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Abstract

We show a branch and bound approach to exactly find the best sparse
dimension reduction of a matrix. We call our approach IMS-PCA: In-
formation Maximization in Sparse Principal Components Analysis. We
can choose between enforcing orthogonality of the coefficients and uncor-
relation of the components, and can explicitly set the degree of sparsity
as the number of variables used by each derived component. We suggest
methods to choose the number of non-zero loadings for each component;
and illustrate and compare IMS-PCA with existing methods through a
benchmark data set.

Keywords: branch and bound, dimension reduction, feature selection, fea-
ture extraction, interleaving eigenvalues theorem, sparse principal components

1 Introduction

Principal Component Analysis (PCA) is a popular dimension reduction and
descriptive multivariate technique (Jolliffe, 2002; Chatfield and Collins, 1980).

Given an n by m matrix X, a new n by p matrix Y is built. The columns of
Y are functions of the columns of the original data matrix, and p << m. It is
well known that the highest possible information/variability is retained in Y if
its columns (the principal components) are an affine linear combination of the
original columns, with weights given by unit length eigenvectors of X ′X (the
loadings). This is the well-known standard PCA. Furthermore (i) the columns
of the derived matrix Y are uncorrelated and (ii) the loadings are orthogonal;
so that the information is well separated.

There is an impressive number of applications of PCA in biology, medicine,
psychology, financial econometrics, engineering, etc.

∗The author is grateful to Nicola Apollonio for interesting discussions about the mathemati-
cal background, to Luca Tardella for suggestions that lead to improvement in the presentation,
and to Paolo Giordani for careful reading of a first draft.
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In such applications usually X is a two-mode data matrix, in which the n
rows represent subjects and the m columns represent numeric variables.

The main drawback of dimensionality reduction through PCA is that each
principal component (PC) is in general a linear combination of all the m vari-
ables used in input. This complicates the interpretation of the information
contained in the derived PCs, and do not help the user in discarding less im-
portant variables. It is in general believed that sparseness of the loadings would
be of great relevance in aiding in the interpretation of the derived variables. If
principal components were linear combinations of only a small number of orig-
inal variables, with different variables being used by different components, the
subjective interpretation step would be much easier. For this reason, principal
components extraction is often followed by some kind of transformation which
aims at making the interpretation easier. A common approach then is to discard
the smallest coefficients (hard thresholding) of the ordinary or rotated principal
components. Cadima and Jolliffe (1995) note that such “simple thresholding”
of the loadings, even after a rotation (Jolliffe, 1995), can be misleading; and in
general does not produce an optimal solution. Jolliffe (1982) notes that simple
thresholding can produce substantial problems when using the new variables to
do multivariate regression. It is also not uncommon that the principal compo-
nents are not easily interpreted even after rotation and thresholding (as it is
known in the literature about the example of Section 5). Rotation and thresh-
olding do not guarantee interpretability; while a general idea is that if enough
loadings are zero, the derived axes will be interpretable. Note that the inter-
pretability would not be the only advantage: sparse matrices are preferrable for
lossy information compression since they are better stored and handled, vari-
ables which receive a zero loading in all p components will be discarded, thus
performing an automatic feature selection, etc.

Jolliffe and Uddin (2000) advocate techniques that combine extraction and
interpretation, so as to secure interpretability. A possible solution is then to
extract components in which a certain number of loadings are directly set to
zero.

To tackle this problem, Jolliffe et al. (2003) introduce SCoTLASS to get mod-
ified principal components with possible zero loadings, with orthogonal loadings
of different principal components. SCoTLASS solves a non-convex constrained
optimization problem, and usually it is of high computational cost. An efficient
algorithm is proposed in Trendafilov and Jolliffe (2006). Zou et al. (2004) put
the PCA problem under a regression-type optimization framework, and use the
elastic net of Zou and Hastie (2003) to find sparse approximations of the PCs. In
their approach the computational cost is much lower and there is the possibility
to retain the same amount of information with more sparsity, main drawback
is that orthogonality of the loadings is not guaranteed. In both approaches the
degree of sparsity is controlled via a penalization parameter, and the choice of
such parameter is an open problem.

Further and more importantly, neither approach can produce uncorrelated
sparse components, and another open problem is that the user does not know
in advance if and how sparse the loadings will be.
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Our main goal in this paper is to give non-zero weight to a pre-specified
number of variables, with as little information loss as possible with respect
to ordinary PCA. We view the sparse principal component analysis (sPCA)
problem as a variability/information maximization problem, and show how to
derive an exact solution for prescribed degree of sparsity.

We will also be able to choose whether to enforce orthogonality of the load-
ings or uncorrelation of the new variables. We will see that our approach allows
to find good solutions in terms of information compression, and interpretability.
Information loss with respect to PCA, in practice, will often be negligible; but
with the advantage of sparsity of the loadings and one property between load-
ing orthogonality and uncorrelation of the new variables. If orthogonality of the
loadings is enforced, solutions in which different variables are used by different
components are favored. If uncorrelation of the new variables is enforced, the
information is perfectly separated and multicollinearity problems are solved.

The main drawback, partly shared with the other methods, is that such
exact approach will be suitable only for small dimensional situations (say up
to 100 variables). We are currently working on a solution for high-dimensional
problems.

The remainder of the paper is organized as follows: in Section 2 we formalize
the sPCA problem for the first sparse principal component (sPC). In Section
3 we show how to derive the other sparse components. Section 4 will propose
heuristic and formal strategies to choose the degree of sparsity of each sPC, and
Section 5 will illustrate the method in a real data application. Finally, we give
a short discussion in Section 6.

2 The sPCA problem

Let Σ = {σij ; i = 1, . . . ,m, j = 1, . . . ,m} be the covariance matrix computed
from data X, with n observations and m variables. The sparse principal com-
ponent problem is: 




maxx x
′Σx

x′x = 1

sign(x)′sign(x) ≤ k1,

(1)

where sign(x) is the sign function, which is zero when x is zero. The solution β1

to such problem is well known to be the first eigenvector of Σ whenever k1 ≥ m,
and the achieved maximum is the corrisponding eigenvector (the amount of
information retained by the first principal component). If k1 < m there is a
genuine sparsity constraint on the loadings vector x: at least m − k1 variables
will receive zero weight. It can be shown that the maximum is not decreasing in
k1, but for appropriately chosen k1 very little information loss can happen while
discarding a few variables. The main difference with the other approaches to
sPCA is that we express the problem in terms of maximization of information
retained in the “new” variable Xβ1, rather than try and approximate the ordi-
nary principal components. For this reason we call our approach Information
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Maximization for Sparse Principal Components Analysis (IMS-PCA).

2.1 The First Sparse Principal Component

We propose now a branch and bound algorithm to exactly solve the problem in
(1). Branch and bound algorithms are a clever way to enumerate the possible
solutions to a given (difficult) problem. The set of possible solutions is split
into subsets by branching, and a criterion is used to bound the solutions into
each subset. Finally, only subsets for which the bound is bigger than the current
maximum are explored. A nice review of branch and bound in statistical analysis
is given in Hand (1981).

We will use the interleaving eigenvalues theorem (Wilkinson, 1965) for bound-
ing:

Theorem 1. Let A be an m by m real symmetric matrix and denote by A(−j)

the matrix obtained by removing the j-th row and j-th column of A. Let ρi be
the i-th eigenvalue of A and µi the i-th eigenvalue of A(−j). Then,

ρ1 ≥ µ1 ≥ ρ2 ≥ µ2 ≥ · · · ≥ µm−1 ≥ ρm.

Note that removing the j-th row and column of a covariance matrix is equiv-
alent to removing the j-th variable from the data matrix. Theorem 1 can be
used to claim that when in a set of k ≥ k1 variables the largest eigenvalue of the
covariance matrix is lower than the current maximum, all the subsets of size k1

have a lower largest eigenvalue and can be discarded. Note that the theorem
also implies that the third constraint in problem (1) is changed into an equality.

The branching step can be the same as the algorithms for best subset se-
lection (Miller, 1990): split the current set into subsets in which variables are
removed one at a time.

Along the lines of Narendra and Fukunaga (1977) and Ridout (1988), we
also suggest to accelerate the algorithm by sorting the variables with respect to
σii +

∑
i |σij |, i = 1, . . . ,m, in light of the following theorem:

Theorem 2. Let A be any real square symmetric matrix. Let λi be the i-th
eigenvalue of A. Then, mini

∑
j |Aij | ≤ λi ≤ maxi

∑
j |Aij |.

Proof. Let x ∈ Rn − {0} be the eigenvector associated to the i-th eigenvalue of
A. Let j be the index of the element of the vector farthest from 0. By definition,
Ax = λix. We have:

λi|xj | = |
∑

k

Ajkxk|

≤
∑

k

|Ajk||xk|

≤ |xj |
∑

k

|Ajk|

≤ |xj |max
j

∑

k

|Ajk|.
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The other inequality follows from the same reasoning.

Subsets of variables with small σii+
∑
i |σij | do not give strong contributes to

the overall information, and they will likely be soon discarded by the algorithm.
In what follows, we denote by λmax(·) the operator that computes the largest

eigenvalue of a square symmetric matrix, and by ΣS the covariance matrix
obtained from a subset S, with cardinality card(S), of the variables.

The proposed branch and bound algorithm is briefly described below: sup-
pose we are examining a subset of variables S, and λmax(ΣS) is bigger than the
current maximum λ0. At the beginning, we suggest to set λ0 as the first eigen-
vector of the first k1 variables after ordering, since they are the best candidates
for final optimality.

(i) Split the set S into card(S) subsets S1, . . . , Scard(S), each of which is com-
posed by the elements of S to which one component is removed.

(ii) Set i := 1

(iii) Let λi = λmax(ΣSi).

(iv) If λi ≤ λ0, go to (v). Otherwise go to (vii).

(v) We can reject Si. If i = card(S) go to (vi), otherwise set i := i+ 1 and go
to (iii).

(vi) All subsets of S have been evaluated.

(vii) We cannot reject Si. If card(Si) = k1, go to (viii), otherwise go to (ix).

(viii) We have found a better solution than the current maximum. Set λ0 =
λmax(Si). If i = card(S) go to (vi) and otherwise set i := i+ 1 and go to
(iii).

(ix) It is possible that a subset of elements of Si contain a better solution than
the current maximum. Set S = Si and go to (i).

It shall be noted that a single run of the algorithm can produce all possible
solutions from a chosen k1 to m; and that the algorithm exactly solves the
optimization problem.

3 The Other Principal Components

It is straightforward to check that only the loadings resulting from ordinary
PCA can be orthogonal and simultaneously yield uncorrelated components. We
will have to choose then between enforcing orthogonality of the loadings and
uncorrelation of the components, by adding a specific constraint into problem
in (1). Let βi be the loadings of the i-th sPC. It is straightforward to check
that uncorrelation between the i-th and j-th sPC will be given by the constraint
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β′iΣβj = 0, while orthogonality of the loadings is obviously given by β ′iβj = 0.
There is no sparse solution that satisfies both constraints.

Call now J(Σ, x) the objective function, where maximization is in x. Note
that now the maximum will not necessarily be an eigenvalue of a submatrix.
An important choice for the objective function is between maximization of the
variance explained by each component, and the adjusted variance, an index of
variability introduced by Zou et al. (2004) to cope with correlated components.

If we enforce orthogonality, uncorrelation of the components is sacrificed and
the information added by the i-th component, with i > 1, is in general lower
than its variance.

When the extracted features are used separately, for instance for descrip-
tive purposes, it may be desirable to maximize the variance of each component
(J(Σ, x) = x′Σx). In the other cases, Zou et al. (2004) devised how to measure
the additional variability under correlation, and showed that the adjusted vari-
ance of the j-th component is given by the square of the j-th diagonal element
Rjj of the upper triangular matrix in the QR decomposition of the new matrix
Y (J(Σ, x) = R2

jj). Maximization of the adjusted variance may be more sen-
sible in cases in which the extracted features are used jointly. If uncorrelation
is enforced, adjusted variance reduces to the variance of the new variable. See
Zou et al. (2004) for other computational strategies and further comments.

The sPCA problem for the second sPC is then:




maxx J(Σ, x)

x′x = 1

sign(x)′sign(x) ≤ k2

C(x, β1) = 0,

(2)

where J(Σ, x) is either the variance or the adjusted variance of the new PC and
C(x, β1) is either x′β1 or x′Σβ1. The solution to problem (2) will be an sPC
with k2 non-zero elements.

As before, a branch and bound algorithm can be used to solve the problem,
just by substituting the λmax(·) operator with the operator that computes the
solution to problem: 




J(ΣSi , x)

x′x = 1

C(x, β1,Si) = 0,

(3)

where β1,Si are the loadings of the variables in subset Si.
The bounding is the same in light of the following straightforward general-

ization of the interleaving eigenvalues theorem:

Theorem 3. Let λ be the maximum for problem (3) for a given Si and β1.
Let Σ

S
(−j)
i

be the matrix Si in which the j-th row and column are removed, and

β
(−j)
1 the vector β1 in which the j-th element is removed. Let µ be the maximum

for problem (3) in which ΣSi is substituted with Σ
S

(−j)
i

and β1 with β
(−j)
1 .

Then, λ ≥ µ.
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Proof. Without loss of generality suppose we remove the last row and column
from ΣSi and correspondingly the last element from β1. Call y the solution of

the reduced problem, with maximum µ. Let x =

(
y
0

)
. It suffices to show that

x satisfies the constraints of the enlarged problem, which is straightforward.

Maximization in (3) can be easily and quickly solved by quadratically con-
strained convex optimization (Gill et al., 1981). Fast routines are available even
for large scale problems (Coleman and Li, 1994).

If C(x, β1) = x′β1, note that whenever the set Si at a given node is made
of variables receiving a zero loading in the first sPC, the solution is the first
eigenvector of the reduced matrix. A possible acceleration of the algorithm is
given by first solving problem (1) for the variables not used by the first PC, and
then by using the optimum as a starting solution for problem (2). If the variances
are more or less homogeneous, it is reasonable to expect that the second sPC
will be a linear combination of variables which receive a zero loading in the first
sPC and a very early harvesting of the tree will happen.

After finding the second sPC, it is straightforward to add a further constraint
to find a third sPC in which only k3 variables are used, and so on.

A sufficient condition for the existence of a solution to problem (2) is ki ≥ i,
i = 2, . . . ,m. The solution may exist anyway also for ki < i, for instance if
J(x, βi) = x′βi and at least ki variables have not been used by the previous
components. Nevertheless, so much sparsity in the first sPCs is rarely needed.

3.1 Different Criteria

It is straightforward to modify the algorithm in order to solve other kind of
problems. So far each component was allowed to use any of the variables. We
can very easily further constraint the p sparse principal components to use
the same k variables. This would provide p linear combinations in which just k
variables are used (with p ≤ k ≤ m), performing simultaneous variable selection
and dimension reduction. It is straightforward to see that it suffices to use a
single branch and bound algorithm, in which the objective function is given by
the sum of the first p eigenvalues of the covariance matrix. In this case we will
have finally applied ordinary PCA on a subset of the variables. Uncorrelation
of sparse components and orthogonality of the loadings follow by construction.

4 Choice of the Degree of Sparsity

The choice of the number of principal components is a problem shared with
classical PCA, and it may be solved with classical methods, some of which we
briefly summarize:

• Cattell (1966) proposes the scree-test, in which the proportion of explained
variance is plotted against the number of components, and an “elbow” is
looked for in the graph.
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• Kaiser (1960) and Horn (1965) propose to retain only components who
explain more than the average variance of the original variables.

• Bartlett (1950, 1951) propose a chi-squared based test to sequentially ver-
ify, in the Cattell (1966) spirit, that the last components all explain the
same amount of variability.

• Velicer (1976) proposes the minimum average partial rule, which exploits
a matrix of partial correlations.

A comparison and complete overview of the methods is done in Zwick and
Velicer (1986).

On the other hand, a different problem is posed by the choice of the number
of variables to use in each sPC (ki). In this section we will propose heuristic
and formal methods to choose the degree of sparsity of each sPC; which we will
explore in the example below.

Unlike other methods, we can explicitly choose the number of variables to
be used in computing the sparse principal component (sPC), namely, ki.

A possibility is to exploit the same idea of Cattell (1966): a scree plot can be
made for the single component, in which for each value of ki it is reported the
objective function for the sPC. An example is given in Figure 1. The variance
of the sPC increases with the number of non-zero loadings ki, but from some ki
on the growth may flatten markedly. This elbow phenomenon can be used to
choose ki as the maximum number of non-zero loadings for which adding one
variable does not give a significant contribution.

Zou et al. (2004) suggest to choose their penalty parameter as the one giv-
ing best approximation to the ordinary PC. Along those lines, the Euclidean
distance between each sPC and the PC can be plot in function of ki, and the
scree-test applied.

Following the idea of information maximization proposed in this paper, we
can also suggest other (formal) criteria.

We suggest in fact to choose k as the maximizer in q of J(Σ, β(q),i)−ρ(i)f(q),
where β(q),i are the loadings of the i-th sPC (given the previous) with degree of
sparsity q, ρ(i) is a penalty parameter, and f(·) is a strictly monotone function
(for instance, the identity or the logarithmic function). The expression at the
first term is the proportion of variability contained in the component, which
is penalized by a function of the proportion of variables used by it. This ap-
proach will favor sparser and more interpretable results for reasonable choices
of the penalty parameter ρ(i), which may be proportional to the average vari-
ance σ̄ii = 1/m

∑
i σii. If ρ(i) is taken to be constant with respect to i, the

first principal components will be less sparse than the others. For this reason,
another possibility is given by decreasing the penalty parameter as i increases,
for instance by a constant quantity, like ρ(i) = σ̄ii/(i+ 1).

In this paper we will always use the criterion:

max
q

J(Σ, β(q),i)−
log(q)σ̄ii
i+ 1

(4)
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Variable PC1 PC2 PC3 PC4 PC5 PC6
topdiam 0.546 0.047 -0.087 0.066 -0.046 0.000
length 0.568 0.000 -0.076 0.117 -0.081 0.000
moist 0.000 0.641 -0.187 -0.127 0.009 0.017
testsg 0.000 0.641 0.000 -0.139 0.000 0.000
ovensg 0.000 0.000 0.457 0.000 -0.614 -0.562
ringtop 0.000 0.356 0.348 0.000 0.000 -0.045
ringbut 0.279 0.000 0.325 0.000 0.000 0.000
bowmax 0.132 -0.007 0.000 -0.589 0.000 0.000
bowdist 0.376 0.000 0.000 0.000 0.000 0.065
whorls 0.376 -0.065 0.000 -0.067 0.189 -0.065
clear 0.000 0.000 0.000 0.000 -0.659 0.725
knots 0.000 0.206 0.000 0.771 0.040 0.003
diaknot 0.000 0.000 -0.718 0.013 -0.379 -0.384
Number of nonzero loadings 6 7 7 8 8 8
Variance (%) 27.2 16.4 14.8 9.4 7.1 7.9
Adjusted Variance (%) 27.2 15.3 14.4 7.1 6.7 7.5
Cumulative Adjusted Variance (%) 27.2 42.5 56.9 64.0 70.7 78.2
Variance of PCA solution (%) 32.4 18.3 14.4 8.5 7.0 6.3
Cumul. Variance of PCA solution (%) 32.4 50.7 65.2 73.7 80.7 87.0

Table 1: sPCA of Pitprops data, SCoTLASS

Note that the choice of the degree of sparsity is to be made sequentially,
following the natural ordering of the sparse components: for a different choice
of k1 the second sPC will be different, possibly leading to a different “optimal”
k2.

5 Application to Pitprops data

The Pitprops data was first used by Jeffers (1967) as an example of the difficulty
of interpreting principal components. The data set has 180 observations and
13 standardized variables, so that Σ reduces to the correlation matrix. Jeffers
(1967) performed a PCA and suggested using the first 6 principal components.

sPCA can be applied to this data to enhance interpretability. SCoTLASS
produced results in Table 1, while Zou et al. (2004) method produced results in
Table 2. The variance and cumulative variance of the ordinary PCA solution is
reported only in Table 1 for reasons of space.

In Table 3 we show IMS-PCA for the same degree of sparsity of the first two
methods, with orthogonal coefficients and maximization of the variance of each
component. When we set k5 = k6 = 1, there is no feasible solution so we turn
to the best approximation. In all cases it can be seen that the information loss
in using a sparse solution is minimal, while at most 8 variables out of 13 are
used by sparse principal components.

In Table 4 we maximize the adjusted variance. It can be seen that in all
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Variable PC1 PC2 PC3 PC4 PC5 PC6
topdiam -0.477 0.000 0.000 0 0 0
length -0.476 0.000 0.000 0 0 0
moist 0.000 0.785 0.000 0 0 0
testsg 0.000 0.620 0.000 0 0 0
ovensg 0.177 0.000 0.640 0 0 0
ringtop 0.000 0.000 0.589 0 0 0
ringbut -0.250 0.000 0.492 0 0 0
bowmax -0.344 -0.021 0.000 0 0 0
bowdist -0.416 0.000 0.000 0 0 0
whorls -0.400 0.000 0.000 0 0 0
clear 0.000 0.000 0.000 -1 0 0
knots 0.000 0.013 0.000 0 -1 0
diaknot 0.000 0.000 -0.015 0 0 1
Number of nonzero loadings 7 4 4 1 1 1
Variance (%) 28.0 14.4 15.0 7.7 7.7 7.7
Adjusted Variance (%) 28.0 14.0 13.3 7.4 6.8 6.2
Cumulative Adjusted Variance (%) 28.0 42.0 55.3 62.7 69.5 75.8

Table 2: sPCA of Pitprops data, Zou et al. (2004) method

but one case (the sixth sPC with k6 = 8) we manage to achieve higher ob-
jective functions than SCoTLASS. When compared with Zou et al. (2004), it
can be seen that IMS-PCA achieves higher objective functions in the first three
sPC, even in presence of the further orthogonality constraint. It can then be
said that in this example our approach to sPCA leads to more compression of
the information in the first axes, and that for the first 5 axes the total vari-
ance/adjusted variance is always higher than the other methods, for the same
degree of sparsity. It is worth also noticing that in all cases both the variance
and adjusted variance follow the right not-decreasing order. This happens only
for the adjusted variance in the other methods.

When coming to the interpretation of the axes, it can be seen that there is
the same or less overlap among components (especially when maximizing the
adjusted variance). For instance, the second sPC with k2 = 4 and the fourth
with k4 = 1 in Table 3 put zero weight to all of the previously used variables.

Even more encouraging results can be seen in Table 5, where we change
the constraint and ask for uncorrelated components. Even if the new variables
are now uncorrelated, the objective functions are very close to the results of
SCoTLASS and Zou et al. (2004) and even higher in the first components.
Once again we turn to the best approximation in quadratic loss when k4 = k5 =
k6 = 1. Loadings are seldom orthogonal, but always very close to orthogonality.

To give an idea of the efficiency of the branch and bound algorithm we note
that at most only 27% of the possible groupings of k variables were actually
explored by the algorithm, in these examples. Even less are expected when the
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Variable PC1 PC2 PC3 PC4 PC5 PC6
topdiam -0.444 0.226 0.205 0.000 -0.093 0.000
length -0.453 0.000 -0.146 0.288 -0.235 0.257
moist 0.000 0.604 0.000 0.167 0.222 0.309
testsg 0.000 0.623 0.000 0.000 0.276 -0.050
ovensg 0.000 0.000 -0.597 0.000 0.000 0.000
ringtop 0.000 0.290 -0.182 -0.440 0.000 -0.047
ringbut -0.379 0.000 -0.088 -0.336 0.000 -0.798
bowmax -0.341 -0.154 0.000 0.000 0.294 0.000
bowdist -0.403 0.000 0.000 0.234 0.000 0.000
whorls -0.418 -0.114 0.000 -0.234 0.113 0.043
clear 0.000 0.000 0.000 0.681 0.084 -0.103
knots 0.000 0.271 0.018 0.000 -0.839 0.000
diaknot 0.000 0.000 0.734 -0.092 0.000 -0.429
Number of nonzero loadings 6 7 7 8 8 8
Variance (%) 29.0 17.3 15.8 9.9 7.8 7.0
Adjusted Variance (%) 29.0 16.7 10.6 7.5 6.5 2.1
Cumulative Adjusted Variance (%) 29.0 45.7 56.4 63.9 70.3 72.4

Variable PC1 PC2 PC3 PC4 PC5 PC6
topdiam -0.423 0.000 0.000 0 0 0
length -0.430 0.000 0.000 0 0 0
moist 0.000 0.676 0.000 0 0 0
testsg 0.000 0.662 0.000 0 0 0
ovensg 0.000 0.000 0.000 1 0 0
ringtop -0.268 0.000 0.000 0 0 0
ringbut -0.403 0.000 0.000 0 0 0
bowmax -0.313 0.000 0.558 0 0 0
bowdist -0.379 0.000 0.000 0 0 0
whorls -0.400 0.000 0.187 0 0 0
clear 0.000 0.182 0.000 0 1 0
knots 0.000 0.267 -0.679 0 0 0
diaknot 0.000 0.000 -0.438 0 0 1
Number of nonzero loadings 7 4 4 1 1 1
Variance (%) 30.7 15.3 13.4 7.7 7.7 7.7
Adjusted Variance (%) 30.7 15.0 7.5 7.5 7.0 4.9
Cumulative Adjusted Variance (%) 30.7 45.8 53.3 60.7 67.7 72.6

Table 3: IMS-PCA of Pitprops data, maximization of variance
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Variable PC1 PC2 PC3 PC4 PC5 PC6
topdiam -0.444 0.235 -0.179 0.000 0.000 0.000
length -0.453 0.000 -0.179 0.000 -0.076 0.121
moist 0.000 0.602 0.000 -0.118 0.304 0.148
testsg 0.000 0.617 0.000 0.000 0.264 -0.070
ovensg 0.000 0.000 0.477 0.000 0.000 0.000
ringtop 0.000 0.268 0.439 0.000 -0.304 0.718
ringbut -0.379 0.000 0.424 0.139 -0.157 0.000
bowmax -0.341 -0.160 0.000 -0.265 0.274 -0.158
bowdist -0.403 0.000 0.000 -0.172 0.000 0.000
whorls -0.418 -0.118 0.000 0.256 0.000 -0.160
clear 0.000 0.000 0.000 -0.874 -0.313 0.000
knots 0.000 0.299 -0.254 0.195 -0.736 -0.103
diaknot 0.000 0.000 -0.519 0.018 0.000 0.618
Number of nonzero loadings 6 7 7 8 8 8
Variance (%) 29.0 17.3 15.7 8.9 7.0 6.5
Adjusted Variance (%) 29.0 17.2 15.3 8.8 6.8 6.4
Cumulative Adjusted Variance (%) 29.0 46.2 61.5 70.3 77.1 83.5

Variable PC1 PC2 PC3 PC4 PC5 PC6
topdiam -0.423 0.000 0.000 0 0 0
length -0.430 0.000 0.000 0 0 0
moist 0.000 0.676 0.000 0 0 0
testsg 0.000 0.662 0.000 0 0 0
ovensg 0.000 0.000 -0.659 0 0 0
ringtop -0.268 0.000 -0.435 0 0 0
ringbut -0.403 0.000 0.000 0 0 0
bowmax -0.313 0.000 0.000 0 0 0
bowdist -0.379 0.000 0.308 0 0 0
whorls -0.400 0.000 0.000 0 0 0
clear 0.000 0.182 0.000 1 0 0
knots 0.000 0.267 0.000 0 1 0
diaknot 0.000 0.000 0.530 0 0 1
Number of nonzero loadings 7 4 4 1 1 1
Variance (%) 30.7 15.3 11.1 7.7 7.7 7.7
Adjusted Variance (%) 30.7 15.0 10.9 7.1 5.9 4.1
Cumulative Adjusted Variance (%) 30.7 45.8 56.7 63.8 69.7 73.8

Table 4: IMS-PCA of Pitprops data, Maximization of Adjusted Variance
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Variable PC1 PC2 PC3 PC4 PC5 PC6
topdiam -0.423 0.000 0.000 0 0 0
length -0.430 0.000 0.431 0 0 0
moist 0.000 0.654 0.000 0 0 0
testsg 0.000 0.635 0.000 0 0 0
ovensg 0.000 0.000 -0.682 0 0 0
ringtop -0.268 0.000 -0.551 0 0 0
ringbut -0.403 0.000 0.000 0 0 0
bowmax -0.313 0.000 0.000 0 0 0
bowdist -0.379 0.000 0.000 0 0 0
whorls -0.400 -0.222 0.000 0 0 0
clear 0.000 0.000 0.000 1 0 0
knots 0.000 0.345 0.000 0 1 0
diaknot 0.000 0.000 0.214 0 0 1
Number of nonzero loadings 7 4 4 1 1 1
Variance (%) 30.7 15.3 10.5 7.7 7.7 7.7
Adjusted Variance (%) 30.7 15.3 10.5 7.4 5.5 5.2
Cumulative Adjusted Variance (%) 30.7 46.0 56.6 64.0 69.4 74.6

Variable PC1 PC2 PC3 PC4 PC5 PC6
topdiam -0.444 0.097 -0.285 0.000 0.000 -0.120
length -0.453 0.000 -0.301 0.000 0.000 -0.166
moist 0.000 0.585 0.000 -0.078 0.272 0.373
testsg 0.000 0.572 0.210 0.000 0.321 0.000
ovensg 0.000 0.000 0.526 0.000 0.323 -0.591
ringtop 0.000 0.129 0.456 0.000 -0.364 -0.116
ringbut -0.378 0.000 0.300 0.076 -0.275 0.000
bowmax -0.341 -0.328 0.000 -0.222 0.146 0.000
bowdist -0.403 0.000 0.000 -0.101 0.000 0.000
whorls -0.418 0.000 0.000 0.279 0.000 0.194
clear 0.000 0.000 0.000 -0.880 -0.238 -0.145
knots 0.000 0.394 0.000 0.169 -0.658 0.000
diaknot 0.000 0.202 -0.456 0.220 0.000 -0.630
Number of nonzero loadings 6 7 7 8 8 8
Variance (%) 29.0 16.3 14.5 8.6 6.7 6.2
Adjusted Variance (%) 29.0 16.3 14.5 8.6 6.7 6.2
Cumulative Adjusted Variance (%) 29.0 45.3 59.8 68.4 75.1 81.3

Table 5: IMS-PCA of Pitprops data, uncorrelated components (same sparsity
as Zou et al. (2004) and SCoTLASS).
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Pitprops: First component
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Figure 1: Scree Test for the first sPC, Pitprops data

covariance matrix is used instead of the correlation matrix.
We also illustrate our methods to choose the degree of sparsity. Figure 1

shows the scree-test in which the variability of the first component is plot as
a function of k. Such scree test would probably lead to agreement with the
previous methods by choosing k as 6 or 7.

Finally, in Tables 6 and 7 results for degree of sparsity of each component
chosen as the maximizer of (4) are shown. Note that the first three components
can explain almost the same amount of variance as the first three of Zou et al.
(2004), using the same number of variables in the first component and more
sparsity in the second and third component. Not surprisingly all the non-zero
loadings are far from zero, and additionally our loadings are orthogonal so that
interpretation is easier. Maximization of adjusted variance under orthogonality
of the components is the strategy we finally advocate as the most sensible in
this application.

Table 8 shows loadings for uncorrelated components with automatically cho-
sen sparsity, arising the same comments.

Finally, suppose we want to perform a simultaneous variable selection and
dimension reduction. For each k = 6, . . . , 12 we select the k variables whose first
6 principal components explain the maximum amount of information. We note
that the first 6 ordinary principal components explain 87% of the variance. If
we use only 10 variables, we can still explain 79% of the variance, and 61% can
be explained by using only 8 variables. This yields sparse principal components
that are both uncorrelated and whose loadings are orthogonal.
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Variable PC1 PC2 PC3 PC4 PC5 PC6
topdiam -0.423 0.000 0.000 0.000 0 0
length -0.430 0.000 0.000 0.000 0 0
moist 0.000 0.707 0.000 0.000 0 0
testsg 0.000 0.707 0.000 0.000 0 0
ovensg 0.000 0.000 0.000 0.707 0 0
ringtop -0.268 0.000 0.488 0.000 0 0
ringbut -0.403 0.000 0.000 0.000 0 0
bowmax -0.313 0.000 -0.417 0.000 0 0
bowdist -0.379 0.000 0.000 0.000 0 1
whorls -0.400 0.000 0.000 0.000 0 0
clear 0.000 0.000 0.000 0.000 1 0
knots 0.000 0.000 0.766 0.000 0 0
diaknot 0.000 0.000 0.000 -0.707 0 0
Number of nonzero loadings 7 2 3 2 1 1
Variance (%) 30.7 14.5 9.3 9.3 7.7 7.7
Adjusted Variance (%) 30.7 13.9 8.2 9.0 7.5 3.1
Cumulative Adjusted Variance (%) 30.7 44.6 52.8 61.8 69.3 72.4

Table 6: IMS-PCA of Pitprops data, maximization of variance, automatically
chosen sparsity

Variable PC1 PC2 PC3 PC4 PC5 PC6
topdiam -0.423 0.000 0.000 0 0 0.000
length -0.430 0.000 -0.283 0 0 0.000
moist 0.000 0.707 0.000 0 0 0.000
testsg 0.000 0.707 0.000 0 0 0.000
ovensg 0.000 0.000 0.600 0 0 0.704
ringtop -0.268 0.000 0.455 0 0 0.000
ringbut -0.403 0.000 0.000 0 0 0.000
bowmax -0.313 0.000 0.000 0 0 0.000
bowdist -0.379 0.000 0.000 0 0 0.000
whorls -0.400 0.000 0.000 0 0 0.000
clear 0.000 0.000 0.000 1 0 0.000
knots 0.000 0.000 0.000 0 1 0.000
diaknot 0.000 0.000 -0.594 0 0 0.710
Number of nonzero loadings 7 2 4 1 1 2
Variance (%) 30.7 14.5 11.8 7.7 7.7 6.1
Adjusted Variance (%) 30.7 13.9 11.7 7.5 6.8 5.9
Cumulative Adjusted Variance (%) 30.7 44.6 56.3 63.8 70.6 76.5

Table 7: IMS-PCA of Pitprops data, maximization of adjusted variance, auto-
matically chosen sparsity
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Variable PC1 PC2 PC3 PC4 PC5 PC6
topdiam -0.423 0.000 0.306 0.000 0.000 0.000
length -0.430 0.000 0.000 0.000 -0.202 0.000
moist 0.000 -0.654 0.000 0.000 0.221 0.260
testsg 0.000 -0.635 0.000 0.000 0.000 0.271
ovensg 0.000 0.000 -0.867 0.000 -0.331 0.219
ringtop -0.268 0.000 -0.392 0.000 0.000 -0.374
ringbut -0.403 0.000 0.000 0.000 0.000 -0.255
bowmax -0.313 0.000 0.000 0.000 0.000 0.219
bowdist -0.379 0.000 0.000 0.000 0.000 0.000
whorls -0.400 0.222 0.000 0.093 0.000 0.000
clear 0.000 0.000 0.000 -0.918 -0.223 -0.289
knots 0.000 -0.345 0.000 0.328 0.000 -0.689
diaknot 0.000 0.000 0.000 0.200 -0.867 0.000
Number of nonzero loadings 7 4 3 4 5 8
Variance (%) 30.7 15.3 9.5 7.9 6.5 6.9
Adjusted Variance (%) 30.7 15.3 9.5 7.9 6.5 6.9
Cumulative Adjusted Variance (%) 30.7 46.0 55.6 63.5 70.0 76.9

Table 8: IMS-PCA of Pitprops data, uncorrelated components, automatically
chosen sparsity

6 Conclusions

PCA falls into the category of feature extraction techniques, trying to build new
variables that carry a large part of the global information. On the other hand,
feature selection techniques (Guyon and Elisseeff (2003), Miller (1990), etc.) find
an appropriate subset of the original variables to represent the data. It may be
desirable to combine feature selection and extraction, and a possibility is given
by sparseness of the loadings in PCA. We have seen for instance how to select
the best subset of k ≤ m variables in order to extract p ≤ k linear combinations
of those that carry the largest possible proportion of global information.

We showed an information maximization approach to the sparse principal
components problem. Maximizing the information of each sPC instead of achiev-
ing a sparse approximation of the ordinary PC avoids taking into account the
(maybe small) weight given by the ordinary PC to less important variables.
In this sense, sparse principal component analysis is a valid alternative to the
common practice of rotating principal components to enhance interpretability.

Our approach is flexible, as both the constraints and objective function can
be chosen, together with the degree of sparsity; and in the example we saw it
leads to a good compression with large sparsity. We gave some guidelines to
such choices, and furthermore in real data applications different combinations
can be tried and the sparse solution achieving exact orthogonality/uncorrelation
and closest to uncorrelation/orthogonality adopted.
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The most pressing refinement to our approach is an efficient extension to high
dimensional situations. For moderate dimensional situations the algorithm is
surprisingly fast, because of the availability of efficient maximization procedures
for the simple problem at each node of the branch and bound algorithm. Still,
even if our approach can efficiently handle large n data matrices, unfortunately
when m is big (say m > 100) the number of nodes can get too large to allow for
an exploration of the entire tree. Due to the nature of the problem, we actually
expect the method to be applicable also in high-dimensional situations when
the covariance matrix is used and few variables have much higher variance than
the remaining. If this is not the case, it still happens in few high-dimensional
problems (like in DNA Microarray data analysis) that only less than 1% of the
variables are expected to finally enter into the model, so we can moreover suggest
a preliminary variable selection. The algorithm will be finally applied only to
a subset of prospective relevant variables. Another possibility is to split the
variables into groups, perform an sPCA on the groups; and finally aggregate and
perform a final sPCA on the extracted variables. The results are not guaranteed
to be optimal but certainly a genuine sparse principal components analysis. It
is worth noticing that, among the competing approaches, Zou et al. (2004) have
managed to apply their method in high-dimensional situations.
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