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Abstract 

This study integrates cures, partial recoveries, and write-offs in modeling Loss Given 

Default (LGD) and investigates the performance of different algorithms in estimating each 

component of the decomposed approach. We use a unique database of defaulted real estate-

backed loans in European countries. The aim of this study is to accurately estimate the 

ultimate recovery rate, hence the LGD, by using various machine learning methods 

including random forest, k-nearest neighbor, extreme gradient boosting, and multivariate 

adaptive regression splines. We find that the new models we used to estimate each 

component of the equation, outperform the traditional statistical models such as logistic 

regression or OLS, and in particular, random forest leads with the highest performance 

among all models in terms of both in-sample and out-of-sample results. The results confirm 

that using the random forest in this multiple-step modeling of the recovery rate could 

improve the whole recovery rate estimation performance. 
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      1 Introduction 
 

   Finding a proper methodology that offers high predictive accuracy for Loss Given 

Default (LGD) has been a challenge for many academics and practitioners over the last 

years. The introduction of the Basel II framework has stimulated a growing literature 

focusing on LGD estimation, as one of the main parameters of credit risk when building 

the banks’ internal models. Considering that the LGD appears to be usually bi-modally 

distributed, this makes its estimation even more challenging. Several traditional statistical 

models as well as recent innovative algorithms of machine learning have been used in 

modeling and predicting LGD. The LGD models in the existing literature are mainly 

divided into one-stage and two-stage modeling. The majority of the previous studies are 

generally focused on the one-stage modeling framework of LGD, while recently two-stage 

methods are becoming popular and a promising approach in the literature by offering 

higher accuracy and better performances in LGD estimation1.  These methods consist of a 

combination of binary decision models and regression models. In other words, these 

techniques are composed of two models that detect full-loss or no-loss cases, considering 

them as classification problems, and cases in the middle (0˂ LGD ˂1) separately. Logistic 

regression is the method that is mostly used as the first model in the two-stage setting,2 

while several linear and non-linear regression methods are used in the second stage. 

However, one of the main drawbacks of logistic regression stands in producing biased and 

inconsistent results if the model is not specified correctly. In addition, the existence of non-

linear relationships between explanatory variables and LGD as confirmed by some studies3 

may produce even weaker results if logistic regression is used (Tanoue et al. 2020). 

One of the main weaknesses of the existing two-stage models stands in neglecting the 

recovery patterns between the main two modes of LGD (i.e. 0 and 1). To overcome this, 

Starosta (2021) proposes a new LGD decomposition by integrating cures, partial recoveries 

and write-offs into one equation and find that the proposed model performs better by 

offering higher effectivity.  The author uses a traditional ordinary least squares regression 

 
1 Loterman et al. (2012), Tanoue et al. (2017, 2020), Starosta (2021). 
2 Bellotti & Crook (2010), Matuszyk et al. (2010), Gürtler and Hibbeln (2011), Loterman et al. (2012). 
3 Loterman et al. (2012), Yao et al. (2015). 

https://www.sciencedirect.com/science/article/pii/S0169207016301303#br000060


(OLS), a logistic regression, classification and regression trees (CART), and support vector 

machines (SVM) to estimate each component of the proposed equation. He finds empirical 

evidence that the decomposed model reveals better predictions in terms of out-of-sample 

predictive metrics and the combination of a classification tree and the regression tree 

produces the best overall results.  

We follow the work developed by Starosta (2021) in decomposing LGD using mixture 

distributions of in-default events and apply different algorithms that may lead to more 

precise and robust estimates for each component of the decomposed model of LGD for real 

estate-backed defaulted loans. We aim to improve all the components in this multiple-step 

LGD estimation model using several machine learning methods. 

Our first contribution stands in the application of several innovative models that have 

proved to be successful in many fields and provide higher predicative accuracy compared 

to traditional statistical models. Therefore we use a random forest, extreme gradient 

boosting, k-nearest neighbor, and multivariate adaptive regression splines (MARS) to 

estimate each component of the proposed equation by Starosta (2021). Moreover, we use 

a new set of different accuracy measures such as the Brier score and AUC (ROC accuracy 

ratio) as well as the Mathews correlation coefficient to compare the predictive performance 

between the models for the probability of cures and write-offs.  In addition, a special focus 

is given to the real estate serving as the collateral for the loan, by including specific 

information in the models including the real estate types and their location. Furthermore, 

to be in line with the LGD downturn estimation as required in the Basel framework, apart 

from several macroeconomic variables, we also include the real house price index and 

news-based uncertainty index which are particularly related to the real estate-backed loans. 

Finally, we use a unique database of defaulted bank loans provided by Global Credit Data4 

(GCD), and use the LGD data for all the European countries, instead of only one bank in 

one country as it is commonly found in LGD works. In this way, in terms of a regional 

spread, we provide new evidence of the effectiveness of this model for all the European 

areas.  

 
4 Global Credit Data provides the largest LGD data base worldwide. The association consists of 55 

banks from all over the world. See http://www.globalcreditdata.org/ for further information 



To the best of our knowledge, this is the first LGD study on a European level, focusing 

particularly on real estate-backed loans including cures, write-offs, and partial recoveries 

as proposed by Starosta (2021) by applying different innovative algorithms that may lead 

to more precise estimates.  

We find that the new models we used to estimate each component of the LGD equation, 

outperform the traditional statistical models such as logistic regression, model trees or 

OLS, and in particular, random forest leads with the highest performance among all models 

in terms of both in-sample and out-of-sample results. The results confirm that using the 

random forest algorithm to model each component of the decomposition approach for the 

recovery rate estimation, could improve the whole LGD estimation performance. 

The remainder of the paper is structured as follows. Section 2 presents a literature review 

of different works that have used one-stage and two-stage LGD models. Section 3 describes 

the decomposed model while section 4  and 5 explains the estimation methods and the 

measures used to assess the quality of the models. Section 6 presents a brief description of 

our dataset with a special focus on the recoveries on cures, write-offs, and partial recoveries 

as well as information related to the real estate serving as collateral. Section 7 and section 

8 report the empirical results and the concluding remarks. 

 

       2 One-Step and Two-Step models of LGD 

 

   The LGD estimation models in the existing literature are mainly divided into one-step 

modeling approaches and two-step modeling methods. One-step methods consist of 

modeling LGD directly depending on different independent variables using various 

techniques, while two-step methods are composed of two models that separate full-loss or 

no-loss cases (i.e. LGD=1 or LGD=0) and cases in the middle (0˂ LGD ˂1) separately. 

The main focus of one-step methods is not just offering a good predictive performance but 

also exploring the main potential determinants or risk drivers affecting LGD.  



Dermine and De Carvalho (2006) apply a multivariate approach on defaulted bank loans 

to analyze the determinants of recovery rates and find several factors including the size of 

the loan, collateral, industry sector, and the age of the firm to be statistically significant 

explanatory variables.  

Caselli et al. (2008) use univariate analysis and highlight the importance of LGD downturn 

conditions by finding evidence on the relationship between LGD and several 

macroeconomic conditions of bank loans in the Italian market. Grunert and Weber (2009) 

apply a simple linear regression analysis and find the role of quota collateral to be 

positively related to the recovery rates while other factors such as the risk premium of the 

borrower and the size of the company are negatively related. Qi and Yang (2009) 

investigate high loan-to-value residential mortgages and use a general regression equation 

to model LGD as a function of loan and property characteristics as well as housing market 

conditions. The authors find evidence of higher losses during distressed housing markets. 

Bastos (2010) use a fractional response regression and a regression tree to forecast the bank 

loans credit losses.  In terms of the predictive performance, he finds the regression tree to 

produce better results in comparison to traditional parametric models which are mostly 

used in estimating LGD. In a later study, Bastos (2014) applies an ensemble strategy for 

predicting recovery rates of defaulted debt and observes better forecasting performance 

compare to a single model. The superiority of these innovative algorithms of machine 

learning in one-step models was also found by Qi and Zhao (2011) who compare six 

different modeling methods for LGD and find regression trees and neural networks to 

outperform all the other methods. Hartmann et al. (2014) investigate the LGD for leasing 

and show that model trees produce better results in terms of out-of-sample performance. 

Many other studies have proposed two-stage models for LGD.  Bellotti and Crook (2010) 

propose a decision tree approach where extreme cases with no-loss (LGD=0) and full loss 

(LGD=1) are considered as binary classification problems and are modeled through logistic 

regression. For the rest of the cases, when  0˂ LGD ˂1, the authors use a simple OLS 

model. Also, Thomas et al. (2010) follow the same approach on splitting the LGD data 

considering them as classification and regression problems and applying then a logistic and 

linear regression. 



Matuszyk et al. (2010) use a decision tree method including a two-step approach to model 

LGD of unsecured consumer loans by focusing particularly on the collection process. The 

authors highlight the importance of modeling both the decisions by the lenders and the 

repayment risks of the debtors when estimating LGD. To achieve this, they propose a two-

step process where in the first step, logistic regression is used to estimate the class of a 

debtor and in a second step, the LGD for each class is estimated using a regression model.  

Gürtler and Hibbeln (2011) propose a two-step LGD modeling approach based on the 

different influencing factors of loans that are recovered and those written-off. The authors 

first apply logistic regression to distinguish between two groups of loans and on a second 

step use regression for the LGD of each of them separately. 

Loterman et al. (2012) present an LGD benchmark study by investigating 24 different 

regression techniques and find the non-linear techniques in combination with a linear 

model component in a two-stage process, to have good predictive power. They propose 

two approaches of the two-step setting: i) the first one by using logistic regression to model 

extreme cases when LGD=0 and LGD=1, and as a second stage applying different linear 

and non-linear techniques to model the values in between, and ii) a simple OLS regression 

as a first stage and estimation the residuals using a non-linear regression model as the 

second stage. The authors state that an advantage of the two-stage setting stands in 

improving the comprehensibility of the resulting models. In addition, they find a clear trend 

on the superiority of non-linear techniques, the support vector machines, and neural 

networks in particular, in terms of performance results. 

Tanoue et al. (2017) apply a multi-stage model and confirm their superior predictive 

accuracy relative to the OLS, Tobit, and inflated beta regression models. In a later study, 

Tanoue et al. (2020) investigate the performance of several probability machine models as 

the first model in the two-step LGD estimation model. Particularly, the authors separate 

LGD positive values from zeroes using a random forest, k-nearest neighbors (KNN), 

bagged nearest neighbors (BNN), and support vector model (SVM) as the first model, and 

a simple linear regression estimating the positive values given LGD > 0 as the second 

https://www.sciencedirect.com/science/article/pii/S0169207016301303#br000060


model. They find empirical evidence that random forest results as the best model when 

building the first step in the two-stage setting of the LGD estimation model. 

 

3 The decomposed model  
 

   The model proposed by Starosta (2021) integrates cures, write-offs, and partial recoveries 

in one equation. We present a short summary of the model and give the definition of some 

concepts that will be used throughout the paper.  

A default is marked as a cure event when it has time to resolution less than one year, no 

write-off and no collateral sale or guarantee call.5 In other words, the borrower has exit the 

default status and returned to performing portfolio so we consider this as Stage 1 (𝑠𝑛=1, 

where n is the observation) of the client. No collateral information is required in this stage. 

In case the default goes further into the process, so the event is not considered as cured 

anymore, the collection department takes place by resulting in partial recoveries (excluding 

write-offs). We consider this as Stage 2 (𝑠𝑛=2) and detailed collateral information is 

required at this point. Apart from that, information regarding the loan file (exposure at 

default, facility type, guarantee indicator, seniority, etc.) and borrower-related 

characteristics (industry, financial health information, residence, etc.) are also considered 

at this stage. At this stage, the default may end (if the bank demands are met) or it can 

proceed to Stage 3 (𝑠𝑛=3) which is then considered as a write-off.  Loan-related 

information is mainly required for stage 3.  

If we denote 𝑠𝑛 ∈ {1, 2, 3} the stage for the n-th exposure;                                             

Probability of cure:   

                                                   P (𝑠𝑛=1)= 𝜓𝐶𝑈𝑅𝐸(𝛽1,𝑛);                                                            (1) 

 

 
5 This is the cure definition as per GCD methodology. 



Probability of write-off:   

                                     𝑃(𝑠𝑛=3|𝑠𝑛 ≠1)= 𝜓𝑊𝑅𝐼𝑇𝐸−𝑂𝐹𝐹(𝛽2,𝑛);                                               (2) 

Probability of partial recoveries: 

                                      𝑃(𝑠𝑛=2|𝑠𝑛 ≠1)= 1 − 𝑃(𝑠𝑛=3|𝑠𝑛 ≠1);                                                (3) 

Expected RR for cures: 

                                          𝐸(𝑅𝑅|𝑠𝑛=1) = Ɛ𝐶𝑈𝑅𝐸(𝛽3,𝑛);                                                                      (4) 

Expected RR for partial recoveries:  

                                      𝐸(𝑅𝑅|𝑠𝑛=3|𝑠𝑛 ≠1)=Ɛ𝑃𝐴𝑅𝑇𝐼𝐴𝐿(𝛽4,𝑛);                                             (5) 

Expected RR for write-offs: 

                                       𝐸(𝑅𝑅|𝑠𝑛=3|𝑠𝑛 ≠1) = Ɛ𝑊𝑅𝐼𝑇𝐸−𝑂𝐹𝐹(𝛽5,𝑛);                                              (6) 

where 𝛽1,𝑛, 𝛽2,𝑛, 𝛽3,𝑛, 𝛽4,𝑛, 𝛽5,𝑛 present the set of explanatory variables for n-th exposure 

for each component (Eq.1-6). Figure 1 shows a short summary of these variables that will 

be used for each stage of the recovery process. Macroeconomic variables are assumed to 

affect all the components at each stage. 

Finally, in line with Loterman et al. (2012) and Starosta (2021), the expected ultimate 

recovery rate (EURR) is  expressed as a combination of all the components mentioned 

above, as follows: 

        𝐸𝑈𝑅𝑅 = 𝐸(𝑅𝑅𝑛) = Ɛ𝐶𝑈𝑅𝐸(𝛽3,𝑛) 𝑥 𝜓𝐶𝑈𝑅𝐸(𝛽1,𝑛) + 

                                      (1 − 𝜓𝐶𝑈𝑅𝐸(𝛽1,𝑛))  𝑥 Ɛ𝑃𝐴𝑅𝑇𝐼𝐴𝐿(𝛽4,𝑛) 𝑥 (1 − 𝜓𝑊𝑅𝐼𝑇𝐸−𝑂𝐹𝐹(𝛽2,𝑛)) +

                                       Ɛ𝑊𝑅𝐼𝑇𝐸−𝑂𝐹𝐹(𝛽5,𝑛) 𝑥 𝜓𝑊𝑅𝐼𝑇𝐸−𝑂𝐹𝐹(𝛽2,𝑛)                                     (7) 

 

 



The final result of the equation gives the recovery rate, which can easily produce the LGD, 

as 1 – EURR. All the components of equation (7) are estimated and combined for each 

default event.  

 

    Figure 1. Variables used for each component of LGD decomposition. 

    

 

 

  

                                  

 

 

 

 

 

 

 Table 1 presents a short summary of all the models that will be used for classification 

(𝜓𝐶𝑈𝑅𝐸   and  𝜓𝑊𝑅𝐼𝑇𝐸−𝑂𝐹𝐹) and regression (Ɛ𝐶𝑈𝑅𝐸, Ɛ𝑊𝑅𝐼𝑇𝐸−𝑂𝐹𝐹𝑆, and Ɛ𝑃𝐴𝑅𝑇𝐼𝐴𝐿) functions, 

as well as all the respective performance measures for each of them, which will be 

described in detail in the next paragraph. 

 

 

COLLECTION (Partial Recoveries) 

CURES 

Write-Off 

STAGE 1 STAGE 2 STAGE 3 

 
• Loan file- related data 
          • Facility Type 

           • Nature of Default 

           • Guarantee etc. 

 
• Borrower-related data 
           • Financial health 

            • Residence country 

            • Industry etc. 

• Macroeconomic data 
           • GDP 

            • House Price Index 

            • Uncertainty Index etc. 

• Collateral - related data 

           •Valuation Type 

           •Real Estate Type 

           •Real Estate Location 

           •Owner Status etc.  

 

• Loan file- related data 
           • EAD 

            • Seniority 

            • LTV ratio etc. 

 
• Borrower-related data 
 

• Macroeconomic data 
 

• Loan file- related data 
           • EAD 

            • Seniority 

            • LTV ratio etc. 

 

• Macroeconomic data 
 



Table 1.  LGD decomposition, the used methods, and metrics used for assessing model quality 

Objective          Components               Methods used     Performance Metrics 

    

Expected 
Ultimate 
Recovery Rate 
(EURR) 

1) Probability of cure  

𝜓
(𝐶𝑢𝑟𝑒)

 

 
• Logistic Regression 
• Decision Tree 
• K-Nearest Neighbors 
• Random Forest 
• MARS 
• Extreme Gradient Boosting 

• ROC Curve 
• AUC 
• Brier Score 
• MCC 

2) Probability of write-off 

𝜓
(𝑊𝑟𝑖𝑡𝑒−𝑂𝑓𝑓)

 

   

   

3) Expected RR for cures 

Ɛ(𝐶𝑢𝑟𝑒𝑠) 

 
 

• OLS 
• Regression Tree 
• K-Nearest Neighbors 
• Random Forest 
• MARS 
• Extreme Gradient Boosting 

 

• RMSE 
• MAE 
• R2 
• 𝜌 

 
 

 

 

4) Expected RR for write-offs 

Ɛ(𝑊𝑟𝑖𝑡𝑒−𝑂𝑓𝑓𝑠) 
 

5) Expected RR for partial 

recoveries 

Ɛ(𝑃𝑎𝑟𝑡𝑖𝑎𝑙) 

   

    

 

       4 Methodology 
 

        4.1 Logistic Regression 

   Logistic regression is one of the most used methods in classification problems when 

modeling binary responses. Apart from other models that will be explained below, for 

comparison purposes, we also use logistic regression to model the probability of cure and 

write-off, as Starosta (2021) in his study.  If we denote with p the probability of an event, 

the odds of the event as p/(1-p), then the logistic regression models the log odds of the 

event using a linear function as follows: 

                                       𝑙𝑜𝑔 (
𝑝

1 − 𝑝
) = 𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑛𝑥𝑛                            (8) 

 where n is the number of predictors. The event probability is then written as a sigmoidal 

function: 



                                              𝑝 =
1

1 + 𝑒[−(𝛽0+𝛽1𝑥1+⋯+𝛽𝑛𝑥𝑛)]
                                           (9) 

where the 𝛽0, 𝛽1, … … 𝛽𝑛 are estimated using the maximum likelihood method. 

4.2 Multivariate Adaptive Regression Splines (MARS) 

   Multivariate Adaptive Regression Splines (MARS) is a non-parametric and non-linear 

regression method introduced by Friedman (1991). The main idea of this modeling 

technique stands in building multiple linear regression models across the range of predictor 

values. The MARS algorithm is considered as an extension of linear models but it makes 

no assumptions about the relationship between the response variable and the predictor 

variables. The algorithm builds the models in two steps: first, it starts by partitioning the 

data, and second, it runs a linear regression model on each different partition.  

In the first step, the algorithms create a range of predictor values which is partitioned into 

several groups, and for each of these, a separate linear regression is modeled. The 

connections between the separate regression lines are referred to as knots. Then, the idea 

of the MARS algorithm is to search for the best spots to place the knots. The model can be 

expresses as the following problem: 

If y is the target output and X = (𝑋1, …, 𝑋𝑁) is a matrix of N input variables, let’s assume 

that the data are generated from an unknown “true” model which would be expresses as: 

                                               𝑦 = 𝑓(𝑋1,……𝑋𝑁) + 𝑒 = 𝑓(𝑋) + 𝑒                                           (10) 

where e is the distribution of the error. The function f is then approximated by applying 

some basis functions, which are splines (smooth polynomials), including piecewise linear 

and piecewise cubic functions. It can be formally written as: 

                                    𝑚𝑎𝑥(0 , 𝑥 − 𝑡) = {
𝑥 − 𝑡  𝑖𝑓 𝑥 ≥ 𝑡
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                       (11) 

indicating that only the positive part of the equation is used otherwise it is given a zero 

value. Finally, the MARS model f(X) is expressed as a linear combination of basis functions 

and their interactions: 



                                                     𝑓(𝑋) = 𝛽0 + ∑ 𝛽𝑚𝜆𝑚(𝑋)

𝑀

𝑚=1

                                                   (12) 

where each 𝜆𝑚(𝑋) is a basis function and the β coefficients are estimated using the least-

squares method. 

 4.3 Classification and Regression Tree (CART) 

   Regression trees are used by many authors and have resulted to produce good accuracy 

in forecasting credit recoveries.6 A regression tree begins with a “root” node containing all 

the observations and then searches all over the possible binary splits among the data to find 

the explanatory variable and its corresponding value for the splitting that minimizes the 

squared errors in case of regression or Gini index in case of classification. This approach 

aims to divide the data into groups in which the LGD is as homogenous as possible. 

Classification trees, or the so-called decision trees (DT), are used to estimate the probability 

events, i.e. the probability of cure and the probability of write-off, while and regression 

trees (RT) are used to estimate the recovery rates (4), (5) and (6). 

 

4.4 Random Forest (RF) 

   Considered as an evolution of Breiman’s original bagging algorithm, the random forest 

is considered a popular ensemble strategy that incorporates randomized feature selection. 

First introduced by Breiman (2001), random forest is a powerful rule-based algorithm 

formed as an ensemble of decision trees where each tree is trained on a different artificially 

created sample. All the decision trees that form the random forest are different since each 

tree is built on a different random subset of data. However, random forest produces a final 

predictor under a different sampling mechanism. The algorithm uses only a random subset 

of available features is considered at each split. In other words, the random forest uses a 

random selection of features rather than using all features to grow the trees. This 

contributes to reducing the correlation and the variance of the ensemble prediction. As a 

 
6  Bastos (2010, 2014), Matuszyk et al.(2010), Qi & Zhao (2011), Bellotti & Crook (2012), Bellotti et al. (2019),  

    Papoušková & Hajek, (2020) 



final result, the random forest will use an average of all single predictors to make a better 

final prediction. That is, if we have a full set of n features, then only a random sample of 

m features is chosen as split candidates when building a random forest. It is important to 

emphasize that randomness is introduced only in the process of selecting features and not 

on splitting points of these features. 

4.5 K-Nearest Neighbors (KNN) 

   The k-nearest neighbors is another popular algorithm widely used in classification and 

regression problems, mainly due to its simplicity. The main idea of the model stands in 

identifying a number of K points that are closest in the input space, represented as 𝑁𝑘(𝑥). 

The prediction of the target variables is computed as: 

                                                            𝑓(𝑥) =
1

𝐾
∑ 𝑦𝑖

𝑥𝑖∈𝑁𝑘(𝑥)

                                          (13) 

So the final prediction is nothing else but the average of all the K observations that are 

closest in the training set. The Euclidian distance is used for the closeness between 

observations. 

4.6 Extreme Gradient Boosting (XGB) 

   Boosting is another ensemble algorithm widely used in many statistical learning methods 

for regression and classification. Based on the gradient boosting machines algorithms 

presented by Friedman (2001), this model is a powerful ensemble strategy where the 

residuals of the model are fitted by many weak learners iteratively. Boosted trees use the 

original data set to grow trees sequentially. This means that each tree is grown in sequence 

by using the information from the previously grown tree and therefore depending on the 

results of the previous trees. Stochastic gradient boosting is an improved version of this 

algorithm (Friedman, 2002) where at each iteration step is included a random sampling 

scheme. Extreme gradient boosting is another recent innovative algorithm that is built 

under the principle of gradient boosting framework. Popular for the speed computation that 

it offers, extreme gradient boosting also offers parallel tree boosting and controls over-



fitting through a more regularized model formalization. This is why this model can also be 

referred to as regularized gradient boosting (Chen et al. 2020). 

 

5 Evaluating and comparing the performance 
 

      Evaluating the predictive accuracy of our models is an essential part of the study. In 

order to assess the performance of our models, we need to quantify how well the predictions 

actually match the observed data. In the case of classification problems, the confusion 

matrix, which is a two by two table, is the main tool that shows the correct and incorrect 

classification of cures and write-off cases. In terms of binary classification, like in our case, 

it shows the true negatives (TN) and true positives (TP) which are the correct predictions, 

versus false negatives (FN) and false positives (FP) which present the incorrect predictions. 

Table 2 shows an example of the confusion matrix and its elements for the classification 

of cured events (same for write-offs).  

Table 2.  Confusion Matrix 

  Predicted 

    CURED NON-CURED 

  Observed 
CURED TP FN 

NON-CURED FP TN 

    

There are several classification metrics that can be derived from the confusion matrix, but 

we use the Matthews correlation coefficient (MCC) as a statistical metric that takes into 

account all the four values of the confusion matrix. The MCC is calculated as: 

               𝑀𝐶𝐶 =
𝑇𝑃 𝑥 𝑇𝑁 − 𝐹𝑃 𝑥 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
                         (14) 

The range of the MCC is between -1 and 1: closer to one indicates better classification and 

better model performance. The advantage of this coefficient is that it is considered as a 

balanced measure meaning that it can be used even if the classes are highly unbalanced, 

i.e. one class is over- (or under-) presented. 



Another important metric based on the confusion matrix is the receiver operating 

characteristic (ROC) curve which is a probability curve and is one of the most important 

evaluation metrics that is used to check and visualize any classification model’s 

performance. It is constructed by plotting the sensitivity (i.e. the true positive rate 

computed as TP/(TP + FN) against the specificity (i.e. 1-false positive rate computed as 

FP/(TN + FP). A standard measure to compare the ROC curves is the area under the curve 

(AUC). Its values are between 0 and 1. The higher the AUC, the better is the model. 

Last, we use the Brier Score to evaluate the accuracy of probabilistic predictions. The Brier 

Score for binary classifications for a set of predictions is given as: 

                                                𝐵𝑆 =
1

𝑛
∑(𝑃𝑖 − 𝑜𝑖)

2

𝑛

𝑖=1

                                                   (15) 

where n is the number  of forecasts,  𝑃𝑖 is the predicted probability of the event i and 𝑜𝑖 

represent the occurrence of the event i.e. 1 if the event occurs or 0 if not. The results of the 

score take values between 0 and 1, where the lowest values of the score (close to zero) 

indicate better model prediction. 

For the regression models (Ɛ𝐶𝑈𝑅𝐸, Ɛ𝑊𝑅𝐼𝑇𝐸−𝑂𝐹𝐹𝑆, and Ɛ𝑃𝐴𝑅𝑇𝐼𝐴𝐿), we use the root mean 

squared error (RMSE) and the mean absolute error (MAE) as the most commonly used 

measures of model performance. The root mean squared error (RMSE) is defined as 

follows: 

                                                    𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)2𝑛

𝑖=1                                                      (16)        

where 𝑦𝑖 is the actual recovery rate on loan i; the �̂� is the predicted recovery rate on loan i 

and n is the number of loans in our sample. Models that have lower RMSE tend to give 

smaller differences between the predictor and the actual value and therefore predict 

recoveries more accurately. The mean absolute error (MAE) which shows on average, how 

far is the model prediction from the true value is given as:    

                                                  𝑀𝐴𝐸 =
1

𝑛
∑ | 𝑦𝑖 − �̂�𝑖|𝑛

𝑖=1                                                     (17)                                                 



Finally, we also include the statistical correlation between the actual and predicted values: 

                                                   𝜌 =
𝐶𝑜𝑣 (𝑦, �̂�)

√𝑉𝑎𝑟 (𝑦) 𝑉𝑎𝑟 (�̂�)
                                                     (18) 

However, we are interested to assess the RMSE and MAE on a sample that is independent 

of that used in building the models. To achieve this, we will split our sample into two sets 

using a standard 70% - 30% random split. The first set is used to fit the model, i.e. the 

training set, and the second one is used to test its accuracy, i.e. the test set. Following this, 

the performance measures mentioned above are assessed in both sets. In addition, each 

model hyper-parameters were tuned by using ten-fold cross-validation on the training set. 

All the models were trained using the latest version of the Caret library in R (Kuhn, 2008, 

2018; Kuhn & Johnson, 2013). 

 

6 Data 

   We use a unique loss database provided by GCD. The GCD association consists of 55 

member banks including several global important banks, from all over the world and the 

data collected comes across the span of 20 years. The data that is used in our paper is of 

real estate-backed loan defaults and it provides us with a great variety of information on 

(1) the defaulted borrower, (2) the characteristics of the real estate serving as collateral, 

and (3) loan-related factors. In our paper, we analyze all the defaulted loans whose country 

of jurisdiction is located in European countries.7  

According to Basel II definition, a default occurs if an obligor is “unlikely to pay” or “past 

due more than 90 days on any material credit obligation”. We refer to the default definition 

set by Basel II and therefore we restrict our data sample from the year 2000 in order to 

ensure a consistent default definition. In addition, we do not account for defaults after 2019 

since the workouts of recent defaults are not necessarily completed. 

 
7 A total of 25 European countries are included in the study. 



Including the defaults of the recent years, might lead to an unrealistically long-term average 

LGD since lots of cases of short workout periods are present.8 Finally, we eliminate all 

loans with abnormally low and high recoveries9 (less than −50% and higher than 150%). 

A total of 8,755 loans remain. 

Table 3. Descriptive Statistics of Empirical Recovery Rates (%) 

Statistic Obs. Mean St.Dev.   Min. Max. 

      

Overall 8,755 80.07 32.69 -31.83 139.72 

Cures 2,797 99.37   1.74  94.76 122.92 

Write-offs 2,311 48.47 34.35 -31.83 130.90 

Partial Recoveries 3,647 85.28 29.59   0.18 139.72 

      

Table 3 present a short summary of recovery rates, distinguishing between cures, write-

offs and partial recoveries. The mean, the standard deviation, the minimum and maximum 

values and the corresponding number of observations are reported for each subset.  

The mean of recovery rates for the overall dataset stands for 0.80 with a minimal value of 

-0.31 and a maximum of 1.39. We observe that these statistics change considerably for 

each subsample. Particularly, there is a huge difference in terms of mean recoveries 

between cures (0.99) and write-offs (0.48). This difference is also presented visually in 

Figure 3.2 which shows the distribution of the recovery rates for each category. 

 In addition, we observe recoveries that fall below 0 and exceed the value of 1. Negative 

values of LGDs as well as values greater than one may appear in some cases due to high 

costs such as administrative, legal, and liquidation expenses or financial penalties or high 

collateral recoveries. Finally, we also include a few macroeconomic factors that are also 

considered in the study so the models are built to be sensitive to macroeconomic 

characteristics as required by the European Banking Authority (2018). 

 

 
8 The resolution bias is addressed according to GCD methodology: 

https://www.globalcreditdata.org/system/files/documents/gcd_lgd_report_2020_appendix_01062020.pdf 
9 We use the economic recovery rate, with principal advance being part of the defaulted amount. 



Figure 2. Distribution of Recovery Rates 

  

  

We chose the GDP growth, the consumer price index, the unemployment rate, the news-

based economic uncertainty index, and the real house price index.10 In a recent study, 

Gambetti et al. (2019) find that economic uncertainty turns out to be the most important 

systematic determinant of recovery rate distributions.  

Following Gambetti et al. (2019), we decide to use the original economic policy uncertainty 

index developed by Baker et al. (2015) which is based on the normalized volume of 

newspaper articles published in a given month containing expressions referring to 

economic policy uncertainty. This news-based indicator commonly referred to as the 

economic policy uncertainty index serves as a proxy for policy-related economic 

uncertainty.  

 
10  The macroeconomic data are retrieved from Federal Reserve Economic Data (FRED) 

https://fred.stlouisfed.org/ 

    and OECD Data https://data.oecd.org/. 



In addition, we decide to include the real house price index for European countries, which 

is the ratio of the nominal house price index (including the sales of newly-built and existing 

dwellings ) to the consumers’ expenditure deflator in each European country. 11  

                                      

Figure 3. Real Estate Types and Recovery Rates 

     

 

Figure 3 shows the types of the real estate serving as collateral for the defaulted loans in 

our database and the respective mean of recovery rates of each group. We observe that the 

collateral types such as the bare land that is due for development, the collateral types used 

for leisure such as clubs or outdoors, and the collateral used as offices present the lowest 

recoveries in our data with a mean of 0.71, 0.72 and 0.74 respectively. On the other side, 

the collaterals used for car parking, warehouse logistics and healthcare including hospitals 

and clinics are associated with the highest recovery rates with mean of 0.97, 0.95 and 0.93 

respectively.  

 

 

 
11  Following the OECD Data definition of housing pricing https://data.oecd.org/price/housing-prices.htm. 



7 Results 

   The performance of the models for the probability of cure and write-offs are presented in 

Table 4 and Table 5. We find that random forest reveals the best performance in terms of 

both in-sample and out-of-sample results for the models of the probability of cure and 

write-off. In addition, Figure 4 shows all the ROC curves and the respective AUC values 

for all the models. The ROC curves (and AUC) for the out-of-sample results are listed in 

the Appendix. As can be seen from Figure 4, the random forest is associated with the 

highest AUC (0.89 for the cure model and 0.9 for the write-off model). It also reveals the 

best results in terms of the lowest Brier Score (0.10 for the cure model and 0.12 for the 

write-off model) as well as the highest MMC (0.95 and 0.92 respectively). The other 

models are also well ahead of logistic regression and the decision tree in terms of all the 

measures. As the results show, KNN and MARS are the second and the third-best models 

after the random forest in terms of in-sample and out-of-sample results. We find that the 

predictive performance of the decision tree and the logistic regression is worse than that of 

the other machine learning methods. 

Table 3.  Model performance for the probability of cure model in decomposed approach 

Model AUC Brier Score MCC 

   In-sample  Out-of-sample   In-sample Out-of-sample In-sample Out-of-sample 

LR 0.76 0.76 0.3465 0.3512 0.3982 0.3800 

DT 0.73 0.62 0.3810 0.3839 0.3416 0.3312 

KNN 0.83 0.81 0.2135 0.2619 0.6440 0.5290 

RF 0.89 0.88 0.1063 0.2429 0.9533 0.6110 

MARS 0.83 0.83 0.2701 0.2849 0.5522 0.5414 

XGB 0.76 0.75 0.3373 0.3492 0.4032 0.3487 

             Note: The best model is underlined. 

 

Table 4. Model performance for the probability of  write-off model in decomposed approach. 
 

Model AUC Brier Score MCC 

    In-sample  Out-of-sample In-sample Out-of-sample In-sample Out-of-sample 

LR 0.77 0.76 0.3183 0.3275 0.2905 0.2822 

DT 0.70 0.69 0.3218 0.3281 0.3748 0.3612 

KNN 0.85 0.85 0.2034 0.2316 0.5919 0.5252 

RF 0.90 0.89 0.1245 0.2315 0.9233 0.7972 

MARS 0.84 0.83 0.2557 0.2609 0.4988 0.4702 

XGB 0.81 0.80 0.2806 0.2859 0.4412 0.4352 

             Note: The best model is underlined. 



Figure 4. ROC Curves for Probability of Cure and Probability of Write-off 

     

Tables 6, 7, and 8 present the performance matrixes for estimating the recovery rates of 

cures, partial recoveries, and write-offs. Referring to the recovery rate of the cure model, 

in terms of R2, we find that all the models are well ahead of OLS and RT, with values 

ranging between 0.30 to 0.89 (in-sample) and 0.29 to 0.58 (out-of-sample). Even here we 

find that the random forest is superior to all the models in terms of the errors (0.004 RMSE 

and 0.002 MAE), a correlation coefficient of 0.94 and an R2 of 0.89. The results show that 

both, in terms of in-sample and out-of-sample results, the machine learning models 

outperform OLS and RT, and in particular, the random forest leads to remarkable predictive 

accuracy.  

 Table 5.  Model performance for RR of cures model in decomposed approach. 

Metric     

Model OLS  RT KNN         RF MARS XGB 

R2 (%)       

In-sample  42.69 30.18 63.99 89.40 53.31 80.86 

Out-of-sample  39.12 29.16 43.13 58.14 39.66 49.64 

RMSE       

In-sample 0.0076 0.0093 0.0067 0.0040 0.0076 0.0051 

Out-of-sample 0.0077 0.0094 0.0085 0.0073 0.0086 0.0079 

MAE       

In-sample 0.0064 0.0067 0.0046 0.0028 0.0056 0.0038 

Out-of-sample 0.0066 0.0069 0.0059 0.0050 0.0062 0.0056 

ρ       

In-sample 0.6533 0.5493 0.7999 0.9455 0.7301 0.8992 

Out-of-sample 0.6255 0.5401 0.6567 0.7625 0.6297 0.7045 

                               Note: The best model is underlined 



 

Considering the results for the estimation of recovery rates in the write-off model (Table 

6) and partial recoveries model (Table 7), we observe that the machine learning models 

produce higher accuracy compared to OLS and RT, and in particular, the random forest 

confirms again its superiority among models. 

Table 6. Model performance for RR of write-off model in decomposed approach. 

Metric     

Model OLS   RT KNN        RF MARS XGB 

R2 (%)       

In-sample 25.98 18.30 35.97 81.16 31.34 41.54 

Out-of-sample 17.70 14.80 22.27 37.21 24.34 31.87 

RMSE       

In-sample 0.2017 0.3104 0.2717 0.1703 0.2806 0.2611 

Out-of-sample 0.3078 0.3133 0.3040 0.2731 0.2966 0.2822 

MAE       

In-sample 0.2448 0.2667 0.2219 0.1394 0.2310 0.2143 

Out-of-sample 0.2563 0.2669 0.2485 0.2230 0.2433 0.2290 

ρ       

In-sample 0.5097 0.4278 0.5997 0.9009 0.5598 0.6445 

Out-of-sample 0.4208 0.3847 0.4720 0.6101 0.4933 0.5645 

                            Note: The best model is underlined 

 

Table 7. Model performance for RR of partial recoveries model in decomposed approach 

Metric     

Model OLS RT KNN RF MARS XGB 

R2 (%)       

In-sample 30.34 28.42 38.73 84.97 34.26 64.41 

Out-of-sample 25.26 23.35 35.41 42.08 34.01 38.09 

RMSE       

In-sample 0.2451 0.2485 0.2287 0.1328 0.2304 0.1787 

Out-of-sample 0.2495 0.2528 0.2325 0.2195 0.2408 0.2277 

MAE       

In-sample 0.1646 0.1565 0.1377 0.0776 0.1414 0.1121 

Out-of-sample 0.1662 0.1627 0.1411 0.1177 0.1478 0.1398 

ρ       

In-sample 0.5508 0.5331 0.6223 0.9218 0.5853 0.8026 

Out-of-sample 0.5026 0.4833 0.5950 0.6917 0.5830 0.6172 

         Note: The best model is underlined 

The results for all the models confirmed the random forest to be the best model in 

estimating all the components of the recovery rate decomposed approach.  



As a final result of our work, we use the random forest to assess the predictive performance 

of the whole decomposition approach recovery rate estimation model. Therefore, we assess 

the predictive performance of the decomposed approach using the random forest for each 

component and compare these results with a combination of logistics regression and OLS 

as well as the decision and regression trees used by Starosta (2021). Table 8 demonstrates 

the results for the different modeling methods for the final model. 

Table 8. Model performance for the final recovery rate model 
 

 Metric 

Model RMSE MAE ρ 

    

In-sample    

LR+OLS 0.3192 0.2127 0.2372 

DT+RT 0.3235 0.2197 0.2096 

RFD+RFR 0.2725 0.1793  0.5479 

    

Out-of-sample    

LR+OLS 0.3738 0.2835 0.0917 

DT+RT 0.3259 0.2209 0.2006 

RFD+RFR 0.3053 0.2072 0.3611 

    

We estimated three models: i) a decomposed model with logistic regression for 

classification and OLS for regression, ii) a decomposed model with a decision tree for 

classification and a regression tree for regression, and iii) a decomposed model where the 

random forest is used for both classification and regression.  

Figure 5. Graphical Comparison 

 



Figure 5 shows a graphical comparison between the distribution of the recovery rate in the 

original dataset and the one that random forest predicts. In terms of all the performance 

measures, we find the random forest to confirm again its superiority in modeling the final 

ultimate recovery rate. Therefore, this result confirms that using the random forest in the 

multiple-step modeling of the recovery rate proposed by Starosta (2021) could improve the 

whole recovery rate estimation performance. 

 

8 Conclusion and further research 
 

   In this study, we integrated cures, partial recoveries, and write-offs in one equation to 

estimate the ultimate recovery rate following Starosta (2021) and applied different machine 

learning algorithms to predict each component of this decomposed approach. The author 

finds his proposed model to be effective in modeling consumer risk and moreover reveals 

important implications for risk management and in particular the collection department.  

We used a unique database of defaulted real estate-backed loans in European countries 

provided by GCD. Since the investigation of alternative models is fundamental for lenders 

for a better prediction of losses, the aim of the study was to present improved forecasting 

performances of different classification algorithms in predicting the probability of cures, 

and probability of write-offs as well as several regression models for the recovery rate of 

cures, partial recoveries and write-offs. In addition to logistic regression, OLS and CART 

models applied by Starosta (2021), we included the KNN, the random forest, the MARS 

and Extreme Gradient Boosting to investigate their predictive performance in comparison 

to the other traditional statistical techniques.  

We find that these algorithms outperform all the models used by Starosta (2021) in his 

study and random forest, in particular, is associated with the best performance for both 

classification and regression models in terms of in-sample and out-of-sample performance. 

To conclude with the final result of our work, which was the estimation of the recovery 

rate using a decomposition approach, we estimated three final models: i) a decomposed 

model with logistic regression for classification and OLS for regression, ii) a decomposed 



model with decision tree for classification and a regression tree for regression, and iii) a 

decomposed model where the random forest is used for both classification and regression, 

which revealed the best overall performance in our study. The first two combinations were 

chosen for comparison purposes to Starosta’s (2021) results.  We find using the random 

forest to estimate and predict each component of the equation, leads to higher performance 

results compared to the other traditional statistical models for the final recovery rate, and 

hence the LGD.   

LGD decomposition proposed by Starosta (2021) presents an innovative improvement as 

a multi-step modeling approach of LGD estimation and exploring other alternative models 

in the future that might offer higher predictive performance remain fundamental for 

lenders. 
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      Appendix 
 

Figure 6. ROC Curves for the out-of-sample for the probability of cure model 

 

 

 

Figure 7. ROC Curves for the out-of-sample for the probability of write-off model 

             


