
An individual model for claims reserving based on
Bayesian neural networks

Gabriele Pittarello 1

Gian Paolo Clemente 2

Diego Zappa 2

1La Sapienza, Università di Roma
2Università Cattolica del Sacro Cuore

September 27, 2022

Abstract

Following the approach in Wüthrich (2018), we propose a new approach for in-
dividual claims reserving and we show how individual development factors can be
modelled as the prediction target of a system of Bayesian neural networks. This ap-
proach allows to take into account the complete information on policyholders available
to the insurance company and to provide a new application of Bayesian neural net-
works to obtain a stochastic claims reserve. This contribution will show a case study
that compares the individual chain ladder approach and the Bayesian neural networks
model.

Individual claims reserving, Chain ladder, Bayesian neural networks, Machine learning

1 Introduction

While life insurance mainly concerns contracts with large duration and immediate settle-
ment, non-life insurance contracts have short duration and delayed resolution. For this
reason, it is essential to fairly quantify liabilities providing estimates that are as close as
possible to the actual future realization of the company outflows and modelling the stochas-
tic process that determines their future development. The computational aspects of this
task are strictly linked to the accounting criteria that determines their fairness, so to the
timing of the insurance policy. Non-life insurance contracts cover the policyholder from
losses arising from predetermined events that might happen in a period of time that is
called coverage period. In case some of these predetermined events occurs, we call accident
date the year in which the event was triggered. The payment date is conversely the date in

1

which the insurance company paid the policyholder. Before the settlement date in which
the claim is closed, there might be multiple payments. Notionally, we group insurance
claims as follows:

• Reported But Not Setteled claims (RBNS) as those claims for which one or more
payments were recorded. Further claims develop in time, larger the amounts paid
until closure are expected to be.

• Reported But Not Paid claims (RBNP) as those claims that were already reported at
measurement date but no payment is yet occurred.

• Incurred But Not Reported claims (IBNR) as those claims that already occurred at
measurement date but the underwriter is unaware of.

In standard claims reserving, practitioners aggregate individual policyholders data into spe-
cific data structures called triangles to model the underlying process with some well known
reserving technique. In individual claims reserving, data are disentangled and treated as
supervised learning problem. The peculiar form of a reserving data set forces the practi-
tioner to deal with truncated time-series. A detailed description is provided in the following
sections.

Several authors started surveying the possibilities of machine learning models as a so-
lution to improve claims reserving. In [12], the author investigates how actuarial science
may adapt and evolve in the coming years to incorporate deep learning models and pro-
vides background on machine learning and deep learning for practitioners. The paper
surveys emerging applications of artificial intelligence in actuarial science, including claims
reserving.

The work in [13] surveys recent developments in machine learning models against micro-
level models for loss reserving. The two families are compared and assessed in terms of
potential future development. The discussion is focused on their relative merits and the
factors governing the choice between them and the standard actuarial models.

The authors of [3] use a neural networks approach to simulate individual claims report-
ing and cashflow patterns that can be deployed to support future back-testing of reserving
methods. The simulation algorithm is parameterised using individual claims records and
it explicitly considers the possibility of recoveries and reopened claims with a full history
of 12 years of development. The conclusion is that the neural network algorithm creates
simulated datasets which exhibit similar behavior to real data. In [4], the authors em-
bed classical actuarial regression models into neural network architectures. The models
in [4] are efficiently fitted and bootstrap methods for prediction uncertainty are explored.
The starting point of the neural network calibration is the classical actuarial model. The
theoretical framework in [4] is applied to a cross-classified over-dispersed Poisson model.
Afterwards the benefit of improving the model via neural networks is demonstrated. Simi-
larly, the actuarial technique in [3] takes into account both claim counts and claim amounts
with two separate overdispersed Poisson models. The result is a boosting machine that al-
lows for mutual learning of claim counts and claim amounts beyond the two individual
(overdispersed) Poisson models.

2

In [11] the author uses neural networks to model both risk price and ultimate claims
on undeveloped policy and claims level data. Lastly, it concludes granular claims reserving
can outperform portfolio approaches on larger datasets. It is worth mentioning that this
project discusses that choice of initialization and optimizer can be important to model fit.

In [14] the authors develop regression models and postulate distributions which can be
used in practice to describe the joint development process of individual claim payments
and claim incurred. The RBNS modelling is regarded with information on risk factors and
allocations. It is provided a joint distribution of paid and incurred claims.

The work in [2] demonstrates that a system of neural networks provides more im-
provement over chain-ladder for long tail lines of business or if the line of business is not
homogeneous. The authors also observed neural networks are better under very restrictive
conditions, such as using transformed pattern which requires non-zero paid values that may
not apply to practical reserving analysis.

The model in [7] is an individual claims forecasting framework that relies on bayesian
mixture density networks for claims analytics tasks. By incorporating claims information
from different data sources, it allows to produce multi-period cash flow forecasts and dif-
ferent scenarios of future payment patterns generation. The modeling framework is tested
on a case study.

The model proposed in [15] embeds individual features into the traditional Chain-Ladder
model, while IBNR claims are modelled on aggregate. RBNS claims are predicted as the
prediction target of multilayer perceptron. On the other hand, while stochastic claims
reserving assess both process uncertainty and model uncertainty, multilayer perceptrons
do not provide an estimate of the variability which is necessary for capital requirement
purposes. The novel of this work is to provide the first bayesian neural networks imple-
mentation of an individual one-period model based on the individual Chain-Ladder that
allows to assess the individual reserves.

The paper is structured as follows: in section 2, we will introduce the triangular data
structure and the deterministic chain ladder model. In section 3, we will provide the
general framework of our individual claims reserving model. In section 4 we will define the
individual chain ladder model as in [15] and our stochastic individual chain ladder model.
In section 5, we show the simulated data set that we simulate from [5] to implement the
individual chain ladder. In the last section, we will show the mean predictions of the
Bayesian neural networks model. In the Appendix A, additional results are provided. In
the Appendix B, we summarise main computational aspects.

2 Claims reserving

Within this section we introduce the deterministic chain ladder model, which is the foun-
dation of this work, see [8]. In order to do so, we show the main notation of the aggregate
reserving framework as the starting point for individual reserving models. Often, in non-life
insurance individual data are represented as data structures called run-off triangles:

3

S(n) = {Ci,j : i+ j ≤ T} ,

where Ci,j represents the cumulative sum of the individual payments of the insurance
company for accident period i at development period j, with i = 0, . . . , T , j = 0, . . . , T ,
where T is the triangle dimension or evaluation date. We show a non-life insurance triangle
in Figure 3.

Figure 1: Run-off triangle.

The chain ladder algorithm describes the development of cumulative claims as:

Ci,j = Ci;j−1 · fj−1

where f0, . . . , fT−1 are the so-called development factors. By means of a cumulative
product it is possible to obtain the ultimate cost for each accident period as:

Ci,T = Ci,T−i

T−1∏
j=T−i

fj

For each accident year the claims reserve can be computed as:

Ri = Ci,T − Ci,T−i

The claims reserve is given as the sum of the reserves for each accident year.

3 Modelling framework

In individual claims reserving, each individual k = 1, . . . , N is described by the vec-
tor of features xk ∈ Rp and the time series of individual cumulative payments Ci,k =

4

{Ci,1,k, . . . , Ci,T,k}. In this project we model the chain-ladder development factors in a sim-
ilar fashion as it was previously done in [15].

The chain-ladder fundamental relation in the individual framework then becomes:

kCi,j = kfj−1 · kCi,j−1 (1)

Since our model is a one-period model, we can construct the individual development
factors in the upper triangle and fit a Bayesian neural network for each development period.
This is because at the evaluation date T we do not observe the full data. We then exploit
Bayesian neural networks together with the chain-ladder algorithm to forecast the value of
the reserve. Indeed, for each development period we will observe the training set:

Dj =
{
(x1, 1f1), . . . , (xNj

, Njfj)
}

(2)

where Nj indicates the number of individuals in the development period j for which the
information on the upper triangle is available.

4 Model framework

Bayesian neural networks are a flexible structure that allows practitioners to account for
both model uncertainty and process uncertainty. We introduce baysian neural networks
for individual claims reserving in three steps. We first introduce the notation we use
for multilayer perceptrons in the individual chain-ladder framework. In a second place,
we explain how is it possible to account for process uncertainty within our estimates by
properly changing the loss function. Lastly, we show the novelty of variational inference
applied to neural networks weights to properly account for model uncertainty: multilayer
perceptrons only provide a point estimate of model weights. Within our framework, model
weights become a distribution.

4.1 Individual chain-ladder

In the individual chain-ladder approach in [15], development factors are modeled as the
prediction target of a neural network with one hidden layer with q neurons. Consider the
prediction problem for the individual development factor in the duration j. The regression
target k f̂j, for the k − th individual with xk features is expressed as:

k f̂j = exp
(
zTw(2)

)
(3)

The hidden structure is described with the vector of q neurons:

z = (1, . . . , zq) ,

where each neuron is expressed as zl = tanh
(
xTw

(1)
l

)
.

5

The connection from the p−dimensional feature input x = (1, . . . , xp) to the neurons in

the hidden layer is specified with the weights w
(1)
l =

(
w

(1)
0l , w

(1)
1l , . . . , w

(1)
pl

)′
.

The output is connected to the neurons via the vector of weightsw(2) =
(
w

(2)
0 , w

(2)
1 , . . . , w

(2)
q

)′
.

In the optimization phase, the optimal set of parameter is obtained by minimizing a loss
function L(w(1),w(2)). In [15] the authors adopt a weighted version of the mean squared
error, see the paper for more details. During the model training phase the neural networks
parameters are optimized on the data. Several algorithms were introduced in the literature,
see [6].

4.1.1 Zero claims features

A problem arises for those individuals with a zero-payment on the diagonal. The authors
in [15] propose a separate aggregate model for those claimants. In a similar fashion we
propose a solution that acts on the individual level. We are now able to define a new set:

D∗
j =

{
(x1, 0), . . . , (xN∗

j
, 0)
}

(4)

where N∗
j represents the number of individuals with no payment record in development

year j. We now obtain:

C∗
i,j =

∑
k∈D∗

j ,i=i

k Ci,j−1 (5)

We can then compute the proportions λi with i = 0, . . . , T − 1:

λi =

∑i−1
s=1C

∗
s,T−i+1∑i−1

s=1Cs,T−i

(6)

We then split the Ci,T−i amount among those claimants with zero payment on the
diagonal and treat them in the Bayesian neural network model.

4.2 Bayesian neural networks

In the following section, we explain how to derive the Bayesian neural networks model that
we use in this paper from the multilayer perceptron. In a first place, we choose a variational
inference approach to quantify uncertainty over the model weights. Indeed, the Bayes by
Backprop algorithm presented in [1], will be adapted to our framework. Lastly, we will
state a probabilistic assumption to model development factors in a stochastic framework.
In order to provide a clear explanation, we consider the connection between the input j
and the node l on the first hidden layer for the duration j.

6

4.2.1 Weights uncertainty

Define P (w
(1)
jl |Dj) as the posterior distribution of the weights given the data Dj. The

exact computation of the model weights via the Bayes rule is possible but in practice it is
intractable, [10].
We use variational inference to approximate the posterior distribution to the known distri-
bution form g(w

(1)
jl |θ), where θ represents the distribution parameters. Within our frame-

work we assume:

g(w
(1)
jl) ∼ N(µ, σ), θ = (µ, σ).

To approximate, we want the Kullback-Leibler distance distance between the weights
posterior and the known functional form g(w

(1)
jl |θ) to be as small as possible.

The Kullback-Leibler distance between the posterior distribution P (w
(1)
jl |Dj) and g(wjl|θ)

is defined as:

DKL(g(w
(1)
jl |θ)||P (w

(1)
jl |Dj)) =

∫
g(w

(1)
jl |θ) log

(
g(w

(1)
jl |θ)

P (w
(1)
jl |Dj))

)
dw

(1)
jl (7)

During the optimization phase, we want to minimize the Kullback-Leibler distance
between the posterior distribution and g(w

(1)
jl |θ) in θ. This leads us to the following opti-

mization problem:

argmin
θ

DKL(g(w
(1)
jl |θ)||P (w

(1)
jl |Dj))

argmin
θ

∫
g(w

(1)
jl |θ) log

(
g(w

(1)
jl |θ)

P (w
(1)
jl |Dj))

)
dw

(1)
jl

The integral in 7 be written as:

argmin
θ

logP (Dj) +DKL(g(w
(1)
jl |θ)||P (w

(1)
jl))− E

g(w
(1)
jl |θ)(logP (Dj|w(1)

jl))

We call P (w
(1)
jl) the weights prior. Since logP (Dj) is constant, the previous trivially

leads to the minimization of the following quantity:

argmin
θ

DKL(g(w
(1)
jl |θ)||P (w

(1)
jl))− E

g(w
(1)
jl |θ)(logP (Dj|w(1)

jl)) (8)

Two different terms with a clear mathematical interpretation appear in equation 8.

7

• DKL(g(w
(1)
jl |θ)||P (w

(1)
jl)) term is called complexity cost : it depends on θ and the prior

P (w
(1)
jl).

• Conversely, the expectation E
g(w

(1)
jl |θ)(logP (Dj|w(1)

jl)) is called the likelihood cost, as

it depends on θ and the data only.

The direct minimization of the cost function in 8 is again unfeasible. Following the
novel in [1], we implement the Bayes by Backprop algorithm that is commonly used for
variational inference on the weights. Equation 8 can be rewritten as:

argmin
θ

E
g(w

(1)
jl |θ)(log g(w

(1)
jl |θ)− logP (Dj|w(1)

jl)− logP (w
(1)
jl)).

Define t(w
(1)
jl , θ) = log g(w

(1)
jl |θ)− logP (Dj|w(1)

jl)− logP (w
(1)
jl) and a learning rate η. We

adopt the Bayes by Backprop algorithm for weights learning handled in [9]:

1: Sample ϵi ∼ N(0, 1).
2: Let wi = µ+ σϵi.
3: Calculate the gradients with respect to the parameters µ and the σ.

∆µ =
∂t(w

(1)
jl , θ)

∂wi

+
∂t(w

(1)
jl , θ)

∂µ
∆σ =

∂t(w
(1)
jl , θ)

∂w
(1)
jl

σ +
∂t(w

(1)
jl , θ)

∂σ

4: The gradients provided an updating criterion:

µ← µ− η ·∆µ

σ ← σ − η ·∆σ

4.2.2 Process uncertainty

In order to model our development factors in a probabilistic framework, we assume the
development factors to be normal distributed. This may not seem straightforward but we
impose it so that we are able to model recoveries within our payments history.

k fj ∼ N
(

k µj,
2

k σj

)
(9)

The minimization problem is now reduced to the minimization of a likelihood function.
This is the second structural change from the neural network architecture we introduced
in the previous sections.

8

5 Data

The data were simulated with the algorithm in [5]. It is a data set with 5003216 observa-
tions, 7 features over 12 development years. We display in Table 1 the features available
for each individual that will be adopted in this paper.

Feature Description
ClNr policy identifier
LoB Line of business, categorical with 4 levels
cc claim code, categorical with 53 levels
AY year of claim accident, integer with values from 1994 to 2005
AQ year quarter of the claim accident, integer with values from 1 to 4
inj part year quarter of the claim accident, categorical with 99 levels

Table 1: Individual observation features

The available individual information allows us to visualize the information for the in-
dividuals by line of business. In Figure 2 we show the average claim severity for the
individuals.

Figure 2: Heat map of the individual average severity for each accident year displayed by
line of business.

9

6 Data application

6.1 Cross-validation

In order to fit the system of Bayesian neural networks on the data, the most appropriate
architecture requires to be selected on the data. Working with big data may require a con-
siderable amount of time for a considerable set of combinations of possible hyperparameter
choices. The hyper-parameter choices were tested in terms of mean squared error of pre-
diction, mean absolute error and prediction accuracy on the validation data. See 2 for the
hyper-parameters sets tested in this phase. In order to select the correct architecture the
hyperparameter sets where compared by using the Tensorboard powered by Tensorflow, see
[9]. Using the Tensorboard allows to select the most appropriate parameters combination
in a compact way.

Hyper-parameter Set
Number of units, hidden layers 16, 20, 32
Number of hidden layers 1, 2
Optimizer adam, RMSprop
Activation functions relu,tanh, exponential,linear
Learning rate 0.001, 0.01

Table 2: Hyper-parameter selected during CV.

6.2 Claims reserving with Bayesian neural networks

Within this section we implement a case study that compares the mean results obtained
with our Bayesian neural networks algorithm and the results of the individual chain ladder
in [15]. A similar analysis by line of business can be found in the appendix. We prove
the predictions consistency by providing similar results to those obtained from the model
in [15]. As long as the approach in [15] does not use an individual model for claims with
zero diagonal payments we limit our case study to those claims with positive payment at
the evaluation date. Table 3 considers the error margin with respect to the real value of
the reserve. In general, the Bayesian neural networks model seems to better perform in
terms of final predicted amount while the individual chain-Ladder model seem to provide
a smaller mean absolute error. For sake of interpretability, we consider the +0.1% relative
error on the reserve: it means that the Bayesian Neural Network model overestimated the
true amount of the reserve by +0.1%. The mean absolute error was again computed with
respect to the real data from the simulation engine.

10

Model Relative error on the ultimate cost Relative error on the reserve Mean Absolute Error (MAE)
Bayesian Neural Networks +0.1% +1.2% 364.516
Chain-Ladder Neural Networks +1.0% +9.1% 294.698

Table 3: In the first two columns we display the relative errors on the reserve estimates
according to the different approaches. The last columns shows the mean absolute error.
The results were rounded to the first three decimal points.

In Table 4 some summary statistics on the predictions for the full data set are displayed.
The Bayesian neural network model describes the distribution better than the individual
chain ladder model. The objective of Table 4 is to provide sketch of the payments distri-
bution according to the different models in order to understand to what extent they catch
the process behavior.

Data Mean individual ultimate cost 0.05 ultimate cost quantile median 0.995 ultimate cost quantile
Bayesian Neural Networks predictions 2262.418 55.053 460.229 53301.001
Chain-Ladder Neural Network predictions 2281.342 69.059 470.192 53768.506
Real data 2259.567 64.0 425.0 56367.0

Table 4: Mean individual predictions according to different methodologies. The results
were rounded to the first three decimal points.

In Figure 3 the ultimate cost predictions are compared with the ultimate cost actual
individual values. The results seem consistent as the predictions lay in the points cloud.

Figure 3: Graphical representation of the ultimate cost predictions for the ICRBNN.

Table 5 shows the prediction errors in terms of relative amount between Bayesian Neu-
ral Networks and Individual Chain-Ladder. While the Bayesian Neural Network model
outperforms on aggregate and on the older accident years the Individual Chain-Ladder
provides better results on the most recent accident years. For sake of interpretability, con-
sider the individual chain ladder 0.108 error in accident year 1: it means that the individual
chain-ladder model overestimates the accident year 1 amount by 10.8%.

11

Model ay0 ay1 ay2 ay3 ay4 ay5 ay6 ay7 ay8 ay9 ay10
Bayesian Neural Networks predictions 0.0 0.004 −0.07 0.616 −0.325 −0.21 0.064 0.046 −0.111 −0.132 0.137 0.634
Chain-Ladder Neural Network predictions 0.0 0.108 0.43 −1.458 0.368 0.382 0.237 0.132 −0.007 −0.008 0.084 0.323

Table 5: Relative prediction errors according to the different approaches for each accident
year. The results were rounded to the first three decimal points.

7 Conclusions

This paper shows a novel application of an existing algorithm to the claims reserving
framework. Within this case study we showed that this approach was able to replicate
the individual chain ladder in [15]. Further research will regard the development of an
extensive analysis to allow practitioners to assess the prediction uncertainty. By doing so
we will be able to access process and model uncertainty of the claims reserve. While the
process uncertainty is coming from the distributive assumption on the output layer, the
model uncertainty is arising from the distribution weights.

References

[1] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight
uncertainty in neural network. In International conference on machine learning, pages
1613–1622. PMLR, 2015.

[2] Bor Harej Salma Jamal Roman Gächter et. al. Individual claim development with
machine learning. ASTIN working party report, 2017.

[3] Andrea Gabrielli. A neural network boosted double over-dispersed poisson claims
reserving model. Scandinavian Actuarial Journal, 2019.

[4] Andrea Gabrielli, Ronald Richman, and Mario V. Wüthrich. Neural network embed-
ding of the over-dispersed poisson reserving model. 2018.

[5] Andrea Gabrielli and Mario V. Wüthrich. An individual claims history simulation
machine. 2018.

[6] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

[7] Kevin Kuo. Deeptriangle: A deep learning approach to loss reserving. Risks, 2019.

[8] Thomas Mack. Distribution-free calculation of the standard error of chain ladder
reserve estimates. ASTIN Bulletin: The Journal of the IAA, 23(2):213–225, 1993.

[9] Paul Barham Mart́ın Abadi, Ashish Agarwal et al. TensorFlow: Large-scale machine
learning on heterogeneous systems, 2015. Software available from tensorflow.org.

12

http://www.deeplearningbook.org

[10] Beate Sick Oliver Dürr and Elvis Murina. Probabilistic Deep Learning with Python,
Keras and TensorFlow Probability. Manning, 2020.

[11] Jacky H. L. Poon. Penalising unexplainability in neural networks for predicting pay-
ments per claim incurred. Risks, 2019.

[12] Ronald Richman. Ai in actuarial science. Annals of Actuarial Science, 2018.

[13] Greg Taylor. Loss reserving models: Granular and machine learning forms. Risks,
2019.

[14] Mario Wüthrich and Lukasz Delong. Regression models for the joint development of
individual payments and claim incurred. 2020.

[15] Mario V. Wüthrich. Neural networks applied to chain–ladder reserving. European
Actuarial Journal, 8:407–436, 2018.

A Case study by lines of business

The following appendix compares the two different machine learning models performances
in the different lines of business. In general, while the individual chain Ladder is better
performing in the line of business 4, the bayesian neural networks model seem to be more
consistent on the other lines. The results were rounded to the first three decimal points.

Model Relative error on the ultimate cost Relative error on the reserve Mean Absolute Error (MAE)
Bayesian Neural Networks +0.05% +0.411% 220.617
Chain-Ladder Neural Networks +0.377% +3.11% 161.549

Table 6: Line of business 1, relative prediction errors and MAE.

Data Mean individual ultimate cost 0.05 ultimate cost quantile median 0.995 ultimate cost quantile
Bayesian Neural Networks predictions 1140.787 41.63 321.266 25555.908
Chain-Ladder Neural Network predictions 1144.515 54 327.961 25599.786
Real data 1140.219 51 300 27637.61

Table 7: Line of business 1, process description capabilities.

Model ay0 ay1 ay2 ay3 ay4 ay5 ay6 ay7 ay8 ay9 ay10
Bayesian Neural Networks predictions 0.0 0.0 −0.13 0.435 0.131 −0.252 −0.009 −0.054 −0.039 −0.055 0.039 0.258
Chain-Ladder Neural Network predictions 0.0 0.149 0.54 −1.28 −0.257 0.234 0.056 −0.026 −0.038 0.01 −0.006 0.048

Table 8: Line of business 1, prediction errors in the different accident years.

Model Relative error on the ultimate cost Relative error on the reserve Mean Absolute Error (MAE)
Bayesian Neural Networks +0.824% +11.094% 657.362
Chain-Ladder Neural Networks +1.549% +20.847% 574.839

Table 9: Line of business 2, relative prediction errors and MAE.

13

Data Mean individual ultimate cost 0.05 ultimate cost quantile median 0.995 ultimate cost quantile
Bayesian Neural Networks predictions 5342.369 199.0 1393.718 140777.479
Chain-Ladder Neural Network predictions 5380.763 219.61 1407.292 142976.67
Real data 5298.695 209.0 1323.0 144487.32

Table 10: Line of business 2, process description capabilities.

Model ay0 ay1 ay2 ay3 ay4 ay5 ay6 ay7 ay8 ay9 ay10
Bayesian Neural Networks predictions 0.0 0.042 −0.432 0.001 0.027 0.795 0.283 0.107 0.022 −0.07 0.138 −5.49
Chain-Ladder Neural Network predictions 0.0 0.237 −1.828 −0.169 −0.858 4.092 0.703 0.21 0.074 0.045 0.061 −2.875

Table 11: Line of business 2, prediction errors in the different accident years.

Model Relative error on the ultimate cost Relative error on the reserve Mean Absolute Error (MAE)
Bayesian Neural Networks +0.923% +11.905% 816.381
Chain-Ladder Neural Networks +1.856% +23.952% 733.804

Table 12: Line of business 3, relative prediction errors and MAE.

Data Mean individual ultimate cost 0.05 ultimate cost quantile median 0.995 ultimate cost quantile
Bayesian Neural Networks predictions 6500.793 242.839 1671.583 164073.411
Chain-Ladder Neural Network predictions 6560.924 267.88 1699.292 166182.945
Real data 6441.367 253.0 1578.0 171955.6

Table 13: Line of business 3, process description capabilities.

Model ay0 ay1 ay2 ay3 ay4 ay5 ay6 ay7 ay8 ay9 ay10
Bayesian Neural Networks predictions 0.0 0.005 −0.032 −0.041 −0.086 −0.22 0.069 −0.965 −0.469 −0.275 −22.535 −0.935
Chain-Ladder Neural Network predictions 0.0 0.048 0.167 0.249 0.172 0.54 0.663 −6.263 −0.073 0.096 −19.902 −0.624

Table 14: Line of business 3, prediction errors in the different accident years.

Model Relative error on the ultimate cost Relative error on the reserve Mean Absolute Error (MAE)
Bayesian Neural Networks −1.079% −7.333% 347.185
Chain-Ladder Neural Networks +0.164% +1.118% 271.285

Table 15: Line of business 4, relative prediction errors and MAE.

Data Mean individual ultimate cost 0.05 ultimate cost quantile median 0.995 ultimate cost quantile
Bayesian Neural Networks predictions 1737.461 59.074 412.883 41396.901
Chain-Ladder Neural Network predictions 1759.298 75.49 426.377 41940.318
Real data 1756.409 70.0 379.0 46127.64

Table 16: Line of business 4, process description capabilities.

Model ay0 ay1 ay2 ay3 ay4 ay5 ay6 ay7 ay8 ay9 ay10
Bayesian Neural Networks predictions 0.0 −0.021 −0.196 −0.621 −0.288 −0.262 0.052 0.124 −0.189 −0.167 0.013 −0.06
Chain-Ladder Neural Network predictions 0.0 0.101 0.194 0.328 0.051 0.127 0.102 0.128 −0.032 −0.069 −0.012 −0.047

Table 17: Line of business 4, prediction errors in the different accident years.

14

B Computational notes

The computation for this project where performed in Python 3.9.5. See Table 18 for the
package versions used in this project.

Package Version
logging 0.5.1.2
numpy 1.21.2
pandas 1.3.5
tensorflow 2.5.0
sklearn 0.24.2
tensorflow probability 0.13.0

Table 18: Main packages versions for the project computation.

15

	Introduction
	Claims reserving
	Modelling framework
	Model framework
	Individual chain-ladder
	Zero claims features

	Bayesian neural networks
	Weights uncertainty
	Process uncertainty

	Data
	Data application
	Cross-validation
	Claims reserving with Bayesian neural networks

	Conclusions
	Case study by lines of business
	Computational notes

