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Abstract

Seismic risk is a major threat to Italy’s territory, financial stability,
and most importantly to the safety of its inhabitants. Over the last
decades a significant number of earthquakes has occurred, resulting
in considerable losses of human life and economic resources. In recent
years, the topic is increasingly at the center of common debate, making
light on the need to counter this risk preventally rather than correc-
tivelly after the incalculable damage has occurred. Among the most
feasible solutions there are public-private partnerships between the
State and insurance companies. However, to quantify the insurability
of the risk, its actuarial technical basis must be studied, starting from
the probability of an earthquake with a certain intensity occurring in
a certain number of years. To do this, a new type of spatial regression
is implemented on the Peninsula in order to asses the hazard.
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1 Introduction
A distinctive feature of Italy is the extremely high exposure to seismic risk:
first country in Europe and eighth in the world in terms of potential damage
measured as a share of GDP. Since 1950, earthquakes have wiped out 5,000
lives and caused direct damages of 108 billion euros (see Cesari and D’Aurizio
[6]). Natural disasters produce direct damages, human casualties, and have a
significant yet hard-to-measure indirect impact on underdevelopment. The
risk to Italy’s housing stock is enormous: there are 34,7 million homes valued
at € 5,400 billion. The risk for Italian families is intensified by the concentra-
tion of their wealth in home ownership, where 70 percent of households own
their primary residence. In the face of these hazards, the insurance demand
is low: natural catastrophe policies only cover slightly more than 2 percent of
homes. For this kind of risk, under-insurance is a global phenomenon caused
by individuals’ inability to make prudent choices and the high prices charged
by insurance companies in the face of reduced demand. These issues are
exacerbated in Italy by a lack of insurance culture and the trust in government
involvement. Damages that occurred have been compensated through Public
intervention, while insurance companies have played a marginal role. This
situation exposes public finance to risks and suggests a greater diffusion of the
insurance instrument that has been designed for this kind of need. Earthquake
insurance demand varies according to risk awareness in the country as well as
costs. The international framework demonstrates examples of collaboration
between public actors and insurance companies that resulted in high levels
of house insurance protection, with varying legislative solutions tailored to
the various nations’ degrees of economic and social development. In some
countries, where insurance costs rise by the level of natural risk, some pro-
grams enable inhabitants of high-risk locations to obtain coverage at a lower
charge. The topic of earthquake defense is introduced in many different ways
depending on the nation in which one is operating, generally as a function
of available scientific knowledge, built structure, and local seismic culture.
However, there are two cornerstones without which any action to mitigate
earthquake risk, and consequently to transfer it to insurance companies, is
doomed to failure. The first concerns the seismic hazard of the country with
which one is dealing, that is an inherent characteristic of each territory that
man cannot affect. The second relates to the actual vulnerability of the
housing stock, that is, its overall exposure to catastrophic events: an issue
that, on the other hand, is almost exclusively concerned with the actions of
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man and his institutional structures (see Coviello et al.[8]). In this regard, a
logical, risk-based assessment of earthquake insurance pricing has grown in
relevance in recent years. The fundamental instrument in risk-based insurance
pricing is catastrophic risk modeling, which simulates seismic occurrences
using vulnerability criteria to calculate a logical and fair price for the damage
to a client’s portfolio (see Akkar et al.[1]). Traditionally, the major output of
a catastrophic model is the probability distribution of estimated seismic loss
for a particular portfolio. Based on the methodology developed by Friedman
in 1984 (see [12]), three key factors - hazard, exposure, and vulnerability -
contribute to mutually determining the amount of losses. The hazard is a
natural occurrence that creates danger with a certain probability distribution,
intensity, and location. The exposure is the collection of goods that can
be impacted by a threat, and the vulnerability is the destructive impact of
multiple hazards over various exposures. Hazard modeling is a crucial compo-
nent, and there are two ways to implement it: via the historical estimation of
relevant hazard measures, or through a stochastic scenario generating compo-
nent, in which natural phenomena are modeled and simulated to generate
a large-scale event database. This paper adopts the first strategy, following
Cesari and D’Aurizio’s methodology (see [7]), where the evaluation method
for the seismic-risk probability is based on publicly available datasets and is
suitable for insurance purposes. In particular, they determine the hazard on
the dataset from INGV (see Section 2), linking the exceedance probability to
a Poissonian model. Subsequently, the functional link between probability
and earthquake’s intensity in a certain area is obtained through a linear model
fixed-effects panel for each geographical location.

An essential tool for hazard characterization is the modeling of spatially
correlated fields of ground motion and the uncertainties associated with these
elements, particularly their correlation, which is critical in determining the
boundaries of the predicted risks and losses. Therefore compared to the
existing models in this paper has been considered a method based on the
Geographically Weighted Regression (GWR) to estimate the seismic event
probability with an intensity at least equal to a level j in a return period n (see
[4]). The paper is organized as follows. Section 2 describes the seismic risk,
its measurement methods, and how the hazard has been computed following
the Cesari and D’Aurizio’s method ([7]). Section 3 introduces the GWR and
section 4 presents how to estimate the probability of seismic events with the
model, with the results of the application. Section 5 provides conclusions and

2



further possible applications.

2 Hazard Assessment
The hazard can be evaluated as the probability of catastrophic occurrences
with certain severity or as the intensity of events with a given probability
in a given area and over a specific time horizon. The first seismic event
measurement was an empirical estimate of the global damage caused to pop-
ulation and buildings, using an ordinal scale known as the Mercalli Scale
(see [16]), with eleven rising levels designated from I to XI. The modification
by Cancani and Sieberg of this measurement (MCS, see [19]), with twelve
rising levels marked from I to XII, is the most generally used scale nowa-
days. In English-speaking areas, a very comparable variant is known as MMI
(Modified Mercalli Intensity). A second measurement was developed by C.
Richter in 1935 (see [17]), the Richter Magnitude (LM or Local Magnitude),
which measures in logarithmic values base 10, the maximum amplitude of the
waves generated by the earthquake. In 1979, was introduced by Hanks and
Kanamori the Moment Magnitude measurement (see [13]), a modification of
the LM, that allows to measure the overall energy released by the earthquake.
Following that, measurements of ground shaking in various micro-zones have
been introduced. Peak ground acceleration (PGA) is the most commonly used
measure, frequently complemented by peak ground velocity (PGV). PGA is
expressed in fractions of gravity acceleration g, whereas PGV is expressed
in meters per second. Both measures are strongly correlated but weakly
correlated with macro-seismic intensity measurements.

The Italian National Institute of Geophysics and Volcanology (INGV) pub-
lishes shakemaps for each seismic event within a few hours in Italy. It is a
collection of data that includes LM measurements, a map of macro-seismic
intensity recorded in MCS/MMI, and a database with PGA and PGV values
for all sites on the INGV detection grid, composed of 16.852 points with a
constant step of 0.02 degrees longitude and latitude. Moreover are defined
nine exceedance probabilities in 50 years with the correspondent return pe-
riod and the average number of events λ in a year1. The INGV asses in
this framework (see [15]) the seismic risk, that uses to compute buildings’

1Exceedance probabilities:= {2,5,10,22,30,39,50,63,81}
Return periods (λ−1):= {2475,975,475,201,140,101,72,50,30}
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resilience to earthquake events. The methodology derives sixteen geographical
distributions for the PGA for each exceedance probability and each point of
the grid, each obtained by combining all levels of the following:

• different levels of completeness of the historical earthquake catalogs
used (2 levels);

• different methods of determining seismic intensity (2 levels);

• different measurements of earthshaking attenuation (4 levels).

For each local distribution is given a weight that reflects the confidence level
in the particular approach. The weighted 16th, 50th, and 84th percentiles are
finally computed from the sixteen alternative values received for each place
on the map. The median is the average assessment, with the 16th and 84th
percentiles providing an optimistic and pessimistic view of the local seismic
risk, respectively. The INGV computes then the hazard in a certain zone
in a certain year through the PGAz value that can be exceeded in 50 years
with a 10% probability. Using 13-class categorization with a different colour
associated INGV provides three maps for the three percentiles described
above.

Figure 1: Maps of Italy’s seismic risk • 10% exceedance probability over 50
years • 16th, 50th and 84th percentiles
Source: Italian National Institute of Geophysics and Vulcanology
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However, the INGV probability formulation, is inadequate for insurance
pricing purpose. A better one can be presented as follows:

Given t as time measure in [0, T ] and hj, a random variable in [0, H] where
H is the maximum seismic intensity that occurs in a certain area and j is the
type of indicator of the intensity of a seismic event. If j corresponds to the
Mercalli-Cancani-Sieberg (MCS) scale, then for

hj =



j = 1 : MCS = I, II, III, IV, V ;
j = 2 : MCS = V I

j = 3 : MCS = V II

j = 4 : MCS = V III

j = 5 : MCS = IX

j = 6 : MCS = X

j = 7 : MCS = XI, XII

Hence is defined as pz(hj) the probability of having an event of hj intensity
in [0, T ] in a certain area z, with z =(1, ..., 16.852).
For insurance pricing purposes, one will compute for a return period n and
an intensity hj = hj

pz(hj) = Pz([
n∑

t=1
hjt > hj] ≥ 1) (1)

To compute (1) is presented the IVASS model [6]

IVASS model
The first step is estimating the MCS intensity from the corresponding PGA
for all the INGV points. In order to do so, MCS evaluation is determined
following the INGV approach (see Faenza and Michelini [10]). The method
requires firstly an estimate of the PGV values, that have been obtained
through the linear relation between PGA and PGV, estimated from an OLS
model based on a collection of seismic events that occurred from 2009 to 2017.
Data are extracted from the ShakeMap on the INGV website. The model
has the following structure:

ln(PGVk) = β0 + β1ln(PGAk) + εk (2)
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Then for each PGA result:

ˆPGV z;n;pz = ĉeβ̂0+β̂1ln(P GAz;n;pz ) (3)

Where ĉ =
1
T

∑T
k=1 PGVk

1
T

∑T
k=1 eβ̂0+β̂1lnP GAk

is a correction factor which eliminates the

bias generated by modeling the logarithm of a dependent variable.
Then one obtains a matrix of 16.852x9 PGV estimates, where the nine
estimates for every point of the grid correspond to the available exceedance
probabilities. From the INGV model ([10]) one can produce an estimate
for hj=MCS whenever a seismic event occurs. The model is based on two
equations resulting from an orthogonal regression (see Boggs and Rogers [3]):

MCS(P GA) = (1, 68 ± 0, 22) + (2, 58 ± 0, 14)log10(PGA) (4)

MCS(P GV ) = (5, 11 ± 0, 07) + (2, 35 ± 0, 09)log10(PGV ) (5)
For each PGA and PGV (4) and (5) determine a symmetric interval of
MCS(P GA,P GV ). To determine the true value for the MCS, the model uses
the distance as a credibility measure, based on a threshold value of 6 for
hj = MCS: between the two predictions is chosen the one more distant
from 6. Are now available for each point of the grid and each exceedance
probability three value for MCS.

Figure 2: MCS workflow

Indicating with hjz,α the central value of the interval, and with λz the
yearly event frequency, where z is a generic point of the grid and α is a generic
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exceedance probability, then under the Poisson specification the exceedance
probability in n years is:

αz,n = P (N(n) > 0) = 1 − P (N(n) = 0) = 1 − e−nλz (6)

In order to obtain αz,n, λz has been modeled on hj . The best-fitting model is
log-linear (see [7]) and has the following equation:

ln(λz) = β0 + β1,z + β2hjz + εz (7)

For an n-year horizon, from equations (6) and (7), given a generic hj, the
local exceedance has the following expression:

αz,n(hj) = 1 − e−n(ĉeβ̂0+β̂1,z+β̂2hj ) (8)

An alternative model for (7) is now presented in order to use the spatial
relation between the coordinates (see Section 1).

3 Geographically Weighted Regression
Geographically Weighted Regression (see Brunsdon et al.[4]) is a technique
introduced for exploring the phenomenon of regression models where the cases
are geographical locations and regression coefficients couldn’t remain fixed
over space. Linear regression has been often used in quantitative geography
papers as a way of examining the relationship between geographical factors.
However, the method itself does not consider location when examining the
correlations between variables.

Given the well-known components of a regression model, with X a ma-
trix containing the set of independent variables, y a vector of dependent
variables and their relation as:

yi =
∑

l

Xilβl + εi (9)

where β is a vector of regression coefficients and ε is a random vector whose
distribution is Gaussian. This method could be applied to geographical data
where each case corresponds to a location, but beyond this implicit accordance
space doesn’t play a role in the modeling process. Nevertheless, there might
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be some circumstances where the nature of these models isn’t fixed over space.
This is referred to as spatial non-stationarity. Several ways for incorporating
space have been considered, starting from the Cassetti expansion method
(see [5]) where coefficients are expressed as explicit functions of the spatial
location of the cases:

yi =
∑

l

Xilβl(pi) + εi (10)

The underlying concept of the Geographically weighted regression begins from
(10) and provides estimates of βl(pi) for each variable l and each geographical
location i, achieved by considering data for places near location pi. This could
be done by calibrating an OLS regression model based on observations whose
geographical location is within the circle drawn around pi with a certain
radius r. Then the βl are an estimate of the association between the variables
in and around pi. Evaluating βl for each pi one could obtain a set of estimates
of spatially varying parameters.
The regression centered in each pi could be thought as a weighted ordinary
least squares regression, with observation within the circle weighted 1, others
0.

aic =

1 dic ≤ r

0 otherwise

where dic is the distance between locations i and c. Nevertheless, the weighting
function could be expressed with a continuous function, Gaussian distance
for example:

aic = e

−d2
ic

2b2 (11)
where b will be discussed later. Alternative functions of (11) could be used,
and these will be referred to as kernels K as aic = K(dic). Consequently, after
selecting a weighting function, the estimate of βi may be changed to produce

βi = (XT WiX)−1XT Wiy (12)

Where the matrix Wi is a diagonal matrix, whose diagonal elements correspond
to the weights calibrated around point pi.

Wi =


ai1 0 . . . 0
0 ai1 . . . 0
... ... . . . ...
0 0 . . . ain
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Thus (12) is an array of equations with each βi corresponding to the matrix
whose elements are βil. After computing each alc, the β-matrix may be
calculated column by column by repeatedly using formula (12) for each
i. Finally, the remaining issue in GWR is choosing b from equation (11),
sometimes referred to as the kernel bandwidth, that can affect substantially the
β-matrix. Least squares cross-validation is one of the methods recommended
here. Assuming that for a predetermined kernel function, ŷi(b) represents the
predicted value of yi from GWR as a function of b, then:

CV (b) =
∑

i

[yi − ŷi(b)]2 (13)

Hence is chosen b to minimize equation (13). Because n regressions must be
fitted at each stage, choosing the bandwidth can be difficult. Alternative
solutions, such as adaptive bandwidths, are available, but they are frequently
more compute-intensive.
Geographically weighted regression (GWR) is then a technique used to identify
non-stationarity on a map, that is when locally weighted regression coefficients
deviate from their global values. It is based on the idea that the fitted
coefficient values of a global model, fitted to all data, may not sufficiently
capture precise local variations in data. GWR does not look for local variation
in data space but rather moves a weighted window over the data, estimating
one set of coefficient values at each chosen fit point. The fit points are
frequently, but not always, the points at which observations were made. If
the local coefficients fluctuate in space, it can be indicated that the system is
non-stationary (see Bivand [2]). Discussion on the Geographically Weighted
Regression are available in [11], [18] and [20], in [14] are provided examples.

4 Estimation of earthquake’s probability via
GWR

To compute the GWR the spgwr package in R is used (see [2]). Firstly is
determined the bandwidth over the collection of 16.852x9 INGV points, the
function finds a bandwidth for a given geographically weighted regression
by optimizing a selected function. Latitude and longitude from INGV grid
are used as coordinates, the geographical weighting function chosen is the
Gaussian and the cross-validation method is used for the optimization. In
cross-validation has been scored the root mean square prediction error, where
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in the INGV grid a minimum was found. The regression is then computed
taking from (6) lnλz,α as the dependent variable and the MCS in each point
and for each probability as the only independent variable:

lnλz,α = β0z,α(lat; lon) + β1z,α(lat; lon)hjz,α + εz,α (14)

The gwr function returns a Spatial Points Data Frame with fit points, weights,
coefficient estimates, R-squared, and coefficient standard errors for each cou-
ple of coordinates and for the nine return periods. An intercept was found and
the mean over the local R-squared values is 92.3%, and the global R-squared
is 86.1%. The goodness of fit reached with this method is higher than the
one obtained with equation (7).

Figure 3: Summary gwr Spatial Data Frame from the spgwr package

To have a concise summary of the model, one can plot over a 50-year
horizon, for the nine probabilities used by the INGV, identified by the knots
on the graph (see Figure 4), respectively:
i) the average MCSz and the average yearly frequency λz;
ii) the average exceedance probability αz and the average yearly frequency
λz.
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Figure 4: Average predictions of the model over a 50-year horizon

Figure 4 can be seen for a specific exceedance. In the first plot, for example,
j = 22% corresponds to an average frequency less than 0, 005 and an average
intensity greater than 6, 6. In the second plot, for the same j and the same
average frequency, the average exceedance α(MCS) (see equation 6) is nearly
0, 2. Results are consistent with what was obtained in Cesari and D’Aurizio’s
(see [7]).

From an n-year horizon (see equation 6), having a λ for each point of the
grid and each return period, one can determine for a fixed hj=hj=MCS the
local exceedance probability (see equation 1), which can be analyzed for each
zone of Italy in an insurable return period i.e. 10 years. In the table included
in Figure 5, the probability curve for a 10 years return period is presented
for four fixed levels of hazard hj=h2,...,5, namely MCS = V I, V II, V III, IX;
where the meaning of the four MCS is the following:

• VI. Strong: Felt by all, and many are frightened. Some heavy furniture
is moved; a few instances of fallen plaster occur. The damage is slight.

• VII. Very Strong: Damage is negligible in buildings of good design and
construction; but slight to moderate in well-built ordinary structures;
damage is considerable in poorly built or badly designed structures;
some chimneys are broken. Noticed by motorists.

• VIII. Severe: Damage is slight in specially designed structures; consid-
erable damage in ordinary substantial buildings with partial collapse.
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Damage is great in poorly built structures. Fall of chimneys, factory
stacks, columns, monuments, and walls. Heavy furniture overturned.
Sand and mud are ejected in small amounts. Changes in well water.
Motorists are disturbed.

• IX. Violent: Damage is considerable in specially designed structures;
well-designed frame structures are thrown off-kilter. Damage is great
in substantial buildings, with partial collapse. Buildings are shifted off
foundations. Liquefaction occurs. Underground pipes are broken.

Figure 5: Quantiles, mean, standard deviation and maximum with relative
box-plot representation for MCS=VI,VII,VIII,IX
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In Figure 5 the average probability for MCS = V I is 33, 24%, considerably
greater then the average for MCS = V II, V III, IX, respectively equal to
6, 39%, 0, 76%, and 0, 10%. Moreover, the median for MCS = V I is roughly
half the mean, and high values for the probability are not negligible: above the
20% of the distribution has a probability greater than 70%. As expected prob-
abilities are lower for greater MCS, it could be seen also from the box-plots
where the more MCS intensity increase, the more the probability distribution
is concentrated around lesser probabilities.

Following the Ivass Risk Dashboard approach (see D’Aurizio and Sacco
[9]), are defined ten risk-levels for the probability distribution for each level
of intensity MCS considered. In the following pages, the risk mapping is
on Italy’s map for a return period of 10 years. As can be seen in the maps
(see Figures 6,7,8,9), to higher intensities corresponds smaller areas. The
riskier area is along the south-central Apenines with some territories in Friuli
Venezia-Giulia. The charts show geographical consistency with what expected
and are comparable with INGV studies (see Meletti et al.[15] and Figure 1)
and with the Ivass’results (see [7]). From the analysis of the maps, one can
observe that more than 30 percent of Italian sites have a probability greater
than 50 percent that an earthquake with an intensity equal at least to VI
on the MCS scale will occur in 10 years, while in the same horizon, about a
quarter have a probability over 10 percent that an earthquake of intensity at
least VII will occur. The probability that earthquakes with intensity of at
least VIII and IX will occur is significantly lower. The 9 percent of INGV
sites have a probability greater than 2 percent that an earthquake with at
least VIII intensity will occur in 10 years, where the high-risked area is smaller
and concentrated around the Apenines and the Friuli Venezia-Giulia region;
furthermore, there are only 74 grid coordinates with a probability greater
than 0,5 percent that an earthquake with at least IX intensity will occur, and
the riskier area is in Sicily with the Etna’s territory and the Strait of Messina.
Comparing the model’s results with the fixed-effects panel proposed by Cesari
and D’Aurizio (see [7]), one can see higher probabilities in the GWR model
for MCS equal to VI and VII, while they are lower for MCS VIII and IX.
Overall, the two models are comparable and produce very similar results.
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Probability risk map, VI MCS

Figure 6: Probability distribution of a seismic event of intensity equal at least
to VI MCS in a return period of 10 years
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Probability risk map, VII MCS

Figure 7: Probability distribution of a seismic event of intensity equal at least
to VII MCS in a return period of 10 years
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Probability risk map, VIII MCS

Figure 8: Probability distribution of a seismic event of intensity equal at least
to VIII MCS in a return period of 10 years
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Probability risk map, IX MCS

Figure 9: Probability distribution of a seismic event of intensity equal at least
to IX MCS in a return period of 10 years
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For instance, in the hypothesis of one-year insurance cover, are pre-
sented the probabilities of the 5 most dangerous municipalities for MCS =
V II, V III

MCS VII
Municipalities Province Pr (%)
Zafferana Etnea Catania 7,09
Sant’Alfio Catania 6,25
Trecastagni Catania 6,23
Milo Catania 6,11
Nicolosi Catania 5,83

MCS VIII
Municipalities Province Pr (%)
Aprigliano Cosenza 0,383
Marzi Cosenza 0,382
Soveria Mannelli Catanzaro 0,381
Spezzano della Sila Cosenza 0,380
Serrastretta Catanzaro 0,379

Table 1: Municipalities for highest earthquake probability in a year, MCS=
VII and VIII

For MCS = V II, the first ten municipalities are in Etna’s area. However,
among the first 100 municipalities, above 75% are in the province of L’Aquila,
the remaining in the province of Rieti, Perugia, and Frosinone. In the same
time horizon, for MCS = V III, the most dangerous municipalities are in the
Calabrian Apennines, in the provinces of Cosenza and Catanzaro. Among
the first 100 municipalities, as for the inferior degree, there are the provinces
of Isernia, L’Aquila, and Rieti. The Vercelli’s province is the safest in terms
of probability of occurrence (respectively 0, 02% for MCS equal at least to
VII, 0, 002% for MCS equal at least to VIII).
A different ranking for the municipalities is obtained by changing the MCS
intensity (see Table 1). This unique result stems from the advanced framework
of the GWR, which elaborates a regression in every municipality for every
return period. This property could be desirable in the insurance pricing phase
and differs from results obtained with the fixed-effects panel model (7).

5 Conclusions
The model presented is overall well-fitted with comforting statistical diagnos-
tics, also results are consistent with applications already in the literature on
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the same subject. GWR is suitable for the study of seismic hazard in Italy
thanks in particular to the large amount of information made available by
INGV.

Once computed the seismic hazard it is necessary to proceed in a further
step to determine the seismic risk in the country: to define an appropriate
vulnerability function to be applied to the country’s exposure.
Also, it should be noted that such a policy if complemented with other catas-
trophe coverage (such as floods), thanks to the possibility of geographically
diversifying the risk, the insurance premium for a natural catastrophe policy
for Italian housing could be both effective and affordable, especially where
renovation and remediation of the real estate of Italian households is also
conducted.
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