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Abstract: The interest rate risk is relevant in the creation of a life insurance company’s solvency

capital requirement. In the article we address the problem of its measurement when the company

has with-profit insurance contracts with a minimum guaranteed rate in its portfolio and uses the

Standard Formula. A stochastic model and the Monte Carlo simulation is needed to calculate the

technical provision. We propose a Cox-Ingersoll-Ross model with an exogenous barrier extended

with a deterministic function which allows to estimate negative rates and the perfect-fit of the

term structure of interest rates, measured using the Smith-Wilson method. We also introduce

an alternative method to define the upward and downward scenarios which is consistent with

the regulatory framework.
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1 Introduction

The market risk contributes towards the making of a life insurance company’s capital requi-

rement in a predominant way. Among its sub-risks, an important emphasis is connected to

the interest rate risk ([EIOPA (2011)]), that is the risk derived from the variability of term

structure of risk-free interest rates. In the Standard Formula, used by most Italian companies

([ANIA (2016)]), the Solvency Capital Requirement (SCR) against this risk is calculated by a

scenario-based approach, that being by the maximum variation in Basic Own Funds (BOF) if

positive, and is obtained by applying two stressed structures that define two types of markets,

one is upward and the other is downward.

The technical provision’s calculation is preliminary to the implementation of the Standard For-

mula. In the paper a valuation model of with-profit insurance contract, widely spread in the

Italian market, is shown. The model allows for the perfect-fit of the reference structure of risk-

free interest rates. Moreover, a different approach to the scenario measurement is proposed,
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that helps to overcome some theoretical contradictions in the methodology applied by European

Authority (EIOPA). Besides, it provides a more coherent estimation with the current European

market, characterized by a strong fall in interest rates during the last few years.

The new approach proposed, using the statistical technique of Principal Component Analysis

(PCA), is applied to determine the interest rate swaps that characterize both upward and

downward markets, in agreement with the normative that defines them as benchmarks for the

measurement of the term structure.

PCA is widely used as it is particularly suitable in reducing the problem size characterized

by a high number of variables, such as the one of the analysis of interest rates dynamics.

[Loretan (1997)] applies PCA to produce scenarios of the interest rate curve and the equity

market; [Frey (1997)] calculates the Value-at-Risk of a portfolio made up of coupon bonds and

interest rate options through a limited number of scenarios of the interest rate curve, obtained

from a linear combination of correct one-way shocks of the first four principal components.

Even [Jamshidian and Zhu (1997)] measure the interest rate risk exposure using a model based

on scenarios obtained by PCA. They point out the convenience in terms of computational

efficiency compared with the Monte Carlo simulation. [Novosyolov and Satchkov (2008)] apply

it to describe the behaviour of rates in a global context analising three possible versions.

In [Kreinin et al. (1998)] and in [Fiori and Iannotti (2006)] the Value-at-Risk for the interest

rate risk is estimated by using the combination of the Monte Carlo simulation and PCA. The

articles are different regarding the distribution of risk factors, the first authors assume it to be

normal and the second obtain it by the empirical distribution of principal components using a

non-parametric technique. Differing from these, the proposed approach to fix the upward and

downward interest rate swap does not use any distributional hypothesis and it does not need

any technique for the estimation. Following that, the stressed structures are evaluated applying

the Smith-Wilson method. The Regulator recommends this method as the technique for the

measurement of the market structure and it chooses the prices of interest rate swaps as data

for the calibration, concluding that it is coherent to obtain the scenarios for the interest rate

structure by shocked swaps.

The theory for the valuation of the technical provision is found in [De Felice and Moriconi (2005)].

They apply the Cox-Ingersoll-Ross model ([Cox et al. (1985)]) to describe the uncertainty con-

nected with interest rates and they explain that the model is economically sound as it does not

produce non negative rates and is mathematically tractable. In the current market, characteri-

zed by negative rates, the model does not seem suitable. In addition, it allows the estimation

of yield curves that only have a monotonic trend, and is not able of reproducing, for instance,

a humped curve which is often observed. In the paper the Cox-Ingersoll-Ross model with a

barrier, that can be also negative, is introduced and then it is extended with a deterministic

shift as in [Brigo and Mercurio (2001)]. This allows the exact fit of an observed term structure
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of interest rates.

The Italian with-profit insurance contracts have a minimum guaranteed rate, contractually fixed,

that is cliquet. They are part of participating life insurance. There are various articles about this

topic. [Zemp (2011)] analyses five different bonus distribution models, widespread in the Euro-

pean market. He implements the Black and Scholes model for the valuation as [Bacinello (2001)],

[Bauer et al. (2006)] and [Kling et al. (2007)]. [Bernard et al. (2005)] and [Graf et al. (2011)]

introduce the uncertainty of interest rate applying the Vasicek model. Other reference papers are

[Briys and de Varenne (1997)], [Grosen and Jørgensen (2000)], [Grosen and Jørgensen (2002)].

[Eckert et al. (2016)] study a participating life insurance considering an asset portfolio with de-

faultable bonds and equities. They examine the impact of credit risk on the fair value of the

contract and take the shortfall probability as risk measurement.

These papers are concentrated on the fair (or market-consistent) valuation. We thus contribute

to the existing literature by examining the pricing problem to calculate the regulatory capital

in the Standard Model framework.

[Floryszczak et al. (2016)] calculate the solvency capital of a company portfolio which has equi-

ties, risk free bonds and cash as assets and with-profit contracts with a guaranteed rate as

liabilities. They use the standard Cox-Ingersoll-Ross model for the interest rate uncertainty

and apply the least-squares Monte Carlo method to calculate the capital requirement, thus

developing the assessment in an internal model context.

In the balance sheet of an Italian insurance company these contracts are financially significant

as its portfolios have guaranteed minimum higher than the current rates, so they are unlikely

to be realizable in the present market. Therefore, to measure the interest rate risk exposure is

essential for the company solvency.

We emphasize that the valuation of assets (the reference portfolio) and liabilities (technical pro-

vision) is market-consistent as it uses the information provided by the financial market, repre-

sented by the term structure of interest rates measured according to technical rules. The pricing

of with-profit policy requires the Monte Carlo simulation ([Boyle (1997)]) as the minimum gua-

rantee determines a non-standard option (cliquet option) in the contract. [Bauer et al. (2006)]

and [Eckert et al. (2016)] also implement the Monte Carlo simulation.

The paper is organized as follows. In Section 2 the calculation of solvency capital for the interest

rate risk, as defined in the Standard Formula, is presented. The method to estimate the stressed

structures of interest rates is illustrated and the insurance contract is introduced. It shows

the formula of technical provision too. In Section 3 the Smith-Wilson method and the Cox-

Ingersoll-Ross model with exogenous barrier (reference model) are presented and its extension

too. Section 4 introduces the implementation technique for the Monte Carlo simulation and

Section 5 shows some numerical results obtained by using different reference portfolios. The

analysis is developed with regard to an individual policy and a policies portfolio. We also
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calculate the solvency capital in relation to different values of the minimum guaranteed interest

rate and a comparison is made with the current regulatory framework. The conclusions are

drawn in the last section.

2 Standard Formula for the interest rate risk

2.1 Solvency Capital Requirement

In the Standard Formula, the amount of solvency capital for the interest rate risk is calculated by

using the scenario-based methodology: two different structures of interest rates are calculated,

one defines the upward market, the other the downward market. Then, the higher variation

of the value of Basic Own Funds (BOF), obtained by recalculating the values of assets and

liabilities, is the regulatory capital.

Indicated by A(t) and V (t) the market value of assets and liabilities at time t, respectively, the

difference is called BOF at time t:

BOF(t) = A(t)− V (t) ,

given the structure of risk-free interest rates at time t, {i(t, s)}, with s ≥ t.
If {i1(t, s)} and {i2(t, s)} are the structures that define the upward and downward market,

respectively, the variation of BOF is calculated by:

∆BOFk = BOF(t)− BOFk , (1)

with k = 1, 2 and where

BOFk = Ak − V k , (2)

is the value of BOF obtained by recalculating the values of assets and liabilities portfolio Ak

and V k, according to the two structures. Thus, SCR is given by:

SCR = max{∆BOF1,∆BOF2, 0} . (3)

2.2 Measurement of scenarios

To determine the upward and downward yield curves, EIOPA applies the Principal Component

Analysis to four datasets of rates: euro and pound swap rates, euro and pound government zero

coupon term structures. It takes the annual relative changes of rates over an historical 12 year

interval. The shock applied to the interest rate, for a fixed maturity between 1 and 20 years, is

calculated through the average of 4 shocks obtained by each dataset. Every shock is the quantile

at confidence level 99.5% (upward) and 0.5% (downward). The shocks, for non-quoted maturity,
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are calculated by linear interpolation and for the maturity between 21 and 89 years too. If the

maturity is equal or greater than 90 years, the shock is fixed at 20% in both directions. The

upper maximum change is 1% and the downward shock is zero if the rate is negative1.

We propose a different approach (M1) that allows getting over some shortcomings. It is the

same used in Abdymomunov and Gerlach (2014). PCA is applied to determine the stressed swap

rates at every quoted maturity by calibration at confidence level 99.5% and 0.5%. They define

the upward and downward markets and represent data for the calibration of the Smith-Wilson

method with which the stressed risk-free term structures are obtained.

Let J denote the N×T matrix of observed swap rates and Σ the covariance matrix. Σ = PΛP T ,

where Λ is the diagonal matrix of eigenvalues ranked in decreasing order. New data given by

Y = P T (J−µ), where µ is the vector of averages, is called principal components (PC). They are

uncorrelated with each other and have variance equal to eigenvalues. The columns of matrix P

are the coefficients used in the linear combination to calculate every single principal component

and are called factor loadings.

The contribution of the principal component i to the total data variation is given by:

λi∑N
i=1 λi

.

Choosing a number n � T of principal components that explains almost all of the total data

variance, the absolute annual changes of N factor loadings, related to the first n principal

components, are calculated by ∆n
i = ∆i(·, 1 : n). Then the changes ∆n

i be added to current

factor loadings P n
0 = P (N, 1 : n), thus N − 250 swap rate curves are generated:

j̃im = (P n
0 + ∆n

i )Y (i, 1 : n) + µi .

Upward and downward shocks, sm and dm, for the maturity m, are calculated by:

sm : P
[
( j̃im − j0m) ≤ sm

]
= 0.995 ,

dm : P
[
( j̃im − j0m) ≤ dm

]
= 0.005 ,

where j0m is the interest rate swap at current time t. Upward and downward swaps, j1m and j2m,

are obtained by:

j1m = max{j0m +
sm
v̂
|j0m|, j0m + v+} , (4)

j2m = max{j0m +
dm
v̂
|j0m|, j0m + v−} , (5)

1The information about the calculation of shocked rates can be found in [EIOPA (2010)] and in the excel file,
published every month, that contains term structures of risk-free interest rates for each currency and shocked
term structures.
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where v̂ is the average of absolute observed changes, whereas v+ and v− are the averages of

positive and negative changes, respectively.

Starting from 2006-09-01 to 2018-04-30, N = 3037 observations of interest rate swaps are used

and n = 4 principal components are considered. The first component identifies the level, the

second one the slope, the third one the curvature and the latter the twist. Table 1 shows the

contribution of each one to the total variance and the cumulated variance. Their values are

reported in Table 2.

Tabella 1: Contribution of each principal component to the total variance and cumulated
variance.

PC Contribution
(%)

Cumulated
Var. (%)

1 97.824 97.824
2 2.071 99.895
3 0.081 99.975
4 0.021 99.996

Tabella 2: Principal components: eigenvectors of the covariance matrix.

m PC1 PC2 PC3 PC4
1 -0.303 -0.590 0.614 0.297
2 -0.299 -0.413 -0.023 -0.331
3 -0.298 -0.257 -0.288 -0.333
4 -0.295 -0.130 -0.348 -0.139
5 -0.290 -0.026 -0.313 0.060
6 -0.285 -0.056 -0.238 0.193
7 -0.279 0.118 -0.151 0.255
8 -0.273 0.162 -0.065 0.260
9 -0.268 0.196 0.016 0.223
10 -0.263 0.223 0.090 0.178
12 -0.256 0.266 0.199 0.065
15 -0.248 0.306 0.290 -0.155
20 -0.240 0.319 0.323 -0.624

The curve of current swaps, j0m, and the estimated upward and downward ones, j1m e j2m, are

shown in Fig. 12. The sharp drop in rates, that has characterized the market in last years,

causes heavily declined levels of interest rate swaps.

2.3 Insurance contract

The benefit of the insurance contract is determined by the annual rate of return earned by

the asset portfolio (reference portfolio) made up of coupon bonds, free from default risk. The

2We plot swap rates up to 20 years as the Smith-Wilson method is calibrated on quoted swaps rates up to
that maturity, according to regulatory technical specifications (see [EIOPA (2018)]).
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Figura 1: Swap rates at date t=2018-04-30 and estimated upward and downward swap rates.

potential revaluation of the benefit, compared to the previous year’s one, is an indexation rule

and the presence of the minimum guaranteed interest rate induces an optional non-standard

component on the contract.

The contract is a single premium policy that pays the benefit in case of death and survival. Let

x be the age of the policyholder at time t and i be set as the technical rate and the probability

distribution of random variable Tx, that is the residual life maturity of the policyholder3.

The benefit Ỹn, possibly paid at the end of the year tn = t+ n, with n = 1, 2, . . . ,m− 1, is:

Ỹn = Yn−1

1 + ρn Pt(tn−1 < Tx ≤ tn)

0 otherwise
(6)

At the maturity T = t+m, if the policyholder is alive at the age x+m− 1, is:

Ỹm = Ym−1(1 + ρm). (7)

Given imin the minimum guaranteed interest rate, not inferior to i, and β the participation

coefficient, with 0 ≤ β ≤ 1, both of them contractually specified, the revaluation rate is:

ρn =
max{βIn, imin} − i

1 + i
, (8)

where In = Pn
Pn−1

− 1 is the reference portfolio return over the year [tn−1, tn].

3The probability distribution of Tx is obtained by the mortality table for males, for the year 2015, from Italian
National Institute of Statistics.
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It is easy to verify that the revaluable benefit can be written as:

Yn = Y0(1 + i)−n
n∏
k=1

(1 + max{βIk, imin}) , (9)

as well as:

Yn = Yn−1(1 + i)−1(1 + βIn) +

Yn−1(1 + i)−1
β

Pn−1
max

{(
1 +

imin
β

)
Pn−1 − Pn, 0

}
. (10)

Eq. (10) defines the benefit as the sum of the base component (without any guarantee) and the

put component having the reference portfolio as the underlying asset. This put is in-the-money

if In is not greater than imin/β. The insurance contract, then, generates a series of forward-

starting at-the-money put options whose strike price is updated every year to the initial value.

Thus, we can individuate an embedded cliquet option.

The cash-flow of the benefits, Ỹ = {Ỹn, n = 1, 2, . . . ,m}, is exposed both to financial risks,

that are in the reference portfolio, and to actuarial risks, as the result of the uncertainty of the

residual life maturity Tx.

According to Solvency II Directive, the technical provision is calculated by4:

V (t) =
m∑
n=1

V (t; Ỹn)

= Y0

m∑
n=1

(1 + i)−nV

(
t;

n∏
k=1

[1 + max{βIk, imin}]

)
P n
t , (11)

where P n
t is the appropriate probability (of death or of survival)5.

It can be expressed as:

V (t) = Y0

m∑
n=1

(1 + i)−n

[
V

(
t;

n∏
k=1

[
(1 + βIk) +

β

Pk−1
X(tk;Pk)

])]
P n
t , (12)

where X(tk;Pk) is the pay-off of the put option at time tk, as in Eq. (10).

4In [EIOPA (2014)] it is written that the risk margin is excluded within the calculation of SCR for elementary
risks, thus the technical provision is equal to the best estimate.

5As we assume that the policyholder can get out of the policy before maturity T only because of death, we
can multiple two expectations in Eq. (11). See [De Felice and Moriconi (2005)].
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3 Models

This section introduces the models of term structure used to calculate the best estimate of the

with-profit insurance contract and SCR for the interest rate risk, according to Standard Formula.

The Smith-Wilson method is specified by illustrating technical details for the estimation, using

quoted swap rates. Then, we present the Cox-Ingersoll-Ross model with barrier which is the

reference model for the extension and we give a closed formula for the price of a unit zero coupon

bond. At the end of the section we apply the extension proposed by [Brigo and Mercurio (2001)]

to get the perfect-fit of observed rates.

3.1 Smith-Wilson method

The Smith-Wilson method is used to measure the term structure of risk free interest rates that

is the input for the stochastic model, as suggested by [de Kort and Vellekoop (2016)]. We take

the cue for this treatment from their article to which we refer for further insights regarding the

topic.

Let vw(0, s) be the price of a unit zero coupon bond at time 0 with maturity s. In the Smith-

Wilson method it has the following functional form:

vw(0, s) = (1 + g(s)) e−f∞s , (13)

where

g(s) =
n∑
i=1

ξi

m∑
j=1

xije
−f∞tjW (s, tj) , (14)

where f∞ is a macroeconomic exogenous parameter, called ultimate forward rate, that is the

asymptotic long term rate (mean-reverting property), tj is the paying time of the amount xij ,

ξ = (ξi) is the vector of n parameters to be estimated and W is the Wilson function, well-known

as exponential spline in tension:

W (s, tj) = αmin(s, tj)−
e−α|s−tj | − e−α(s+tj)

2
,

where α is a positive constant.

The calibration of the method uses quoted swap rates, therefore the row i of the matrixX = (xij)

is the cash-flow generated by the quoted swap rate jiT with T ∈ {1, 2, . . . ,m}. It is, then,

xi = {jiT , jiT , . . . , 1 + jiT , 0, . . . , 0} and the number of zeros in xi is m− T . As the swap rate is a

par-yield, we can write:
m∑
l=1

xil(1 + g(l))e−f∞l = 1 , (15)
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that is a linear equation with n unknowns ξi. For i = 1, 2, . . . , n, using Eqs. (13) and (14), we

get:

Xµ+ ξ(XWµX
T ) = 1 , (16)

where µ = (e−f∞j) and Wµ = µTWµ.

If det(XWµX
T ) 6= 0, the solution6 is calculated by ξ = (XWµX

T )−1(1 −Xµ) and it com-

pletely defines the term structure of interest rates {iw(0, s)}, where iw(0, s) = vw(0, s)−1/s −
1.

To obtain the solution of Eq. (16), we need the values of the asymptotic long term rate f∞

and the speed of convergence α. The first is decided by EIOPA and is calculated as the sum

of the expected inflation and the long term average of short term real rates. The constant α is

calculated in such a way that the difference between f∞ and the forward rate δw(0, T ) is less

than 1 basis point. T is the convergence point and is equal to 60 years for the euro. The function

δw(0, s) = − ∂
∂s ln vw(0, s) is:

δw(0, s) = f∞ −
1

1 + g(s)

n∑
i=1

ξi

 m∑
j=1

xije
−f∞tj ∂

∂s
W (s, tj)

 . (17)

We have:

∂

∂s
W (s, tj) =

{ α
2 e
−αs(eαtj − e−αtj ) s ≥ tj

α− α
2 e
−αtj (eαs − e−αs) s < tj

and, because of T > tj for every j, we get:

δw(0, T ) = f∞ +
αe−αT

2(1 + g(T ))

n∑
i=1

ξi

 m∑
j=1

xije
−f∞tj (eαtj − e−αtj )

 . (18)

It is easy to verify that lims→∞ δw(0, s) = f∞ and

lim
s→0

δw(0, s) = f∞ −
n∑
i=1

ξi

m∑
j=1

e−f∞tj .

The value of the parameter α is determined in such a way that |δw(0, T )− f∞| ≤ 0.0001:

∣∣∣∣ αe−αT

2(1 + g(T ))

n∑
i=1

ξi

 m∑
j=1

xije
−f∞tj (eαtj − e−αtj )

∣∣∣∣ ≤ 0.0001 . (19)

Note that, if in Eq. (18) the term multiplying α is equal to 1, the forward rate is constant, so

there would be no chance for any convergence to the asymptotic value. Therefore, α must be

6No problems were encountered regarding the calculation of the inverse matrix over the time period from
2001-02-02 to 2018-04-30.
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calculated in such a way that the following equation does not occur:

n∑
i=1

ξi

m∑
j=1

xije
−f∞tj (e−α(T−tj) − e−α(T+tj) − αtj) = 1 .

The parameter f∞ is set equal to ln(1.0405) and the parameter α is estimated by calculating

the value that satisfies Eq. (19) using an iterative procedure with the lower bound equal to 0.05

(see [EIOPA (2018)]).

Fig. 2 plots the yield curve {i0w(0, s)} obtained by swap rates j0m at the date t =2018-04-30 and

the yield curves {i1w(0, s)} e {i2w(0, s)} obtained by swap rates j1m e j2m, calculated in section

2.2, from 1 up to 90 years. In the same figure we also draw the term structures obtained by

applying shocks calculated by EIOPA (M2). Table 3 shows the estimated parameters of the

Smith-Wilson method and the estimated values of the speed of convergence α.

We note that: 1. the upward structure by EIOPA is actually a parallel shift of the current one,

2. the downward structure by EIOPA is few far from the current one at short maturities because

rates are near to zero, 3. both stressed structures by EIOPA do not converge to an asymptotic

value and this is against the mean-reverting property usually required.

The proposed method produces a further downward curve and this reflects the decreasing trend

of short term rates observed in the last few years. Furthermore, the stressed curves of the

forward rate also converge to the parameter f∞.
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Figura 2: Term structure of risk free interest rates at time t=2018-04-30 and stressed structures.

3.2 Reference model

Let {xt} be a diffusion process whose dynamic in the real world is described by the following

stochastic differential equation:
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Tabella 3: Estimated parameters of the Smith-Wilson method and estimated value of the speed
of convergence α.

ξ 0 1 2
ξ1 -0.176 -3.801 0.793
ξ2 1.427 3.302 -1.286
ξ3 0.317 0.826 1.783
ξ4 -0.753 -1.557 -1.246
ξ5 0.749 0.978 1.064
ξ6 -0.449 -0.649 -0.705
ξ7 -0.068 0.070 0.556
ξ8 0.037 -0.136 -0.807
ξ9 0.604 -0.683 0.356
ξ10 -0.830 1.453 0.874
ξ11 0.836 0.069 -0.711
ξ12 -1.516 -1.461 -1.858
ξ13 1.306 1.074 2.403

α 0.148 0.145 0.155

dxt = θ(γ − xt)dt+ ρ
√
xt − ldZt , (20)

where Zt is a standard Brownian motion, θ, γ, ρ are positive constants and l is a fixed real

number. The evolution of variable xt is mean-reverting with asymptotic long term rate γ and

θ is the speed for its return to the mean value. It is characterized by a barrier l not to be

overcome. If l = 0, Eq. (20) is the well-known model proposed by [Cox et al. (1985)].

Let yt = xt − l be set, Eq. (20) can be written as:

dyt = θ(γl − yt)dt+ ρ
√
ytdZt ,

with γl = γ− l. Using the no-arbitrage principle and the hedging argument, the price V (t), de-

pending on yt at time t, of any contract, satisfies the following second order differential equation:

1

2
g2
∂2V (t)

∂y2t
+ f̂

∂V (t)

∂yt
+
∂V (t)

∂t
= ytV (t) , (21)

where g = ρ
√
yt is the diffusion function and f̂ is the risk-adjusted drift function given by:

f̂ = f − qg . (22)

f = θ(γl − yt) is the natural drift and q is the market price of interest rate risk that we choose

to be q = −π
√
yt
ρ , with π ∈ R. Eq. (22) is:

f̂ = θ̂(γ̂ − yt) , (23)
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where θ̂ = θ − π and γ̂ = θγl
θ−π .

Since dxt = dyt, the risk neutral dynamic of the variable xt becomes:

dxt = θ̂[(γ̂ + l)− xt]dt+ ρ
√
xt − ldZt . (24)

The parameter vector b = {xt, θ̂, γ̂, ρ} defines the risk neutral probability Q that is a non-central

chi-squared distribution.

The price of the unit zero coupon bond is:

vc(t, s) = EQ
t

[
e−

∫ s
t xudu

]
= EQ

t

[
e−

∫ s
t (yu+l)du

]
= e−l(s−t)EQ

t

[
e−

∫ s
t yudu

]
. (25)

Using the result in [Cox et al. (1985)], we obtain:

vc(t, s) = e−l(s−t)A(t, s)e−ytB(t,s)

= A(t, s)e−l(s−t)−(xt−l)B(t,s) , (26)

where

A(t, s) =

 2de
θ̂+d
2

(s−t)

(θ̂ + d)(ed(s−t) − 1) + 2d

ν , (27)

and

B(t, s) =
2(ed(s−t) − 1)

(θ̂ + d)(ed(s−t) − 1) + 2d
, (28)

with d =

√
θ̂2 + 2ρ2 and ν = 2 θ̂γ̂

ρ2
. The price in Eq. (26) corresponds to the one in [Gorovoi and Linetsky (2004)].

The forward rate is:

δc(t, s) = − ∂

∂s
ln v(t, s)

= − ∂

∂s
lnA(t, s) +

∂

∂s
[l(s− t) + (xt − l)B(t, s)]

= − ∂

∂s
lnA(t, s) + l + (xt − l)

∂

∂s
B(t, s) , (29)

where
∂

∂s
lnA(t, s) =

2θ̂γ̂(ed(s−t) − 1)

(θ̂ + d)(ed(s−t) − 1) + 2d
(30)
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and
∂

∂s
B(t, s) =

4d2ed(s−t)

[(θ̂ + d)(ed(s−t) − 1) + 2d]2
. (31)

To estimate the vector b, we use a different specification of the price in Eq. (26) as it is more

efficient. Setting σ = θ̂+d
2 in Eqs. (27) and (28), we obtain7:

A(t, s) =

[
deσs

σ(ed(s−t) − 1) + d

]ν
(32)

and

B(t, s) =
eds − 1

σ(ed(s−t) − 1) + d
. (33)

Given the term structures of interest rates {ikw(t, t+ s)}, with k = 0, 1, 2, we estimate three sets

of parameters, b0, b1 e b2, by minimizing the sum of squared errors:

min
bk

m∑
s=1

[ikw(t, t+ s)− ic(t, t+ s)]2 , (34)

where ic(t, t+ s) = vc(t, t+ s)−
1
s − 1.

We solve the problem (34) under the following constraints: xk > l, σ > 0, d− σ > 0 and ν > 1.

The first two are obvious, the third one is obtained by ρ =
√

2(dσ − σ2) and the last one is the

so called Feller condition.

Table 4 shows the estimated parameters, Fig. 3 and 4 plot the term structures.

Tabella 4: Estimated parameters of the reference model.

(a)

b0

l -0.400%
x -0.399%
d 0.133
σ 0.113
ν 1.563

(b) M1

b1 b2

0.000% -1.200%
0.000% -1.162%

0.116 0.167
0.092 0.150
1.394 1.738

(c) M2

b1 b2

0.000% -1.200%
0.527% -0.427%

0.149 0.153
0.126 0.312
1.611 1.436

7After estimating the parameters d, σ, ν, for the implementation of Monte Carlo method we use: θ̂ = 2σ − d,

ρ =
√

2(dσ − σ2) e γ̂ = ρ2ν

2θ̂
.
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Figura 3: Estimated stressed term structures minimizing the squared errors.
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3.3 Extended model

The reference portfolio is made up of risk free coupon bonds, thus the risk source is represented

by the spot rate rt, that is the interest rate of a zero coupon bond with infinitesimal maturity:

rt = lim
s→t

h(t, s) ,

being h(t, s) = 1
s−t
∫ s
t δ(t, u)du the continuous-time yield. The gain by investing the amount x

at time t over the interval [t, t+ dt] is xrtdt.

The extension proposed defines the process of the spot rate, {rt}, as:

rt = xt + ϕ(t) , (35)

where {xt} is the stochastic process that evolves over time according to Eq. (20) and where ϕ

is a deterministic function used to achieve the perfect-fit of the observed term structure. It is:

ϕ(t) = δw(0, t)− δc(0, t) , (36)

where δw(0, t) and δc(0, t) are defined in Eqs. (17) and (29), respectively.

In fact, to get the perfect fit, it must be vw(0, t) = e−
∫ t
0 ϕuduvc(0, t), that is:

ln vw(0, t) = −
∫ t

0
ϕudu+ ln vc(0, t)

and, differentiating both members, we obtain:

ϕ(t) = − ∂

∂t
ln vw(0, t) +

∂

∂t
ln vc(0, t) ,

which is Eq. (36). See [Brigo and Mercurio (2001)].

In the extended model the price of the contract, that pays the amount X(s) at future time s, is:

V (t) = EQ
t

[
X(s)e−

∫ s
t rudu

]
, (37)

in particular, the price of the unit zero coupon bond is:

v(t, s) = EQ
t [e−

∫ s
t rudu]

= EQ
t [e−

∫ s
t (xu+ϕu)du]

= e−
∫ s
t [δw(0,u)−δc(0,u)]duvc(t, s) , (38)
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from which we can easily obtain:

v(t, s) =
vw(0, s)vc(0, t)

vw(0, t)vc(0, s)
vc(t, s) . (39)

Substituting Eq. (26) in the previous one, we get:

v(t, s) = A(t, s)e−l(s−t)−(rt−l)B(t,s) , (40)

where

A(t, s) =
vw(0, s)A(0, t)

vw(0, t)A(0, s)
el(s−t)+(x0−l)[B(0,s)−B(0,t)]A(t, s)eϕ(t)B(t,s) .

4 Monte Carlo simulation

The calculation of the technical provision requires the implementation of a numerical method

as a closed formula does not exist for the price in Eq. (11). Thus, the pricing problem of the

insurance contract is solved by using the Feynman-Kac representation defined by Eq. (37).

The market-consistent value of the provision, V (t), is given by:

V (t) = Yt

m∑
n=1

(1 + i)−n

EQ
t

[
n∏
k=1

(
1 + max

{
β

(
Pk
Pk−1

− 1

)
, imin

})
e−

∫ t+n
t rudu

]
P n
t . (41)

Indicated by {rω,t} the trajectories space, each possible future scenario is modeled through a

time function:

rω : [0,+∞) −→ S

t 7−→ rω,t

where S is the space of the states and rω,t is the state of the phenomenon at time t. The

outcomes of the stochastic process are the trajectories, the sample space is the set of trajectories

and the events are the set Ω of the trajectories:

Ω = {rw,t : t ≥ 0} .

To generate a single trajectory, we make a partition of the time interval [t, T ] in N sub-intervals

∆t long: [tj−1, tj) with tj = tj−1 + ∆t. In each of them, using the discrete Eulero equivalent of

17



Eq. (24), the increase of the random variable xt is given by:

∆xj = θ̂[(γ̂ + l)− xj−1]∆t+ ρεj

√
(xj−1 − l)∆t , (42)

where εj ∼ N(0, 1).

In the extended model rj = xj + ϕ(tj), where ϕ(tj) corresponds to Eq. (36). Thus, for N∈
N we get the sequence {rj}Nj=1 and the simulated trajectory is {(tj , rj), j = 1, . . . , N}. The

approximation to the true trajectory is much better when N is a higher number.

Generated M trajectories, the estimated value of Eq. (41) is:

V (t) = Yt

m∑
n=1

(1 + i)−n (43)(
1

M

M∑
l=1

[
n∏
k=1

(
1 + max

{
β

(
P lk
P lk−1

− 1

)
, imin

})
ṽl(t, t+ n)

]
P n
t

)
,

where ṽl(t, t+ n) is the simulated value of the discounting factor8 from t to t+ n and P lk is the

simulated value of the portfolio at time t+ k, both values are related to the trajectory l:

P lk =
m∑
h=k

xhv(t+ k, t+ h; rlk) . (44)

x = {x1, x2, . . . , xm} is the cash-flow connected to the reference portfolio relating to {t+ 1, t+

2, . . . , t + m}. The amount xk, earned at time t + k, is invested in the market by buying zero

coupon bonds with one year maturity. Thus, we make continuous annual reinvestment up to

the maturity t+m.

Fig. 5 shows the current term structures from 1 up to 30 years and the ones obtained by Monte

Carlo simulation with the reference model and the extended model. We also display the ones

obtained in the upward and downward markets. In the simulation we fix ∆t = 1/12, T = 30

and M = 10000. The parameters are exhibited in Table 3 and 4. We underline the improvement

given by the extended model9.

5 Numerical results

The valuation (of technical provision and SCR) is carried out at the market state at date

t =2018-04-30, taken as time origin (t = 0) and defined by the term structure shown in Fig. 2.

The company liability is a single policy with a single premium earned before 0, with β = 80%,

maturity m = 30, where x is the policyholder’s age of 35 years at time 0, and with initial insured

8To estimate the simulated discounting factor at every maturity, we sum the area of the single trapezoids.
9To simulate the stressed curves by EIOPA, the parameters of the Smith-Wilson method are estimated using

the prices of zero coupon bonds obtained by the term structures. The function g(s) is different from Eq. (14).
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Figura 5: Estimated and simulated term structures with the reference model and the extended
model.

capital Y0 = 100. The company asset is a portfolio of risk free coupon bonds with C = 100 the

nominal capital, ζi the annual yield and mi the maturity (see Table 5).

Tabella 5: Risk free bonds.
ζi(%) mi V (0;xi)

1 0.5 5 100.575
2 1.0 10 100.077
3 1.5 15 102.421
4 2.0 20 102.299
5 2.3 25 112.611
6 2.5 30 113.900

We create three portfolios P j = {αixi}i=1,...,6 as follows: t = {1, 2, . . . ,m} is the time of

payments and qj is the percentage of bond x6:

αi =
(1− qj)V (0)

5V (0;xi)
, α6 =

qjV (0)

V (0;x6)
,

where i = 1, 2, . . . , 5 and V (0) is the value of the technical provision at time 0, calculated by

Eq. (43). We consider the following values: q1 = 0.10, q2 = 0.50 e q3 = 1.00.

By construction V (0;P j) = V (0), that being BOF(0) = 0. Thus the calculated SCR, if positive,

is capital that the company must add.

Fig. 6 shows the mean value of annual benefits estimated for each portfolio, where the technical

rate i and the minimum guaranteed rate imin are both equal to 0.5%. The portfolio P 3 produces

higher revaluable benefits and lower over the period 25-29 years in the upward market. The

revaluation is stronger applying shocks by EIOPA and this is much more evident in the upward

market.
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Figura 6: Average revaluable benefits.
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Fig. 7 shows the trend of the optional component for each annual benefit. It increases for each

portfolio. The value is higher for the portfolio P 3, that being for the portfolio with stronger

revaluation, as the optional component in one year is made up of the ones from previous years,

then, if the revaluation rate is higher, the quantity of the in-the-money option increases (see

Eqs. (9) and (10)).
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Figura 7: Put component.
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(c) Upward market, P 2
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(d) Downward market, P 2
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(e) Upward market, P 3
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(f) Downward market, P 3

Figura 8: Put component, M1.
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The value of SCR is strongly affected by the portfolio as the value of both components (of asset

and liability) depends on it: it is the company asset and determines the benefits of the liability

as they depend on the annual yield of the portfolio.

Table 6 shows the values calculated by Eq. (3). We also display the value of technical provision

V (0), the stressed values V 1 and V 2 and the ones of portfolio P j,1 and P j,2. For the first two

portfolios the regulatory capital comes from the downward market. The conservative calibration

of shocks by the European Authority is clear, the value in fact triples in the case of P 3.

The value of the put option increases as the value of the minimum guaranteed rate increases

and the gap increases as the maturity increases (see Fig. 8).

Tabella 6: SCR, i = imin = 0.5%.

qj V (0) V 1 V 2 P j,1 P j,2 SCR

M1
0.10 88.097 84.232 102.304 84.021 98.353 3.951
0.50 91.579 87.500 106.219 86.494 104.846 1.374
1.00 102.586 98.182 118.358 95.704 121.096 2.478

M2
0.10 88.097 78.799 98.942 77.239 93.383 5.559
0.50 91.579 81.247 103.797 76.600 98.417 3.940
1.00 102.586 91.361 116.048 82.464 114.344 7.812

Table 7 shows the values of SCR for each portfolio that is again built by matching its value with

the best estimate. Fixed qj , SCR increases as the minimum guaranteed rate increases, except

in two cases (shown in bold text). The comparison between the two methods again shows the

conservative valuation by the European Regulator. In some cases the value is three times more.

Tabella 7: SCR to changing imin.

imin 0.5 1.0 1.5 2.0

M1
P 1 3.951 7.161 10.498 13.877
P 2 1.374 4.371 7.853 11.511
P 3 2.478 2.031 1.722 4.679

M2
P 1 5.559 8.671 11.874 15.127
P 2 3.904 7.014 10.375 13.768
P 3 7.812 7.307 6.287 8.566
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Tables 8, 9 and 10 show the values of the base component B and the optional component O in

each market. The stressed value of the portfolio is shown too. Obviously, the base value does

not change as the minimum guaranteed rate increases, unlike the optional value which increases.

Furthermore, the change of the optional component, compared to the current value, is higher in

the market that produces SCR.

Tabella 8: Base and put components, P 1.

imin 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0

M1 M2
V (0) 88.097 92.828 100.066 109.795 88.097 92.828 100.066 109.795
B(0) 82.629 82.629 82.629 82.629 82.629 82.629 82.629 82.629
O(0) 5.469 10.199 17.437 27.166 5.469 10.199 17.437 27.166
V 1 84.232 87.943 93.822 102.017 78.799 81.604 85.860 91.789
B1 78.211 78.211 78.211 78.211 70.185 70.185 70.185 70.185
O1 6.021 9.732 15.611 23.806 8.614 11.420 15.675 21.604
V 2 102.304 110.796 122.213 136.454 98.942 107.068 117.943 131.509
B2 94.187 94.187 94.187 94.187 89.910 89.910 89.910 89.910
O2 8.117 16.608 28.026 42.267 9.032 17.159 28.034 41.600
P 1,1 84.021 88.533 95.436 104.715 77.239 81.387 87.733 96.263
P 1,2 98.353 103.634 111.715 122.577 93.383 98.397 106.069 116.382

Tabella 9: Base and put components, P 2.

imin 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0

M1 M2
V (0) 91.579 96.717 104.245 114.391 91.579 96.717 104.245 114.391
B(0) 83.300 83.300 83.300 83.300 83.300 83.300 83.300 83.300
O(0) 8.279 13.417 20.945 31.091 8.279 13.417 20.945 31.091
V 1 87.500 91.677 97.841 106.337 81.247 84.448 88.920 95.003
B1 78.203 78.203 78.203 78.203 69.112 69.112 69.112 69.112
O1 9.296 13.474 19.638 28.134 12.135 15.336 19.808 25.891
V 2 106.219 115.100 127.199 142.473 103.797 112.512 124.084 138.546
B2 97.048 97.048 97.048 97.048 103.797 112.512 124.084 138.546
O2 9.171 18.052 30.151 45.425 10.882 19.597 31.169 45.630
P 2,1 86.494 91.347 98.457 108.040 77.756 82.118 88.509 97.124
P 2,2 104.846 110.728 119.346 130.962 99.894 105.499 113.710 124.777

24



Tabella 10: Base and put components, P 3.

imin 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0

M1 M2
V (0) 102.586 109.742 118.793 130.126 102.586 109.742 118.793 130.126
B(0) 84.338 84.338 84.338 84.338 84.338 84.338 84.338 84.338
O(0) 18.247 25.404 34.455 45.788 18.247 25.404 34.455 45.788
V 1 91.361 96.685 103.037 110.671 91.361 96.685 103.037 110.671
B1 78.411 78.411 78.411 78.411 68.024 68.024 68.024 68.024
O1 19.771 26.001 33.805 43.602 23.337 28.661 35.013 42.647
V 2 118.358 128.688 141.950 158.285 116.048 126.494 139.614 155.518
B2 100.764 100.764 100.764 100.764 96.824 96.824 96.824 96.824
O2 17.593 27.923 41.185 41.185 19.225 29.671 42.790 58.694
P 3,1 95.704 102.380 110.824 121.397 83.550 89.378 96.750 105.980
P 3,2 121.096 129.544 140.228 153.606 115.850 123.932 134.153 146.952

Now we consider a portfolio made up of 1000 policies whose characteristics are shown in Table

(11). Each insurance contract has an initial capital equal to 100, ends at the age of 65 and the

minimum guaranteed rate matches technical rate. The average age of the portfolio is 47 years

and the policies with a minimum guaranteed rate equal to 4% accounts for 52.8% of the total.

Tabella 11: Portfolio with 1000 policies (i = imin).

x m unit i

35 30 20 0.0%
37 28 32 0.5%
39 26 52 1.0%
41 24 68 1.0%
43 22 68 1.5%
45 20 76 2.0%
47 18 84 2.0%
49 16 72 2.0%
51 14 72 4.0%
53 12 90 4.0%
55 10 102 4.0%
57 8 120 4.0%
60 5 144 4.0%

We consider ten different reference portfolios as illustrated in Table (12). Each one of them is

again built by matching its value with the best estimate. We observe that at first the value of

SCR decreases and then increases and that the gap rises with an increasing qj . The amount of

capital, by regulatory standards, is up to seven times higher. We also show the scenario from

which the solvency capital comes in brackets. Using our stressed curves, the policies with a

minimum guaranteed rate equal to 4% do not contribute to SCR if it comes from the downward

market. On the other hand, if it comes from the upward market, the policies contribute most

of SCR. For instance, if qj = 0.70, their contribution is approximately equal to 90%. Using
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regulatory curves, these policies contribute to SCR regardless of the market which generates the

solvency capital. The percentage of their contribution is between 34% and 65%.

Tabella 12: SCR of policies portfolio.

qj V (0) SCR (M1) SCR (M2) Ratio

0.10 94148.281 3216.496(d) 6414.888(d) 1.994
0.20 94427.571 2870.731(d) 6329.559(d) 2.205
0.30 94836.639 2478.407(d) 6219.588(d) 2.510
0.40 95373.190 2041.830(d) 6083.633(d) 2.980
0.50 96032.905 1561.559(d) 6649.035(u) 4.258
0.60 96812.474 1033.083(d) 7457.530(u) 7.219
0.70 97711.181 1268.366(u) 8336.184(u) 6.572
0.80 98723.569 1557.587(u) 9286.516(u) 5.962
0.90 99842.478 1870.850(u) 10309.196(u) 5.510
1.00 101059.080 2210.109(u) 11403.817(u) 5.160

6 Conclusions

In the Solvency II context, even if the company uses the Standard Formula, the solvency capital

quantification for the interest rate risk requires the use of a stochastic model for some types of

insurance contracts.

In the paper we propose an extended Cox-Ingersoll-Ross model that allows negative interest

rates and the perfect-fit of the term structure of risk free interest rates to be calculated using

the Smith-Wilson method, as required by the technical regulations. The dynamic of the spot

rate is characterised by an exogenous barrier and a deterministic component, as proposed by

Brigo and Mercurio (2001). If the insurance contract has a minimum rate guaranteed each year,

to apply the standard model, we need to implement the Monte Carlo simulation as the benefit

is characterised by a non-standard option.

We also propose a method to measure the upward and downward term structures. It does not

require any distributional assumption or a specific estimation technique. The two structures

result from stressed swap rate markets. First we apply the technique of Principal Component

Analysis to the set of the swap rates, then we calibrate the Smith-Wilson method. Doing this,

we can overcome some theoretical criticalities.

In the current market situation, the analysis produces term structures significantly different from

those used by legislation. Considering three asset portfolios, the amount of solvency capital

requirement is considerably different, and applying the regulatory shocks it is higher. The

valuation with different values of the minimum guaranteed rate allows the measurement of the

impact of the embedded option on the company solvency. We also show that, if we consider

a portfolio made up of policies with a high minimum guaranteed rate for more than half of it,
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their contribution to the regulatory capital is different depending on the type of stressed market

curve.

The parameters in the Standard Formula are calibrated to take into account the simplications

and the approximations, but to hold capital, higher than those required to cover risks, has an

impact on the company profitability. Above all, most small companies would use the simplified

model as the internal one could be too expensive in terms of technology, personnel education

and organisational structure.

We have two aims: to examine the topic of stressed scenarios measurement in depth, for instance

using a generalized autoregressive model, as in Abdymomunov et al. (2014), and to extend the

analysis including other risk factors. As in Eckert at al. (2016), we can consider a reference

portfolio made up of equities and defaultable bonds. Undoubtedly, the complexity of the model

and the computational process are significant.
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