by Figure 4. As it usually happens through the first splits on the validation515

dataset, the full tree can still guarantee comparable misclassification errors516

on the two datasets. However, as the number of splits increases, the full517

tree starts overfitting the validation data: since it fully reflects the train-518

ing dataset without distinguishing between “signal” and “noise”, the noisy519

component cause too high misclassification error in the validation dataset.520

Indeed, the typical consequence of overfitting is that, after some number of521

splits, the misclassification error on the validation dataset stops decreasing522

and starts increasing (in Figure 4, it occurs after ten splits). In the first ten523

splits both the training and validation misclassification errors decrease, but524

thereafter the full tree overfits the validation data.525

Overfitting prevent us from using the full tree for predicting purposes, so we526
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Fig. 4: Training Misclassification Error vs. Validation Misclassification Error

need to choose another tree, that is, some subtree of the full tree. There527

are several criteria to do that, but two major categories of methods can be528

distinguished:529

• forward stopping-tree methods530

• backward pruning-tree methods.531

Some empirical forward methods can be easily implemented by setting condi-532

tions to the tree characteristics such as maximum number of splits, minimum533

number of records in a node, and minimum reduction in impurity. Unfortu-534

nately, these approaches are solely based on the tree complexity, rather than535

its predictive power.536

Among the forward methods, the most natural choice is suggested by the537

Figure 4 itself, i.e. we can simply use the tree consisting of the the first n538

splits that do not induce overfitting (n = 10 in Figure 4). In other words, we539

let the full tree grow until the first step leading to a validation error higher540

than the previous step. If we have new observations to classify, they will be541

dropped down this subtree until they reach a leaf.542

More complex methods have been developed as well, for instance, the so-543

called chi-squared automatic in-training data (CHAID). At each node, the544

algorithm select the predictor with the strongest association to the target545
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Fig. 5: Training Misclassification Error vs. Validation Misclassification Error

variable, measured by the p-value of the chi-squared test of independence. If546

such a p-value is low enough, the split of the node significantly improves its547

purity, so the algorithm will carry it out, and the growth of the tree goes on.548

Otherwise, the growth is stopped.549

The alternative to stopping the growth of the tree is represented by prun-550

ing the tree, that is, “climb” the training full tree and “chop” the weakest551

branches until some conditions are met. Intuitively, pruning the tree is more552

computationally expensive, because we have to build the full tree anyway, and553

then work on that further. However, it has been proven to be more successful554

too, and it is not so surprising. In effect, the tree is pruned considering more555

information: not only what-if-we-keep-the-smaller-tree information, but even556

what-if-we-take-the-bigger-tree information.557

A simple backward approach follows the idea of picking the tree with the558

smallest validation error, just like in one of the forward methods. However,559

the full tree is still built until the last leaf, and then we choose the subtree560

leading to the smallest validation error. Notice that we would still pick the561

subtree after 10 splits in Figure 4, but that is not always the case (see, for562

instance, Figure 5).563

However, choosing the subtree according to the smallest validation error only564

means we completely ignore the complexity of the tree. For instance, take565

a look at Figure 5 once again. We are picking the 15-split subtree since it566
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leads to the smallest error, but we get a rather small error with the 10-split567

subtree as well. Actually, we accept five splits more - a relevant increase in568

complexity - for a little decrease in error. Somehow, it does not seem to be569

the best choice. To consider this issue in pruning the tree, we may use the570

so-called cost complexity criterionas described in [3]. For a tree with L leaves571

and training error ε, the cost complexity of a tree T is defined as follows:572

γ(T ) := αL(T ) + ε(T ) (43)

where α denotes a (nonnegative) penalty factor for the tree size. Notice573

that, if α = 0, there is no penalty for the tree size, and the best tree is574

simply the full tree itself. On the other hand, the greater the α, the greater575

the relevance of the tree size in pruning the tree. If α is great enough, the576

training error is no longer relevant for the algorithm, and the tree is pruned577

until the very first node, that is, the root. The algorithm therefore starts578

with the n-level full tree, and compares its γ with the γs of all the possible579

n − 1-level subtrees. The α gets increased little by little, until the γ of the580

full tree exceeds that of one of those subtrees. Such a subtree is considered581

as the best of its level, and the same procedure is repeated starting from it.582

In fact, the algorithm finds the best subtree of each size based on the cost583

complexity criterion: the lower γ, the better the subtree. In practice, we get584

a sequence of “best subtrees” for their sizes, based on the training data only.585

Finally, the so-called best pruned tree used for scoring will be the subtree586

among them leading to the smallest validation error.587

All in all, the full tree is useless for scoring purposes, rather it is just the588

formal result of recursive partitioning. What is really useful for prediction is589

the subtree extracted by using one of the several algorithms to stop growing590

or pruning the full tree.591

So far we described the fundamentals of CARTs. One of the reasons for their592

popularity is that they are adaptable to a wide variety of applications, and593

have been successfully used in many situations. In particular, if there is a594

highly non-linear and complex relationship to describe, decision trees may595

outperform regression models. Furthermore, CARTs do not require massive596

data preparation, that is, they can handle non-standardized data, categorical597

data, missing data, outliers, and so on. By contrast, we should standardize598

the variables and take the natural logarithm of some numerical variables599

before running standard linear regression, logistic regression, or even the k-600

nearest neighbors method described in Subsection 4.3. Finally, trees provide601

easily understandable classification rules (at least if they are not too large),602
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even easier than in regression.603

An important advantage of CARTs is that no further selection algorithm is604

necessary. As opposed to parametric regression methods, the process itself605

selects the most relevant explanatory variables. We simply let the machine606

learning tool run on the whole dataset, and the resulting tree will include607

only some of the explanatory variables, which are the most significant on the608

base of the impurity measure used to split the dataset.609

4.5. Neural networks610

Algorithms like k-nearest neighbors method or CARTs have the major611

advantage of non-dependence on underlying structures or parameters. This612

is what makes them perfect to handle - and, to some extent, discover - un-613

known relationships in datasets. On the other hand, this flexibility makes614

them extremely weak when data is not enough to train them properly. Neural615

networks are trained by data too, but assume an underlying function that is616

generally much more complex than the typical functions used in regression.617

To some extent, we might consider neural networks as a trade-off between618

pure nonparametric methods and traditional regressions.619

A number of successful applications contributed to the great spread of the620

neural network concept, including some relevant financial topics (see [16])621

such as bankruptcy prediction, asset allocation, fraud detection, and cus-622

tomer relationship management.623

An example of neural network is in Figure 6. Actually, each neural net-624

work has its own structure based on neurons, but all of them share the same625

fundamental features:626

• one input layer consisting of a number of neurons - one for each pre-627

dictor628

• one or more hidden layers, each of them consisting of its own neurons629

• one output layer consisting of a number of neurons which returns the630

predictions.631

In particular, notice that the output layer consists of one neuron only if the632

target variable is binary (i.e., the neural network predicts one probability633

only) or numerical (i.e., the neural network predicts one numerical value634

only).635

Another important remark regards the number of hidden layers. One issue636
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Fig. 6: Example of neural network

within this subject on which there is a consensus is the performance difference637

from adding additional hidden layers: the situations in which performance638

improves with a second (or third, etc.) hidden layer are very few. One hidden639

layer is sufficient for the large majority of problems, as stated in [14] as well:640

The most popular choice for the number of hidden layers is one.641

A single hidden layer is usually sufficient to capture even very642

complex relationships between the predictors.643

Therefore, we will solely consider one-hidden-layer neural networks, just like644

the example in Figure 6.645

Furthermore, each input neuron is connected to each hidden neuron, and646

each hidden neuron is connected to each output neuron.647

Neural network training is based on the calibration of the following parame-648

ters (see Figure 6):649

• the weight parameters wij, one for each connection from the input layer650

to the hidden layer651

• the bias parameters uj, one for each hidden neuron652
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• the weight parameters w′jk, one for each connection from the hidden653

layer to the output layer654

• the bias parameters u′k, one for each output neuron.655

The input layer, which knows the raw data of the predictors xi, communicate656

it to the hidden layer. Such an information, however, is weighted by the657

connection itself, that is, by the related weight parameter. In other words,658

the jth hidden neuron receives the information wijxi. Additionally, given659

that it receives data from each and every input neuron (i.e., predictor) at660

the same time, it aggregates information through some hidden activation661

function f(x,wj, uj) of the predictor values, the weights, and the bias. The662

most popular hidden activation function is the traditional weighted average:663

Hj := f(x,wj, uj) = uj +
∑
i

wijxi, ∀j. (44)

Likewise, the output neurons receive weighted information from each hidden664

neuron. In particular, the kth output neuron receives the value w′jkHj from665

the jth hidden neuron. In fact, the kth output neuron receives information666

from each and every hidden neuron, so it will manipulate it too. More specif-667

ically, the output neurons use an output activation function g(H,w′k, u
′
k) of668

their own parameters. Of course, g is generally different to f , for instance, g669

is often defined as a linear transformation of the logistic function:670

Ok := g(H,w′k, u
′
k) = logit

(
u′k +

∑
j

w′jkHj

)
=

=
1

1 + e−u
′
k−

∑
j w
′
jkHj

, ∀k. (45)

Another common output activation function in artificial neural network is671

the hyperbolic tangent function:672

Ok := g(H,w′k, u
′
k) = tanh

(
u′k +

∑
j

w′jkHj

)
=

=
eu
′
k+

∑
j w
′
jkHj − e−u′k−

∑
j w
′
jkHj

eu
′
k+

∑
j w
′
jkHj + e−u

′
k−

∑
j w
′
jkHj

, ∀k. (46)

Several other options are still possible, but Ok always represents the predic-673

tion provided by the kth output neuron. If the target variable is categorical,674
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Ok equals the probability of the kth category related to a specific record.675

There is still an interesting observation to do. Assume that the target vari-676

able is binary, that is, the neural network gets only one output neuron that677

predicts the probability of “success”, whereas the number of hidden neuron678

is the same as the number of predictors. Moreover, assume the following679

parameters within the hidden layer:680

ui = 0, wij =

{
1 if i = j
0 if i 6= j

, ∀i, j (47)

which actually means681

Hj ≡ Hi = xi, ∀j. (48)

Using (45) for the single output neuron, we get682

P̂ (1) = O1 := g(x,w′k, u
′
k) = logit

(
u′1+

∑
i

w′i1xi

)
=

1

1 + e−u
′
1−

∑
i w
′
i1xi

(49)

which is equivalent to the functional form of a logistic regression’s prediction.683

However, we are going to see why it does not mean at all that this peculiar684

neural network equals the logistic regression in terms of predicted probabili-685

ties.686

In fact, the main difference between neural networks and regressions lies in687

the way parameters are estimated. While regression methods rely on prede-688

termined target functions to minimize or maximize, neural networks actually689

“learn” from data. Estimating biases and weights is a consequence of such a690

learning process, whichever its algorithm is. Anyway, the most popular one691

is the so-called back propagation.692

We denoted the prediction from the kth node by Ok. Moreover, let’s define693

the prediction error related to the first record as694

ε1k := O1k(1−O1k)(y1 −O1k) (50)

where y1 equals the actual value of the target variable. Given a global learn-695

ing rate λ ∈ (0, 1) and some initialization values for the parameters of the696

network, weights and biases are updated as follows:697

wij −→ wij + λε1k, ∀i, j (51)

uj −→ uj + λε1k, ∀j (52)

w′jk −→ w′jk + λε1k, ∀j (53)

u′k −→ u′k + λε1k. (54)
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After that, the second record goes through the network to get its own esti-698

mations O2k, then the error is computed:699

ε2k := O2k(1−O2k)(y2 −O2k) (55)

and the parameters are updated once again starting from those of the previ-700

ous step:701

wij −→ wij + λε2k, ∀i, j (56)

uj −→ uj + λε2k, ∀j (57)

w′jk −→ w′jk + λε2k, ∀j (58)

u′k −→ u′k + λε2k. (59)

The computation is repeated for all the records, all the way through the702

training dataset: after the last observation, the first epoch is completed.703

Generally, a number of epochs is predefined, that is, the records are estimated704

several times until some tolerance on the significance of parameter updating705

is broken, or some threshold on the training error is finally met.706

What we have just described is called case updating, but it is not the sole707

option. For instance, in batch updating, the whole training dataset is run708

through the network before each updating takes place. As a consequence,709

the parameters are updated on the base of the overall training error, or its710

average:711

ε̄k :=
1

N

∑
i

εik (60)

and712

wij −→ wij + λε̄k, ∀i, j (61)

uj −→ uj + λε̄k, ∀j (62)

w′jk −→ w′jk + λε̄k, ∀j (63)

u′k −→ u′k + λε̄k. (64)

In practice, case updating tends to be more accurate than batch updating,713

but it is also more computationally expensive, given that the parameters are714

updated N times per epoch rather than only once.715

Neural networks can be very powerful, if their architecture is significant, that716

is, the number of hidden layers and hidden neurons is “right” - whatever it717

means. There are algorithms that automatically select this features, but718
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none of them seems clearly superior to a simple trial-and-error approach (see719

[14]). Nonetheless, network architecture depends on the predictors too. Un-720

fortunately, neural network are rigid in this sense: they cannot really choose721

among predictors, as opposite to other methods such as stepwise regressions722

and CARTs. Neural networks always use all the predictors given as input,723

so they should be chosen very carefully by the data scientist, for instance, by724

using a proper selection method. Clustering, principal component analysis,725

and CARTs themselves are all suitable approaches.726

The various forms of their architecture give neural network a unique flexibil-727

ity in dealing with data. Potentially, they can recognize any type of pattern.728

However, the architecture itself is the origin of their major drawback too,729

that is, their black-box structure. While anyone can easily “read” a tree, or730

interpret the parameters of a regression, this is generally impossible when731

dealing with neural networks. Of course, knowing the transfer functions and732

any parameters, we may write the ultimate function returning predictions,733

but then we would probably find no meaning in that. Too many parameters734

and too complex functions are often involved in neural network, and it must735

be accepted as it is. The usual validation tools can be used to measure the736

predictive power of a neural network, but unfortunately we cannot rely on737

model interpretation.738

5. An application to automobile bodily injury claim data739

As we may have noticed in Section 4, machine learning tools are very740

flexible, and could potentially improve many of the traditional processes in741

actuarial practice. Non-life reserving is just one of them.742

This section describes the path that has been followed to predict the closing743

delay and claim amount on a publicly available motor insurance dataset.744

5.1. Data745

Data comes from an R package containing a number of datasets for ac-746

tuarial and actuarial-affine applications (see [5]). It was also used in [4] as a747

starting point for generalized regression analysis. As such, we can surely rely748

on that without further validation. In [5], the dataset is called Automobile749

bodily injury claim dataset in Australia (ausautoBI8999), with the following750

description:751
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This dataset contains information on 22036 settled personal in-752

jury insurance claims in Australia. These claims arose from acci-753

dents occurring from July 1989 through to January 1999. Claims754

settled with zero payment are not included.755

Actually, it relates to a small part of the entire claim scope of a motor insur-756

ance company, but it is probably the most interesting part to us. In effect,757

bodily injury claims are the most expensive and long-lasting ones, of course758

the most important to predict. In comparison to traditional triangle-based759

reserving methods (more suitable for standard claim prediction), machine760

learning can express its greatest potential for this kind of claims.761

The dataset includes the following fields:762

• AccDate for the claim accident date763

• ReportDate for the claim reporting date764

• FinDate for the claim closing date date765

• AccMth for the claim accident month766

• ReportMth for the claim reporting month767

• FinMth for the claim closing month768

• OpTime for the operational time769

• InjType1 for the injury severity of the first injured person770

• InjType2 for the injury severity of the second injured person771

• InjType3 for the injury severity of the third injured person772

• InjType4 for the injury severity of the fourth injured person773

• InjType5 for the injury severity of the fifth injured person774

• InjNb for the number of injured persons (max 5)775

• Legal for the legal representation (yes/no)776

• AggClaim for the aggregate claim amount after closing.777
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category score

NA (no injury) 0
minor injury 25
small injury 25
medium injury 50
not recorded 50
high injury 75
severe injury 75
fatal injury 100

Fig. 7: Codification of injury severity

The injury severity variables are categorical, but we converted them in nu-778

merical between 0 and 100, in order to calculate an overall severity score779

for each claim. The conversion is based on the rules in Figure 7, and the780

overall score of a single claim is given by the sum of its own scores (no-781

tice that it will be always positive because each claim caused one injury at782

least). Therefore, we define the numerical variables InjScore1, InjScore2,783

InjScore3, InjScore4, and InjScore5, in correspondence to the original784

InjType1, InjType2, InjType3, InjType4, and InjType5. Additionally, we785

get the overall severity score variable InjScoreTot.786

Moreover, from the variables AccDate, ReportDate, and FinDate, we ex-787

tract the year - AccYr, ReportYr, and FinYr - and use it to add two more788

variables:789

• ReportTime for the reporting delay defined as ReportYr− AccYr790

• FinTime for the closing delay defined as FinYr− ReportYr.791

One last additional variable that will be useful in multiple linear regression792

is LnAggClaim, that is, the natural logarithm of the claim amount AggClaim.793

Using ReportYr and FinTime, let’s have a look at the run-off triangle of the794

entire dataset in Figure 8 for the claim numbers, in Figure 9 for the claim795

payments, and in Figure 10 for the claim average payments (a dozen of claims796

relating to the highest amounts have been excluded). Unfortunately, some797

reporting years and some closing delays include too few observations, as we798

can easily observe in Figure 8. This is the reason why we will select a proper799

training/validation dataset as well as a test dataset for the ultimate analysis.800
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Fig. 8: Claim numbers

Fig. 9: Claim amounts

More specifically, the reporting years 1993-1996 for the sole closing delays801

from 0 to 3 (in bold in Figure 8, 9 and 10) and will be considered for training802

and validation, while the reporting years 1997-1998 will be considered for803

test using all the available closing delays, that is, from 0-2 for 1997 and 0-1804

for 1998 (in Roman in Figure 8, 9 and 10). All the other observations (in805

gray in Figure 8, 9 and 10) are not used in the analysis.806

Figure 8 also demonstrate that there is no regular path by reporting year807

or closing delay. For instance, the zero-delay claims tend to decrease by808

reporting year, while the 3-year-delay claims have a rather different path.809

Comparing reporting years, we see less differences, but still some relevant810

discordances. For instance, compare the 1-year-delay claim average payment811

to the 2-year-delay claim average payment in Figure 10: in 1993 the latter is812

about 50% greater than the former, while in 1996 the latter is about 150%813
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Fig. 10: Claim average amounts

greater than the former. Remember that triangle-based methods often as-814

sume no differences in path among reporting years, but actually we would815

lose some important information in this specific case.816

In order to better include timing information, we consider both the report-817

ing year and the closing delay as categorical variables. As a consequence,818

we convert each of them in three binary variables (the forth one would be819

redundant):820

• ReportYr is converted to ReportYr1 for 1994, ReportYr2 for 1995, and821

ReportYr3 for 1996822

• FinTime is converted to FinTime1 for one year, FinTime2 for two year,823

and FinTime3 for three year.824

Similarly, we convert InjNb to InjNb2 for two injuries, InjNb3 for three825

injuries, InjNb4 for four injuries, and InjNb5 for five injuries.826

Finally, we get the following fields:827

• InjScoreTot for the overall severity score828

• InjNb2 for two injures (1/0)829

• InjNb3 for three injures (1/0)830

• InjNb4 for four injures (1/0)831

• InjNb5 for five injures (1/0)832

• LegalBin for the legal representation (1/0)833

33



• ReportTime for the reporting delay834

• ReportYr1 for the reporting year 1994 (1/0)835

• ReportYr2 for the reporting year 1995 (1/0)836

• ReportYr3 for the reporting year 1996 (1/0)837

• FinTime for the closing delay838

• FinTime1 for the 1-year closing delay (1/0)839

• FinTime2 for the 2-year closing delay (1/0)840

• FinTime3 for the 3-year closing delay (1/0)841

• AggClaim for the aggregate claim amount after closing842

• LnAggClaim for the logarithm of AggClaim843

beyond an ID variable to identify the different records.844

5.2. Claim closing delay estimation845

In our framework, estimating the closing delay means using the predic-846

tors InjScoreTot, InjNb2, InjNb3, InjNb4, InjNb5, LegalBin, ReportTime,847

ReportYr1, ReportYr2, and ReportYr3 as inputs for some machine learning848

tool to return an estimation of the probability that the claim is definitely849

closed after 0, 1, 2 and 3 years after the reporting. In other words, the target850

variable is FinTime. We use three methods: naive Bayes, k-nearest neigh-851

bors, and classification tree.852

According to the description in Subsection 4.3, the number k of neighbors853

should correspond to the lowest validation error. As demonstrated in Figure854

14, it occurs when k = 19. It is worth noting the peculiar, opposite shape855

of the two lines. In Subsection 4.3, we noticed that the training dataset has856

actually nothing to gain from k-nearest neighbors prediction: in fact, the857

more the neighbors, the greater the error. This happens because the best858

prediction in the training dataset always occurs when k = 1 by definition.859

On the contrary, the validation error slightly decreases as k increases since860

the algorithm neglects more and more noisy information. So this is not sur-861

prising if the greatest validation error occurs when k = 1, just as the training862

error is minimum.863
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Likewise, we need to choose a proper classification tree on the base of the864

validation error as well. In Figure 17, we observe that the lowest validation865

error occurs after twelve splits (gray dashed line in Figure 17), but, as dis-866

cussed in Subsection 4.4, this is not necessarily the best choice if we want867

to take into account the complexity of the tree too. This is the reason why868

we will use the best-pruned tree for scoring, that is, the tree consisting of869

three splits (black dashed line in Figure 17). Furthermore, Figure 18, 19,870

and 20 shows the full tree, the minimum error tree, and the best pruned tree871

respectively.872

Remember: we are not really interested in classifying record among one of the873

four classes, rather we will directly used the estimated probabilities. How-874

ever, trying to classifying them using the various methods is the easiest way875

to compare their performances. Therefore, such an assessment is reported876

in Figure 12-13, 15-16, and 21-22. There we can observe the related confu-877

sion matrices together with the training and validation errors. All the errors878

seems to swing around 60%. In other words: if we use the rule that assigns879

a record the greatest predicted probability among the four possible category,880

we will correctly predict around 40% closing delays.881

Unfortunately, this represents a rather poor result, and it can be proved882

through a straightforward remark. The training data is characterized by the883

prior (empirical) probabilities per closing delay category as in Figure 11. The884

most obvious prediction algorithm would classify all the observations in the885

category that appears most often in the training dataset, that is, category886

1 with 38,86%. In such a case, we would correctly predict 38,86% claims,887

that is, an error of 61,14%. But it is just slightly higher than the overall888

validation errors of the 19-nearest neighbors algorithm (see Figure 16) and889

the best pruned classification tree (see Figure 22). Curiously, it is even lower890

than the overall validation error of naive Bayes (see Figure 13). In other891

word, it does not seem we gain any insight by using machine learning on this892

dataset to predict closing delay. This is simply due to the low informative893

value of the data itself. However, we are going to see in Subsection 5.3 the894

great potential of machine learning in claim amount estimation as compared895

to traditional regression methods.896
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closing prior
delay probability

0 20,01%
1 38,86%
2 27,00%
3 14,14%

Fig. 11: Prior probabilities using training data

Fig. 12: Naive Bayes summary results using training data

Fig. 13: Naive Bayes summary results using validation data
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Fig. 14: K-nearest neighbors - training and validation error varying by k

Fig. 15: K-nearest neighbors summary results using training data

Fig. 16: K-nearest neighbors summary results using validation data
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Fig. 17: Classification tree - training and validation error varying by number of splits

Fig. 18: Full classification tree
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Fig. 19: Minimum error classification tree

Fig. 20: Best pruned classification tree
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Fig. 21: Classification tree summary results using training data

Fig. 22: Classification tree summary results using validation data
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5.3. Claim payment amount estimation897

In our framework, estimating the claim payment amount means using898

the predictors previously used to estimate the closing delay (see Section 5.2)899

together with the binary variables FinTime1 for the 1-year closing delay,900

FinTime2 for the 2-year closing delay, and FinTime3 for the 3-year closing901

delay. They will represent the inputs for some machine learning tool to return902

an estimation of AggClaim. We use three methods: generalized regression903

with Gamma distribution, regression tree, and neural network.904

When it comes with regression methods, we should pay attention to the fea-905

tures of our predictors. First, it’s important to avoid asymmetries and heavy906

tails. This can be check by having a look at the skewness and kurtosis in907

Figure 23. Only the target variable AggClaim got very high skewness (5,42)908

and kurtosis (42,21), but this is simply due to the nature of the variable it-909

self. A simple solution is represented by the natural logarithm of AggClaim,910

LnAggClaim, which would permit us to use multiple linear regression (Figure911

23 also reports skewness and kurtosis of LnAggClaim: both of them are very912

low). However, it would also introduce a significant component of transfor-913

mation bias (see Subsection 4.1), so we will not try this approach.914

Another typical issue related to regression models is multicollinearity among915

numerical variables. In our case, however, if all the correlations among the916

binary variables of the same categorical variable are excluded, few remain-917

ing correlations are significant. Therefore, we will run the gamma regression918

including all the predictors, expecting that the highest correlations will be919

automatically solved by the stepwise selection algorithm. Figure 24 shows920

the related results (we also included multiple linear regression results, al-921

though they will be not used for claim amount prediction). By comparing922

Figure 23 and Figure 24, it is worth noting that the selected 9-coefficient923

model includes the predictors characterized by the highest correlations with924

LnAggClaim. Moreover, the exclusion of all the InjNb binary variables leads925

to the exclusion of the most relevant multicollinearities, that is, those among926

InjNb and InjScoreTot (see Figure 23). Actually, this is not surprising: to927

some extent, in effect, the greater the number of injuries, the greater the928

overall claim severity.929

When it comes with regression trees, we need to do some further remarks930

with respect to classification tree. Actually, the former predict numerical931

variables, while the latter classify records among a range of categories. Given932

that each claim relates to a different payment, a mere full tree would get as933

many leaves as the number of records in the training dataset. Obviously,934
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Fig. 23: Descriptive statistics
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Fig. 24: Regression summary after stepwise selection
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this is not feasible, so we need an additional rule to stop the growth of the935

full tree, and the prediction related to a specific leaf will equal the average936

payment of the training records in that leaf. Generally, the rule is quite em-937

pirical, for instance, a maximum number of tree levels, a maximum number938

of nodes, and so on.939

In our analysis, we choose a minimum number of records in any leaf, and940

then predictions and errors from that tree are evaluated. The results are941

summarized in Figure 25, not only training error, validation error, and over-942

all error, but also a percentage weighted error and a percentage overall error.943

The percentage weighted error is based on the sixteen percentage errors per944

reporting year and closing delay weighted on the actual payment amount it-945

self. Instead, the percentage overall error is simply the percentage difference946

between the total of the payments in the dataset and the total of the related947

estimates.948

First, Figure 25 shows no overfitting, which is a quite important advantage949

for any predictive model. In other words, training error and validation error950

are very close regardless of the minimum records per leaf. Secondly, observe951

the fluctuation of the percentage errors in the last to columns in Figure 25.952

When very few records are required in each leaf, it seems that a lot of noise953

affects the tree: errors are quite material, especially the percentage weighted954

errors, which are greatest between 10 and 40 minimum records per leaf. After955

all, the regression tree is predicting much better between 50 and 100: it will956

be probably there where it performs at best. Nonetheless, further increase957

in minimum records per leaf implies a new increase in error: in fact, if too958

many records are required into each leaf, the regression tree will no longer959

be able to detect information in data.960

All in all, the chosen tree is highlighted in bold in Figure 25, that is, the tree961

leading to the lowest percentage weighted record 3,67%. Further, although962

it leads to the lowest average overall error, it does not lead to the lowest963

percentage overall error (which is however very low).964

Unfortunately, we cannot report the whole full tree and best pruned tree965

since they are too big. Anyway, it is worth noting that all the predictors966

have been used to build the tree, that is, each predictor is the splitting vari-967

able for one node at least. As briefly mentioned in Subsection 4.5, standard968

neural networks lack an embedded algorithm to select relevant predictors and969

exclude irrelevant predictors, but we may refer to the predictors implicitly970

selected by the regression tree itself. Since it has used all of them, we will971

run the neural network on the full dataset.972
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Fig. 25: Regression tree performance varying by minimum number of records per leaf
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Fig. 26: Neural network performance varying by number of hidden neurons

So far, we know the structure of the input layer: thirteen neurons for thirteen973

predictors. As discussed in Subsection 4.5, we may also accept the assump-974

tion of one single hidden layer. However, how many hidden neurons shall we975

use? Intuitively, too few hidden neurons will not be able to detect informa-976

tion, while too many hidden neurons will imply overfitting. Just like for the977

regression tree, let’s try various cases by gradually increasing the number of978

hidden layers, say from 1 to 20. The results are summarized in Figure 26979

(the fields have the same meaning as in Figure 25). Once again, training er-980

ror and validation error are very close: the neural network is not overfitting.981

The bad performance due to few hidden neurons - between 1 and 7 - is quite982

clear. By adding more hidden neurons, the error tends to decrease slowly,983

but it seems that it is not overfitting by 20 neurons yet: it will probably start984

overfitting a bit later. The chosen neural network is that (in bold in Figure985

25) leading to the lowest percentage weighted error, which also coincides to986
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Fig. 27: 8-hidden-neuron neural network for claim amount prediction

the lowest average overall error and the lowest percentage overall error. A987

formal representation of this neural network is in Figure 27, while the related988

parameters are reported in Figure 28.989

As a conclusion to this subsection, we will present some global results. Firstly,990

the convergence plots of the regression tree and the neural network in Fig-991

ure 29 and 30 respectively. More importantly, however, we should compare992

actual data and estimations - see Figure 31-34. Remember that the chosen993

regression tree and neural network got a weighted error of 3,67% and 8,30%994

respectively, so their good punctual estimations for the claim payments are995

not surprising at all. Likewise, the gamma regression shows good perfor-996

mance too, although there seems to be some overestimation by closing delay997

2 and 3.998

47



Fig. 28: 8-hidden-neuron neural network parameters

Fig. 29: Convergence of the error for
the regression tree

Fig. 30: Convergence of the error for
the neural network
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Fig. 31: Actual data Fig. 32: Gamma regression

Fig. 33: Regression tree Fig. 34: Neural network

5.4. Claim reserve estimation as an ensemble999

In machine learning, an ensemble is a complex machine learning algorithm1000

consisting of a number of simpler machine learning tools. The combination1001

may be very easy to implement (for instance, relating to the three predictive1002

models in Subsection 5.3, an ensemble for the prediction of the claim amount1003

could be the average of the three different predictions), or very difficult. In1004

any case, the goal is the improvement of the predictive performance.1005

Performance assessment for an ensemble typically requires more computa-1006

tion than performance assessment for its constituents, so ensembles may be1007

thought of as a way to compensate for poor learning algorithms by perform-1008

ing a lot of extra computation. Therefore, fast algorithms such as CARTs1009

are commonly used in some ensemble versions (for example random forests,1010

bagging trees, and boosting trees).1011

From this perspective, the estimation expressed by the (4) may be seen ex-1012

actly this way, that is, as an ensemble resulting from the combination of1013

a classification tool and a regression tool. Of course, considering all the1014

tools described in Section 4, any of the classification methods may be com-1015

bined with any of the regression methods. The choice will depend on the1016

performance reported in Figure 35-38 by reporting year, and the overall per-1017

formance reported in Figure 39.1018

Globally, gamma regression significantly misestimates the claim payments,1019

especially for the reporting year 1993 and 1994. More importantly, the ma-1020

jor problem is that the performance is quite different across reporting years1021
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Fig. 35: Predictive performance for reporting year 1993

Fig. 36: Predictive performance for reporting year 1994

Fig. 37: Predictive performance for reporting year 1995

Fig. 38: Predictive performance for reporting year 1996

Fig. 39: Overall predictive performance
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regardless of the classification tool used. On the other hand, the best per-1022

formances seem to be related to two ensembles:1023

• k-nearest neighbors and regression tree (overall error -0,46%)1024

• classification tree and regression tree (overall error -0,14%)1025

and their error per reporting year is always lower than 3% in absolute value.1026

Basically, if one of this two combinations is used to predict the payment as1027

soon as the claim is reported (assuming that all the relevant information is1028

immediately available), we will reserve an extremely accurate amount for any1029

reporting year. That’s sounds quite good, but it is not necessarily the best1030

solution. Actually, a proper reserve should always account for some level of1031

conservatism, as long as it is uniformly included into each allocation. For1032

instance, Figure 35-38 shows that the two ensembles1033

• k-nearest neighbors and neural network (overall error 5,02%)1034

• classification tree and neural network (overall error 5,76%)1035

slightly overestimate the claim payments. In particular, the overestimation is1036

quite stable over the reporting years 1994-1996, that is, they overestimate in1037

the same direction, with the same magnitude, regardless of the reporting year.1038

If the company reserves using one of the two aforementioned ensembles, it will1039

most probably overestimate the amount by around 6-8% (we do not consider1040

the lower but older - thus less significant - errors for the year 1993). For1041

our purpose, it could really be the best compromise, including a reasonable1042

prudence margin.1043

Once the best ensembles are selected, the last step is the estimation of the1044

reserve on the test dataset, that is, the allocation for the claims reported in1045

1997 and 1998 (see Subsection 5.1). A further assumption is immediately1046

necessary: given that the reporting year is a categorical variable, the new1047

reporting years are not included in our models, so they will be replaced by1048

the last year available, that is, 1996 - the most significant one in terms of1049

timing. The results are stored in Figure 40. As specified in the column fields,1050

remember that these two reporting years contain information for a limited1051

number of closing delay categories: 0, 1 and 2 for 1997, while 0 and 1 for1052

1998. This is because the dataset was extracted at year end 1999. Whatever1053

the ensemble is, the overall claim amounts are materially overestimated for1054

both of the years. A total 46M claim amount in 1997 is predicted to be about1055
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Fig. 40: Summary results on the test dataset (reporting years 1997 and 1998)

50% greater, between 63M and 68M. In 1998, this delta reach about 150%!1056

Actually, this is not surprising, if we take into account the performance of1057

both k-nearest neighbors and classification tree in predicting closing delay1058

(see Subsection 5.2). Basically, the ensembles correctly predict amounts,1059

but they tend to allocate them in wrong closing delay categories. More1060

specifically, some claims are allocated by lower delays - 0 and 1 - whereas1061

they should be allocated by higher delays - 2 and 3. Additionally, we do not1062

have got many actual claims by higher delay categories yet, so this bias is not1063

balanced out by them, as opposed to the reporting years 1993-1996. However,1064

this happens in those years as well, if we separate claims by reporting year. In1065

Figure 41-44), this effect is represented by the gap between the dashed lines1066

(actual cumulative amount payed) and the four colored lines, representing1067

the four ensembles.1068

On the one hand, the low-closing-delay payments tend to be overestimated,1069

but the overall amount per reporting year still converges to the correct one.1070

As it’s said, keeping in mind that a prudence margin is always required,1071

such ensembles may be still used for reserving purposes. On the other hand,1072

it would be legitimate to let the company reduce such a prudence margin.1073

Ideally, it should own enough data to get better predictions for the closing1074

delay, in order to reduce the gaps shown in Figure 41-44.1075
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Fig. 41: Cumulative amount in 1993 Fig. 42: Cumulative amount in 1994

Fig. 43: Cumulative amount in 1995 Fig. 44: Cumulative amount in 1996

6. Limitations, extensions, and conclusions1076

In this paper, we demonstrated the great potential of machine learning1077

in solving a traditional actuarial problem such as claim reserving in non-life.1078

Nonetheless, we focused on a specific application to automobile bodily injury1079

claim data. As a consequence, no general conclusion may be drown (which is1080

typical when it comes with machine learning), but of course the ensembles we1081

used can be easily adapted to different datasets. And this is possible thank1082

to the unique flexibility of these tools.1083

On the other hand, we should point out some major drawbacks we faced1084

during the analysis:1085

• data availability is the crucial constraint, and it may happen that a1086

dataset is extremely useful for some target variable, while being very1087

poor for others (for instance, compare closing delay performance in1088

Subsection 5.2 and payment amount performance in Subsection 5.3);1089

• poor predictions for the closing delay is not a problem if claim reserves1090

are evaluated as at REPORTING year, but it would if they were eval-1091
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uated as at PAYMENT year (this is actually another way to state the1092

problem we faced in Subsection 5.4);1093

• a complete analysis should include greater closing delays, whose claims1094

tend to be as rare as severe and expensive, as well as zero-amount1095

claims, which would reduce the total reserve, but we couldn’t because1096

of data availability issues (see Subsection 5.1);1097

• IBNYR reserve might be a relevant component of the total claim re-1098

serve, but it is not considered in this paper (see Section 2 for further1099

details).1100

As regards the last bullet point, we should probably build a complete different1101

model for IBNYR prediction. And it would not be strictly “individual”, be-1102

cause the company does not get any individual claim data before the report-1103

ing date of the claim itself. If we want to use machine learning techniques for1104

this purpose, we should rather rely on different data. More specifically, cross-1105

sectional data related to the policyholder (age, family, address, habits, etc.),1106

and external information like economic environment (unemployment rate, in-1107

flation rate, financial distress, etc.), weather conditions, natural catastrophes1108

(storm, flood, earthquake, etc.), and so on. Of course, such additional data1109

may be useful for better prediction of the RBNYS reserve as well.1110

A last remark is important to conclude the paper. Even if data is materially1111

informative, traditional parametric methods could still outperform nonpara-1112

metric tools, or return comparable results. For instance, see the payment1113

amount predictions for closing delays 0 and 1 in Figure 31-34. Actually,1114

gamma regression predictions seem more accurate than those of regression1115

tree and neural network. That’s just an example of the fact that machine1116

learning is NOT generally superior as compared to traditional methods. The1117

strength of machine learning relates to the ability to catch intricate dependen-1118

cies among data, which is however not always necessary. More importantly,1119

a greater effort in predicting such dependencies could paradoxically lead to1120

worse performance on regular data. This is also clear in Figure 31-34: bet-1121

ter predictions for rare, severe claims (closing delays 3 and 4), but slightly1122

worse predictions for numerous, regular claims (closing delays 0 and 1). In1123

fact, if data is actually regular enough to fulfill the regression assumptions1124

about residuals and multicollinearity, there is no reason to use other tools:1125

regression would return the best performance by definition.1126

In spite of it, it is worth noting how these new methods can be convenient for1127
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non-life companies. Although we only used basic machine learning tools and1128

combined them together, we have still got very accurate predictions per re-1129

porting year. The process may be improved and automatized, little by little,1130

until traditional triangle-based models will be completely dismissed. This1131

evolution is going to outcome two major results: instantaneous, automatic,1132

accurate reserve estimation, and a brand new field for non-life reserving ac-1133

tuaries.1134
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