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Summary

Threshold models for time series have been often considered to take into
account several features of interest. For instance, asymmetric limit cycles,
jump phenomena and dependence between amplitude and frequency may be
modeled by adapting different structures according to the present state of the
process. The most important step for every model identification procedure
consists in determining the threshold parameters. Traditional computational
methods (e.g. numerical methods for maximizing the likelihood function)
cannot solve this problem whilst they may deal with coefficients estimation
efficiently given the threshold parameters. These latter need to be determined
by means of heuristic methods. Among them the genetic algorithms seem
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specially promising as they proved their ability at searching in large discrete
spaces for a wide class of problems. The main distinctive feature of genetic
algorithms is competition among several candidate solutions organized in an
algorithmic scheme that uses selection and evolutionary operators to allow
the best solution to prevail. We implemented hybrid genetic algorithms to
combine heuristic search for threshold parameters with numerical computa-
tion of model coefficients. User friendly computer programs are presented
to perform the identification and the estimation of some popular threshold
models and examples concerned with some real time series are considered.

Keywords: Nonlinear time series, Threshold models, Heteroscedasticity,
Genetic algorithms, C++ programming language.
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1 Introduction

The practice of time series modeling to represent the dynamic structure of
real phenomena has demonstrated that many real time series data cannot
be adequately modeled by linear time series models such as the autoregres-
sive moving-average (ARMA) models (Box et al. 1994). Most series have
been shown to include a considerable number of nonlinear features such as
asymmetric cycles, nonnormality, bimodality, nonreversibility, asymmetric
behavior of the variability, volatility clustering, and so on. Some of them
have been shown in Tong (1990), Granger & Terasvirta (1993) and Franses
& van Dijk (2000). To capture nonlinear features a number of nonlinear time
series models have been proposed generally intended as direct generalization
of linear structures. Models in such a class yielded successful results con-
cerned with applications in a wide range of fields, e.g. economics and finance,
environmental sciences, medicine, digital filters design, engineering and con-
trol. In this paper the attention is focused on the class of threshold models
characterized by piecewise linear processes separated according to the size
of the observed output in comparison with some threshold variables. When
each linear regime follows an autoregressive process we have the well known
threshold autoregressive (TAR) models proposed by Tong (1978) and later on
generalized in a relevant number of contributions. An important TAR model
is the self exciting threshold autoregressive (SETAR) model where the model
structure changes according to the result of a comparison between a delayed
observation and the threshold parameter. Methods for threshold and delay
parameters estimation have been proposed by Tsay (1989) and Tong (1990).
The SETAR models have been widely employed in the literature to explain
various empirical phenomena in an observed time series. See, for example,
the work of Chappel et al. (1996) for exchange rate, Tong & Yeung (1991)
for beach water pollution, Yadav et al. (1994) for futures markets, Watier &
Richardson (1995) for epidemiological applications, Montgomery et al. (1998)
for U.S. unemployment, Feucht et al. (1998) for medical studies.

As a natural extension the self exciting threshold autoregressive moving-
average (SETARMA) models were proposed by Tong (1990). Properties
and characterization of SETARMA models may be found in Brockwell et al.
(1992). As a further extension the subset SETARMA (SSETARMA) models
may be worth considering (Baragona et al. 2004a). Subset models are useful
because they allow some model coefficients to be constrained to zero and
parsimonious structure to be properly specified.

Further empirical evidence shows that the volatility of a financial or economic
time series is often not constant. The autoregressive conditional heteroscedas-
tic (ARCH) models introduced by Engle (1982) constitute established tech-
niques for modeling volatility in economic field and financial markets. The
class of ARCH models provides a useful scheme in which the conditional
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variance of a stationary time series, conditional on its past history, is al-
lowed to vary according to an AR model built on the squared past innova-
tions. There are numerous applications of ARCH-type models in economic
and financial time series analysis (see, for instance, Granger & Terasvirta
(1993) and Franses & van Dijk (2000)). Bollerslev (1986) extended this for-
mulation to the generalized autoregressive conditional heteroscedastic model
(GARCH) where the squared past innovations are modeled according to an
ARMA model. A major drawback of the standard ARCH and GARCH mod-
els is that the estimated model coefficients are assumed to be fixed throughout
the observed period, and they fail to take into account the possibility of asym-
metrical regime switching of both average returns and volatility. Tong (1990)
suggested to combine the use of a nonlinear model for the conditional mean
with a structure for the conditional variance, introducing the so called second
generation models. Tong (1990), in particular, has proposed the combina-
tion of the SETAR model with the ARCH structure, naming this combination
SETAR-ARCH. Li & Lam (1995) assert that the use of this model should
address critical issues concerned with the analysis of financial time series,
where the asymmetry in the levels can be well captured by a threshold model
while the heteroscedasticity can be accounted for by using an ARCH model.
In this context, Li & Li (1996) and Liu et al. (1997) combined the features of
ARCH and SETAR models and proposed the double threshold autoregressive
conditional heteroscedastic (DTARCH) models. Many applications showed
that DTARCH models and double threshold generalized ARCH (DTGARCH)
models are able to yield better fit and more accurate forecasts of financial
time series (see, for instance, Brooks (2001)). Li & Li (1996) derived port-
manteau statistics (Qm, Qmm) based on the residual autocorrelations and
squared residual autocorrelations from the DTARCH model for checking the
overall goodness of fit.

In both SETARMA and DTGARCH models switching from a regime to an-
other produces an instantaneous change in the model structure. The smooth
transition models, for instance the smooth transition autoregressive (STAR)
model, allow the model structure to change smoothly according to some tran-
sition function (van Dijk et al. 2002). Estimation problems are still difficult,
however, because the transition function requires that some parameters have
to be suitably determined to fit the data accurately enough. Each parameter
in the model is a function of the state of the process. As in the SETARMA
and DTGARCH models the state is often a delayed value of the process
itself. A flexible approximation that is easier to estimate consists in esti-
mating a broken line close to the curve described by the transition function.
This may be done by selecting threshold parameters that define regimes in
each of which the approximating function is a straight line. The resulting
piecewise function is a continuous function of the state of the process, though
not necessarily differentiable. These piecewise linear threshold autoregressive
(PLTAR) models have been introduced by Baragona et al. (2004b).
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Relevant difficulties in building threshold models are to ascertain the num-
ber of regimes (at least a reasonable range for it), the threshold parameters
and the delay parameter. This problem may be conveniently considered an
optimization problem that involves finding the optimum of a criterion func-
tion of discrete arguments. If the number of regimes is unknown, and the
only available information that may be supplied is concerned with the maxi-
mum number of regimes K, the thresholds are to be searched among a large
number of alternatives (approximately, this number is O[n(K−1)]). If the DT-
GARCH model is considered, K and H regimes may be postulated for the
average returns and variance respectively. The space of solutions may include
O[n(K+H−2)] candidate thresholds. Searching a very large discrete space is
a task that has been found convenient to handle by the local search meth-
ods, often called general heuristics or meta heuristics (for a review of these
methods and applications see, for instance, Pirlot (1996), Bergeret & Besse
(1997), Winker (2001) and Winker & Gilli (2004)). Optimization methods in
this class are specially useful if, as it is the case here, the objective function
has not the usual mathematical properties (continuity, differentiability, con-
cavity) needed for applying gradient based optimization techniques. Among
the many available meta heuristic methods the genetic algorithms (GAs) are
preferred here because they have desirable properties that make their appli-
cation very promising in the present context. The GAs were introduced by
Holland (1975) to simulate the evolution of either a real or artificial popu-
lation towards adaptation to the environment. Their potential for functions
optimization, however, was early recognized (De Jong 1975). According to
this view, the GAs are evolutionary algorithms that process a set of initial
solutions through several iterations to find the solution that optimizes the
objective function. The solutions that are processed in a given iteration are
a small subset of the set that contains all feasible solutions. The main advan-
tages of GA are parallel processing of several feasible solutions and very mild
assumptions on the objective function (which is called fitness function (FF)).
Appropriate problem-dependent formulations have been developed and de-
scribed by, for instance, Man et al. (1999), Chen et al. (2001), Haupt & Haupt
(2004), Pasia et al. (2005). As far as threshold models are concerned, GAs-
based procedure have been suggested by Wu & Chang (2002) for SETAR
modeling, Baragona et al. (2004a) for SETARMA and subset SETARMA
models, Baragona et al. (2004b) for PLTAR models, Baragona & Battaglia
(2006) and Baragona & Cucina (2008) for DTARCH and DTGARCH mod-
els. Convergence properties of GAs have been investigated by De Jong (1975)
and Jennison & Sheehan (1995) who offer further insight into the Holland’s
scheme theorem and, in the Markov chains framework, by Vose (1999) and
Reeves & Rowe (2003), among others. Prugel-Bennett & Shapiro (1994) sug-
gested an approach based on statistical mechanics to gain an insight into
parameters setting in GAs design.

The GAs-based procedures for threshold models building have been found
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quite effective through both simulation experiments and applications to real
time series. The lack of widespread available and user friendly computer pro-
grams is possibly the main reason that explains why GAs-based threshold
model building has found little application in practice. We present in this
paper some easy-to-use computer programs that perform model identifica-
tion and estimation of PLTAR, SETAR, DTARCH and DTGARCH models.
The procedures have been implemented by a C++ code which operates in
a Windows environment. Adaptation to other platforms is straightforward,
however. The programs are freely available and may be downloaded from
http://w3.uniroma1.it/statstsmeh/index.html. For more information, please
contact the authors. Obviously, suggestions and remarks are welcome.

The paper is organized as follows. Next Section is devoted to introduce
the classes of threshold models we shall deal with. In Section 3 the GAs-
based procedures for threshold models building will be described. In Section
4 examples are illustrated where our computer programs are used to build
threshold models for some well known time series that may be considered as
benchmarks in the literature. Concluding remarks are drawn in Section 5.

2 Threshold models

Threshold models building procedures are concerned with parameters that
identify the model structure (structural parameters) and parameters that
define the dependence of the response variable on its lagged values and pos-
sibly on exogenous variables (model coefficients). The structural parameters
are the delay parameter d, the number of regimes k, the threshold parame-
ters r = (r0, r1, . . . , rk−1, rk)′ (possibly r0 = −∞ and rk = ∞), the orders
(number of coefficients) of autoregressive (AR) and movingaverage (MA)
structures, and their corresponding lags. The model coefficients are the AR
and MA coefficients and other parameters that are not included into the
set of structural parameters. Three models will be considered in detail for
which computer programs have been developed. These threshold models are
the PLTAR, the SETAR and the DTARCH and DTGARCH. The first two
may be viewed as special cases of the general state dependent model (SDM)
(Priestley 1988). A SDM for the time series {yt}, integer t, takes the form

yt =
p∑

j=1

φj(zt−1)yt−j + et −
q∑

j=1

θj(zt−1)et−j , (1)

where the array

zt−1 = (et−q, . . . , et−1, yt−p, . . . , yt−1)

is called the state vector at time t − 1. In what follows the state variable is
assumed yt−d, for given positive integer d.
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Let us consider the PLTAR model first. Let the structural parameters be
given, then the model coefficients of the SDM model (1) take the special
form

φj(yt−d) = α
(i)
j + β

(i)
j yt−d if ri−1 < yt−d ≤ ri, i = 1, . . . , k.

θj(yt−d) = 0, ∀j. (2)

The coefficients φj(.)’s are assumed continuous functions of the state yt−d.
This constraint is easy to implement and it seems useful as a continuous
piecewise linear function may in practice approximate analytic functions to
any degree of accuracy. For instance, consider the logistic STAR (LSTAR)
model

yt =
p∑

j=1

φ
(1)
j yt−j + G(yt−d)

p∑

j=1

φ
(2)
j yt−j + et (3)

where
G(yt−d) = (1 + exp(−γ(yt−d − c)))−1

and {et} is a zero mean white noise with variance σ2. As an example of
comparison between model (2) and model (3) we generated n = 1050 ob-
servations from the LSTAR model (3) by choosing σ2 = 1, d = 1, p = 1,
the AR parameters φ

(1)
1 = −0.4 and φ

(2)
1 = 0.8, γ = 1 and c = 0.5. Then,

a PLTAR model has been estimated by using a GAs-based procedure. The
estimated model includes k = 3 regimes in each of which a first order polyno-
mial represents the behavior of the AR parameter as a function of the state
variable yt−1. In Figure 1 the varying AR parameter of the LSTAR model
(3) is plotted along with the piecewise linear AR parameter of the PLTAR
model (1)-(2). The approximation provided by the PLTAR parameter seems
adequate to match the logistic curve of the LSTAR parameter. Moreover, 50
out-of-sample one-step-ahead forecasts have been computed from the LSTAR
and the PLTAR models. The predicted values are plotted in Figure 2 along
with the original time series out-of-sample values. There is evidence that
there is a close agreement between forecasts, and both seem able to repro-
duce fairly well the observations generated from model (3). The mean square
errors are 4.6 (LSTAR) and 4.9 (PLTAR). The performance of the two mod-
els may be considered similar. The advantage in using the PLTAR model
resides in that there is non need to specify in advance any special functional
form for the AR parameters.

Let us consider now the SETAR model. Given k − 1 threshold parameters
{r1 < . . . < rk−1}, and letting r0 = −∞ and rk = +∞, then k regimes are
identified by the disjoint intervals Ri=(ri−1, ri], i = 1, . . . , k. A time series
{yt} is said to be generated by a SETAR model if

yt = c(i) +
∑p

j=1 φ
(i)
j yt−j + et if ri−1 < yt−d ≤ ri, i = 1, . . . , k,

(4)
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Figure 1: First order AR parameter for a LSTAR model (solid line) and a
PLTAR model (dashed line) plotted against the state variable.
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Figure 2: Out-of-sample one-step-ahead forecasts of a time series generated
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where {et} is a zero mean white noise with constant variance σ2. Model (4)
may be viewed as a special case of the SDM model (1) and of the PLTAR
model (2). The AR parameters are taken constant in each regime, and cannot
describe any more a continuous line across regimes. In each regime the time
series {yt} follows a linear AR model with possibly a constant term added.
The orders of these AR models may differ from a regime to another, that is in
regime i the AR order is p(i). Equation (4) still holds, however, provided that
p is assumed the maximum among the non negative integers p(1), . . . , p(k) and
φ

(i)
j = 0 as soon as j > p(i).

The third class of models we want to consider includes the DTARCH and
DTGARCH models. If we allow the variance of the SETAR model (4) to
vary, then a convenient way for modeling the innovation variance is to define
the conditional variance ht given the past observations of the time series

ht = α0 +
q∑

j=1

αje
2
t−j . (5)

The parameter α0 has to be greater than 0. The parameters α1, . . . , αq have
to be non negative and their sum has to be less than 1. Other assumptions
have to be imposed on the αj ’s to ensure higher moments to exist. A threshold
structure may be postulated for the ARCH model (5) as well. A time series
generated by a DTARCH model may be written

yt = c(i) +
∑p

j=1 φ
(i)
j yt−j + et if ri−1 < yt−d ≤ ri, i = 1, . . . , k

ht = α
(i)
0 +

∑q
j=1 α

(i)
j e2

t−j if ui−1 < et−c ≤ ui, i = 1, . . . , h

(6)
where {u0, u1, . . . , uh−1, uh} are the ARCH threshold parameters, u0 = −∞
and uh = ∞, h is the number of regimes and c is the delay parameter. More
restrictive assumptions are sometimes formulated for the threshold ARCH
model, namely that the regimes depend only on the time series {yt}. In this
case, a change in the regime of yt implies a contemporaneous change in the
regime of ht.

Likewise, the DTGARCH model may be defined by letting

ht = α0 +
s∑

j=1

βjht−j +
q∑

j=1

αje
2
t−j , (7)

where the parameters β1, . . . , βs are non negative. Then we may replace in
(6) the structure (5) with (7) to obtain the DTGARCH model

yt = c(i) +
∑p

j=1 φ
(i)
j yt−j + et if ri−1 < yt−d ≤ ri, i = 1, . . . , k

ht = α
(i)
0 +

∑s
j=1 β

(i)
j ht−j +

∑q
j=1 α

(i)
j e2

t−j if ui−1 < et−c ≤ ui, i = 1, . . . , h.

(8)
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Ling (1999) showed that sufficient conditions for stationarity of either (6) or
(8) are as follows

∑p
j=1

max
i ∈ (1, k) |φ(i)

j | < 1,

∑q
j=1

max
i ∈ (1, h) α

(i)
j +

∑s
j=1

max
i ∈ (1, h) β

(i)
j < 1.

However less restrictive assumptions are likely to be needed (Nelson & Cao
1992).

3 Genetic algorithms for threshold models es-
timation

The GAs that are proposed here address the search for the regimes and
threshold parameters. A single vector of threshold parameters has to be
determined for PLTAR and SETAR models, while two vectors of threshold
parameters have to be determined for DTARCH and DTGARCH models.
Basically the algorithm structure remains the same, but searching for thresh-
olds in the first line of (6) or (8) has to proceed in parallel with searching for
thresholds in the second line. Let n observations {y1, . . . , yn} be available.
In case of heteroscedastic models, n innovations may be estimated by fitting
a high order AR model to the data. It is convenient to restrict the search for
thresholds to the observed data because a finite set may be dealt with. Then
the observed data {y1, y2, . . . , yn} have to be arranged in ascending order to
obtain the sequence {y(1), y(2), . . . , y(n)}. There is no loss of generality (in
sample) as yt−d ≤ ri ⇐⇒ yt−d ≤ yt(j) where yt(j) is the greatest observation
less than or equal to ri. A minimum number m of observations in each regime
has to be chosen to ensure that each linear model may be estimated safely.
So we may consider only the subsequence Y = {y(m+1), y(m+2), . . . , y(n−m)}.
As a matter of fact, the first and last m observations in the ascending se-
quence may be dropped because at least m observations in each regime are
required. In case of DTARCH and DTGARCH models, where independent
changes in regimes for yt and ht are allowed to occur, the thresholds ui have
to be searched for in the subsequence E = {e(m+1), e(m+2), . . . , e(n−m)} of
the innovations arranged in ascending order. The requirement that at least
m observations have to belong to each regime obviously imposes a constraint
on the number of regimes. It is more convenient, however, to define explicitly
a maximum number K of regimes, so that 1 ≤ k ≤ K. This simplifies some-
what the GA implementation. A similar constraint applies for the indepen-
dent thresholds for ht in heteroscedastic models, that is 1 ≤ h ≤ H. As the
GA searches for the optimal sequence of thresholds, each and every solution
is a sequence of real numbers {r1, . . . , rk−1} where ri ∈ Y and ri 6= rj if i 6= j
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(i, j = 1, . . . , k − 1). For heteroscedastic models with independent changes
in regime of yt and ht a solution is a sequence {r1, . . . , rk−1;u1, . . . , uh−1}
where ri ∈ Y and ui ∈ E. The additional requirement ri 6= rj and ui 6= uj

applies. Furthermore, given the maximum number of regimes K (or K and
H), the constraint k ≤ K (k ≤ K and h ≤ H) is required.

In the present implementation the GAs operators do not manipulate a thresh-
olds sequence directly but this latter has to be encoded in a string of char-
acters. In the GAs framework each string is called a chromosome and each
character is called a gene. A chromosome may be written as a vector of genes.
Let ` denote the length of the chromosome, then

w = (w1, w2, . . . , w`)′

represents a potential solution that has to be decoded to yield the correspond-
ing sequence of thresholds {r1, . . . , rk−1}. The mapping w ↔ {r1, . . . , rk−1}
allows the algorithm to represent a solution either as a chromosome or a
threshold sequence.

The GAs assume as a search space the set W of all vectors w (or w∗ = [w;v]))
each of which encodes (and may be decoded from) an element of the set Y
(Y ∪E). Only a subset P ⊂ W is processed in an iteration of the algorithm.
The set of s vector P = {w(i), i = 1, . . . , s} is called a population, though
P usually is only a small subset of W , and s is the population size. The
GA starts with an initial population, then proceeds through a pre-specified
number of iterations N . The population P in a GA iteration is called some-
times a generation. In each iteration the vectors in the current population
are evaluated by means of a pre-specified objective function, called fitness
function (FF). The FF computation for the ith chromosome involves usually
the estimation of the model (PLTAR, SETAR, DTARCH or DTGARCH)
by assuming the number of regimes and threshold parameters as encoded in
w(i). In the present paper (and in our computer programs) the FF evalua-
tion is done as follows. The AR order is found by trying several values p in
a pre-specified range [1, P ] and choosing the one which minimizes the AIC
criterion (Akaike 1977)

AIC = −2{log − likelihood}+ 2{numbers of parameters}.
Moreover, the estimation is performed for each values of the delay parameter
d in the range [1, p]. Computations are quite demanding, so it is important
that the space of solutions be explored efficiently. The GA design aims at
optimize the searching procedure. Once the model is identified and estimated
completely then the overall AIC is computed (one of its several variants
(Bozdogan & Bearse 2003) may be used as well). The FF is computed for
each vector w(i) and its value fi is associated to w(i). Note that the FF
has to be positive and as greater as better the potential solution w(i), so
the AIC has to be transformed to meet these requirements. For instance, we
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set FF = exp(−AIC/c), where c is a constant which is introduced to avoid
overflows and to scale the FF suitably.

Here two different encodings are implemented.

3.1 Code 1

Let ` = n−2m and w be a binary vector of length `, and define the mapping
wi ↔ y(i+m), i = 1, . . . , `. If wi = 1, then y(i+m) is a threshold parameter
(i.e. riα = y(i+m)), and wi = 0 otherwise. The number of regimes is given
by w1 + w2 . . . + w` + 1. In case of heteroscedastic models another vector
v has to be introduced that parallels the subsequence E. This encoding is
straightforward but for long time series the length of the chromosome may
become very large. In addition, the number of ones in the binary string w
has to be checked at each step of the algorithm because of the constraint
k ≤ K (k ≤ K and h ≤ H) and the requirement that in each regime there
have to be more than m observations. If these constraints are not fulfilled a
legalization step is needed which may involve either the heuristic adjustment
of the chromosome or the introduction of a penalization or discarding the
illegal potential solution. In any case additional computations are needed.

3.2 Code 2

Each chromosome w is composed of ` = K − 1 positive integer numbers
(g1, g2, . . . , gK−1), where gi ∈ (m,n), specifying the number of observa-
tions that belong to each regime. The mapping w ↔ {r1, . . . , rk−1} (w ↔
{r1, . . . , rk−1; u1, . . . , uh−1}) is defined as follows. If g1 ≤ n − m, then we
have a threshold model and the first regime has g1 observations in the inter-
val [y(1), y(g1)]. The first threshold is assumed r1 = y(g1). If g1 > n − m a
single regime model has to be estimated and the decoding procedure ends.
If this latter is not the case, the second regime has g2 observations in the
interval [r1, y(g1+g2), the second threshold is r2 = y(g1+g2), and so on. The
last regime includes the observations larger than y(g1+...+gk−1) where

k − 1 = arg max
k ∈ [1,K] {g1 + . . . + gk−1 < n−m}.

The number of regimes k is implicitly determined by the genes gj and 0 ≤ k ≤
K. Though less easy to interpret, this encoding allows legal chromosomes
only (i.e., corresponding to models which satisfy the requirements concerned
with the maximum number of regimes K and the minimum number of ob-
servations m in each regime).
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3.3 Initialization, selection and genetic operators

Given the population size s, a set of vectors {w(1),w(2), . . . ,w(s)} has to be
chosen, usually at random. The population in each iteration is processed by
means of the usual genetic operators selection, crossover and mutation. We
try to adopt the most commonly employed GAs operators whenever possible,
but some special features are introduced to exploit the peculiarity of the
present problem. A description of selection and of the two operators crossover
and mutation follows.

Selection. The first choice is the well known roulette wheel rule. Available
alternatives are, for instance, the stochastic universal sampling or tournament
selection (Goldberg 1989). According to the roulette wheel selection, each
vector in the current population is assigned a probability to be selected for
the next generation proportional to its FF. Any vector in the population may
be selected, even more than once, and placed in the population that will be
processed in the next iteration. It may happen, however, that a vector is not
selected, that is it is discarded. To avoid discarding good solutions, the elitist
strategy is adopted to amend the pure stochastic selection. A vector that has
been discarded is reinserted in the new population if its FF is greater than
the FF of each of the selected vectors. In this case, this best vector replaces
the vector that in the new population has the worst FF. This way the size
s of the population remains unchanged through the iterations. Note that
holding s fixed is a convenient choice only and variable size generations are
manageable. Also, selection may be performed only on a fraction of the
chromosomes in the current population. This fraction G of chromosomes
that are to be replaced by new chromosomes in the next generation is called
generational gap.

Crossover. It is advisable to resort to different implementations of crossover
whether the code 1 or code 2 is used. However, in both cases a probability of
crossover pc has to be pre-specified. Then, in the current population, [pcs/2]
vector pairs are selected at random. A vector may be selected more than
once to enter a pair. The selected pairs are processed one at the time, and
both vectors are updated soon after each crossover.

For the code 1 we do not recommend the common crossover operators and
the following special procedure may be outlined. Let w(1) and w(2) denote
the two vectors in the pair. All bits of the two vectors are examined, and
the indexes where the first one, or the second one, or both, have bit value
equal to 1 are recorded. If there are no bits equal to 1 the crossover does not
take place. Otherwise, let {i1, . . . , iµ} denote the indexes of the bits equal to
1. An index is selected at random in this set, and let us denote the selected
bit index iα. Then, two cases are to be considered: (1) Either w

(1)
iα

= 1 or
w

(2)
iα

= 1, but not both. If, for instance, w
(1)
iα

= 0 and w
(2)
iα

= 1, then we
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set w
(1)
iα

= 1 and w
(2)
iα

= 0. The number of regimes encoded in the second
vector decreases by one, whilst a new regime adds to the number of regimes
encoded in the first vector. (2) Both w

(1)
iα

= 1 and w
(2)
iα

= 1. In this case,
the crossover does not take place. Note that the crossover may yield only
one change of regime at most in each of the two vectors, either adding one,
or deleting one. The proposed implementation seems convenient to avoid
excessive change in the vectors that undergo the crossover. As a matter of
fact, it obeys to a general rule that the vectors yielded by the crossover do
not have to differ completely from the original vectors. The usual one-point
crossover, for instance, has been often found to upset the vectors structure.

For the code 2 we may consider the common crossover operators suited to
the present framework as this encoding yields only legal chromosomes (i.e.,
corresponding to models which satisfy the requirements related to number
of regimes and number of observations in each regime). So the crossover
operator may be applied as usual (for instance, we adopted the two-point
crossover).

Mutation. A probability of mutation pm, usually quite small, less than 0.1,
has to be pre-specified. A vector in the current population undergoes mu-
tation with probability pm. As for crossover, for mutation too two different
implementations have to be designed to fit the different encodings.

As far as the code 1 is concerned, let mutation occur for the vector w(i).
A bit of this vector is chosen at random, w

(i)
j , say, and flips, that is w

(i)
j is

replaced by 1 − w
(i)
j . If w

(i)
j = 0 then, after mutation, w

(i)
j = 1 and a new

regime is added. If otherwise w
(i)
j = 1 then, after mutation, w

(i)
j = 0 and an

existing regime is deleted. If we adopted the usual mutation operator, any
bit of any vector would be allowed to flip with probability pm. Due to the
constraint on the number of regimes, this mutation operator is likely to yield
new regimes while it is unlikely to delete some regimes. As a vector with
more than K − 1 bits equal to 1 has to be discarded, the usual mutation in
most cases would be an useless operator.

For code 2 we suggest a special mutation operator as well. We may consider
that mutation has to modify a gene by the smallest possible amount. Our
choice is that, if the gene g mutates, the new value is chosen with uniform
probability in the interval (max{m, g −m/2}, g + m/2).

3.4 Statistical inference on parameters

For the model coefficients asymptotic distribution or at least asymptotic
standard errors are provided by the numerical optimization techniques used
for estimation. The structural parameters or all parameters that are es-
timated by using the GAs in non-hybrid form or by heuristic search need
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special techniques to assess inferential procedures. Such parameters are the
number of regimes (k, h) and the threshold parameters {r1, . . . , rk−1} and
{u1, . . . , uh−1}, the delay parameters (d, c), the linear model orders (p, q, s).
The GAs aim at producing point estimates of parameters primarily. How-
ever, in statistical model building and specially in empirical applications it is
of chief importance that the estimation algorithm could provide the user with
standard errors of the estimates, p-values or other statistics useful to make
statistical inference on parameters. For instance, in Chatterjee & Laudato
(1997) the GAs have been proposed for use in statistical inference procedures.
Several devices may be used to obtain both estimates and standard errors of
the estimates. The most common suggestion consists in using bootstrap con-
cepts to allow confidence intervals to be computed, that is the bootstrap may
be used for re-sampling the entire population and estimating the parameters
from the re-sampled data. There are simpler alternatives though not as reli-
able as the bootstrap and mainly motivated by saving computation resources
specially those that exploit the information provided by a single run of the
GA.

• The GA may run several times in each of which the random numbers
stream changes.

• The final GA population may be considered as a sample from which
the empirical distribution of the estimates may be computed.

• According to the interpretation of GAs as Markov chains the distribu-
tion of the estimates may be computed from the best fit chromosomes
recorded in the latest iterations of the GA.

These procedures deserve further investigation and development and some
will be included in the revised version of our computer programs.

4 Examples of applications

The Canadian lynx data, the Hong Kong Hang Seng index (HSI) and French
Franc/Deutschmark exchange rate are well known time series that may serve
as a benchmark to illustrate our GA based procedures. The software that is
used is written in C++ and is implemented so as to result easy to use for
fitting threshold models to the data. Downloadable programs and more infor-
mation are available on the web site http://w3.uniroma1.it/statstsmeh/index.html.
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4.1 Fitting SETAR models to the French Franc/Deutschmark
exchange rate

Let us consider the French Franc/Deutschmark exchange rate over period 1
May 1990 to 30 March 1992 first. As in Chappel et al. (1996) and Brooks
(2001) the models are estimated in the natural logarithms of levels rather than
the first differences. For comparing our results with that of Chappel et al.
(1996) the first n = 450 observations are used for estimating the model, while
further 50 observations are used for checking the forecasting performance of
the fitted model. The following choices have been made to run the program.
As regards the GAs parameters, the population size has been set s = 50, the
number of iterations N = 300, the generational gap G = 1, the probability
of crossover pc = 0.9, the probability of mutation pm = 0.001, the fitness
function FF = exp(−AIC/c) with c = 1 and the elitist strategy has been
employed within the selection procedure. For the model parameters we set the
maximum order of all linear models equal to 4, the values of delay parameter
d = 1, 2, 3, the maximum number of regimes K = 4 and the minimum number
of observations per regime m = 60.

Our best estimated SETAR models and the SETAR models fitted by Chappel
et al. (1996) are reported in Table 1, together with the AIC values, the
portmanteau statistics (Q) (Ljung & Box 1978) and the mean square errors
(MSEs) computed on one-step-ahead forecasts. In these tables models I and
II are SETAR models with two and three thresholds respectively estimated by
our program while models III and IV are taken from Chappel et al. (1996)
(pp. 160–161). These results show that the performance of our SETAR
models is slightly better.

Table 1: Results for the French Franc/Deutschmark exchange rate
Model I Model II Model III Model IV

Model (2; 1, 3) (3; 1, 1, 3) (2; 1, 3) (3; 1, 1, 3)
Threshold 5.8308 5.8183; 5.8292 5.8306 5.819; 5.8306

Observation 375; 72 116; 202; 129 344; 103 119; 225; 103
Delay 1 1 1 1
AIC −14.323 −14.294 −14.291 −14.314
Q 4.302 3.103 6.482 6.643

MSE 1.76× 10−7 1.73× 10−7 1.80× 10−7 1.80× 10−7

We may observe that we fit a SETAR model if either there is prior knowledge
that this model is appropriate or comparison is made among many alternative
models. Otherwise an alternative choice consists in fitting a PLTAR model
that may approximate a wide range of models.
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4.2 Fitting a PLTAR model to the Canadian lynx data

The PLTAR model is to be recommended when no prior knowledge exists
about the functional form of the appropriate model. As an application, a
PLTAR model has been estimated for the Canadian lynx data. This time
series consists of the annual records of the number of lynx trapped in the
Mckenzie River district of North-west Canada from 1821 to 1934. The num-
ber of observations is n = 114. This time series has been extensively studied
(see, for instance, Tong (1990) pp. 380–381, Table 7.5). The data are trans-
formed as log10(number recorded as trapped in year 1820+t), t = 1, . . . , 114.
As far as the GAs parameters are concerned, we set the population size
s = 30, the number of iterations N = 300, the generational gap G = 1, the
probability of crossover pc = 0.8, the probability of mutation pm = 0.001,
the fitness function FF = exp(−AIC/c) with c = 1 and selection with eli-
tist strategy. For the model parameters we set the maximum order of all
linear models equal to 4, the values of delay parameter d = 1, 2, 3, the max-
imum number of regimes K = 4 and the minimum number of observations
per regime m = 25. We have as best model estimated by our GAs-based
procedure

yt =





.3230 + (1.2106− .1037yt−2)yt−1 + (−.7704 + .4257yt−2)yt−2

+(2.0506− .8498yt−2)yt−3 + (−1.1132 + .3726yt−2)yt−4 + et

if yt−2 ≤ 3.3101,
.0484 + (−9.8474 + 3.2370yt−2)yt−1 + (25.4669− 7.5009yt−2)yt−2

+(−24.9680 + 7.3127yt−2)yt−3 + (10.1568− 3.0322yt−2)yt−4 + et

if yt−2 > 3.3101.

Note that the number of coefficients is twice the AR order due to the partic-
ular structure of the PLTAR model. Parameters are considered in pairs, that
is the constant and the slope of the linear function of the state observation
count as a single parameter. The PLTAR models seem able to fit the ob-
served time series at high degree of accuracy. In Figure 3 the observed time
series is plotted along with the one-step-ahead forecasts computed by the
SETAR model as estimated in Tong (1990) (p. 387) and those computed by
our PLTAR model. The two prediction lines seem to overlap almost always.
For the PLTAR model we have MSE 0.0121, 18 coefficients and the AIC is
equal to −273.78. For comparison, for the SETAR model reported in Tong
(1990) the MSE equals 0.0136 and the AIC, with 9 coefficients, is equal to
−270.0.

4.3 Fitting DTARCH and DTGARCH models

We illustrate now the DTARCH modeling procedure using the n = 260 ob-
servations of the Hong Kong Hang Seng index (HSI) data collected in year
1988 (Li & Li 1996). Since the time series is non stationary we transform
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Figure 3: Plot of the Canadian lynx data (solid line) and the one-step-ahead
forecasts computed on the SETAR model reported in Tong (1990) (dashed
line) and the PLTAR model (dotted line).
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the series as the log-difference of the index. The following choices have been
made to run the program. As regards the GAs parameters, the population
size has been set s = 30, the number of iterations N = 300, the generational
gap G = 1, the probability of crossover pc = 0.8, the probability of mutation
pm = 0.001, the fitness function FF = exp(−AIC/c) with c = 1 and the
elitist strategy has been employed within the selection procedure. For the
model parameters we set the maximum order of all linear models equal to 4,
the values of delay parameter d = 1, 2, 3, the maximum number of regimes
K = 3 and the minimum number of observations per regime m = 30. The re-
turn series determines the change in the regime of both returns and volatility
models. The overall estimated model is as follows.

yt =
{ −0.000576 +0.003075yt−1 +et if yt−1 ≤ 0.002090,
−0.112925 −0.132312yt−1 +et if yt−1 > 0.002090,

ht =
{

0.000014 +0.150554e2
t−1 if yt−1 ≤ 0.002090,

0.000017 +0.176816e2
t−1 if yt−1 > 0.002090.

The diagnostics Qm and Qmm (Li & Li 1996, Liu et al. 1997) suggest adequacy
of the fitted models for the conditional mean and variance respectively. The
AIC is equal to −1277.922. For comparison, the AIC computed for the model
reported in Li & Li (1996) is equal to −1244.732.

A DTGARCH model has been fitted to the French Franc/Deutschmark ex-
change rate time series data set using a GAs based procedure by Baragona &
Cucina (2008). Results therein reported are consistent with those reported
in Brooks (2001) for the three-regimes model. In both cases the change in
the regime depends on the return series only. There are several differences in
the identification and estimation procedures, as in Brooks (2001) the delay
parameter (d = 1) and the number of regimes (either k = 2 or k = 3) have
been chosen on theoretical grounds while Baragona & Cucina (2008) used the
GAs-based procedure to find the number of regimes (k = 3) and each pro-
posal model has been tried with d = 1, 2, 3 and the one corresponding to the
minimum AIC has been chosen. The two algorithms yielded the same value
for the delay parameter (d = 1). For the three-regimes models the thresh-
olds provided by the GAs-based procedure, r1 = 5.8159 and r2 = 5.829,
are close to those provided in Brooks (2001) and in agreement with those
displayed in Table 1 for Models II and IV. As far as model orders and coef-
ficients are concerned there are differences between the models estimated by
Baragona & Cucina (2008) and Brooks (2001). First, Brooks (2001) fitted
GARCH(1,1) models to the data in each regime while model orders in Barag-
ona & Cucina (2008) have been chosen according to the minimum AIC cri-
terion. Second, Brooks (2001) used the BFGS optimization algorithm while
Baragona & Cucina (2008) used the Powell’s method. The diagnostic check-
ing reported in Baragona & Cucina (2008) uses the test statistics Qm (for
the conditional mean) and Qmm (for the conditional variance) and supports
adequacy of the estimated DTGARCH model. The GAs-based program for
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identifying and estimating a DTGARCH model is available on the web site
http://w3.uniroma1.it/statstsmeh/index.html as well.

5 Conclusions

Using GAs for identifying and estimating threshold models in time series
seems promising according to Monte Carlo simulation results reported in the
literature. Yet widespread applications are rather limited mainly because
of some lack of easy-to-use computer programs. In this paper we present
GAs-based procedures for handling some popular threshold models. The
computer programs that implement these GAs-based methods are presented
are available on the web site http://w3.uniroma1.it/statstsmeh/index.html.
Programs are flexible, in that allow sensible parameters to be specified by
the experienced users, and user-friendly, as default parameters are provided
that proved to work well in a wide range of applications.
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