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Abstract

Iterated Bessel processes R (t), ¢t > 0, v > 0 and their counterparts on
hyperbolic spaces, i.e. hyperbolic Brownian motions B"?(t), t > 0 are ex-
amined and their probability laws derived. The higher-order partial differ-
ential equations governing the distributions of Ir(t) = 1R” (2R (¢)), t > 0
and Jr(t) = 1RY (2R (t)|?), t > 0 are obtained and discussed. Processes
of the form RY(T}), t > 0, B"(Ty), t > 0 where T; = inf{s : B(s) = t}
are examined and numerous probability laws derived, including the Stu-
dent law, the arcsin laws (also their asymmetric versions), the Lam-
perti distribution of the ratio of independent positively skewed stable
random variables and others. For the process RY(T}"), t > 0 ( where
T/ = inf{s : B*(s) = t} and B* is a Brownian motion with drift u)
the explicit probability law and the governing equation are obtained. For
the hyperbolic Brownian motions on the Poincaré half-spaces H,, H. 3+ we
study B"P(T3), t > 0 and the corresponding governing equation. Iterated
processes are useful in modelling motions of particles on fractures ideal-
ized as Bessel processes (in Euclidean spaces) or as hyperbolic Brownian
motions (in non-Euclidean spaces).

Keywords: Bessel process, Modified Bessel functions, Hyperbolic Brownian
motions, Fox functions, Student distribution, Subordinators
AMS: Primary 60J65, 60J60, 26A33.

1 Introduction

The analysis of the composition of different types of stochastic processes has
recently received a certain attention with the publication of a series of papers
(see for example [3], [2], [1], [7]). The prototype of these composed processes is
the iterated Brownian motion whose investigation was started in the middle of
the '90s. Beside the distributional properties of the composed processes much
work was done in order to derive the equations governing their probability laws.
It was found that these processes are related both to fractional equations and to
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higher-order equations as is the case of iterated Brownian motion. The core of
this paper considers the Bessel process R} (t), t > 0 started at point x € [0, c0)
and with parameter v > 0 at different random times. We firstly study the
process Ig(t) = R} (R3(t)), t > 0 where R], R] are independent Bessel processes
with the same parameter . This is equivalent to studying the Bessel process
RY at a random time which is represented by an independent Bessel process.
Iterated processes have proved to be suitable for describing the motion of gas
particles in cracks (or fractures). For the iterated Brownian motion this is
considered in DeBlassie’s paper [6] but a similar interpretation can be given to
iterated processes obtained by composing Bessel processes (this is the case here)
or fractional Brownian motions (see [7]). The law of I(t), t > 0 is expressed in
terms of Fox functions and possesses a Mellin transform equal to
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We are able to present the p.d.e. satisfied by the distribution of Ir(t), ¢ > 0
which differs for v > 1 and v < 1 because in the latter case an impulse delta
function appears as in the iterated Brownian motion. The equation we obtained
reduces to the fourth-order heat-equation
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for v = 1. A related process considered in Section 2 is

Jr(t) = RI(R3 (D), ¢>0 (1.4)

where R], RJ are independent Bessel processes starting at the origin. The
probability density of (1.4) can be expressed in closed form as
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a(r,t) = Pr{Jg(t) € dr}/dr = mm (&) . nt>0 (L5

where K is the modified Bessel function of order zero (see [9, formula 3.478]).
The equation corresponding to (1.5) has the form
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and includes the equations governing the process By (|Bz2(t)[?), t > 0, for y =1
(and coincides with 3.16 of [7] for H = 1/2). Interesting results can be obtained
by considering the Bessel process RY(t), t > 0 stopped at the first-passage time
T;, t > 0 of an independent Brownian motion. Processes stopped at different
types of random times can be viewed as processes with a new clock which
is regulated by an independent Brownian motion B. The r.v.’s T} = inf{s :
B(s) = t} tells the time at which the Bessel process must be examined. This



means that the clock considered below is timed by an independent Brownian
motion. Therefore RY(T}), t > 0 represents a motion where accelerations and
decelerations of time occur continuously. We show that the distribution function
of RY(T;), t > 0 reads
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We show also that
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which coincides for v = n, t = 1/4/n with the folded Student distribution.
Related distributions are

Pr{1—+};%736dr}/dr (1.9)

a4l
————)(1—10)7*1 e 0<w<1
Jr T 2 : ’ '
®) (w—#) + e

_2a (s
Bl
)

Furthermore, we obtain also that
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with 0 <7 <t and v > 0. For v = 1 we have the arcsin law. Bessel processes
RY(T}), t > 0, v > 0 stopped at first passage times T; = inf{s : B¥(s) =
t} where B* is Brownian motion with drift ;4 are examined in Section 3. In
particular we prove that

qu(r,t) =Pr {RY(T}") € dr} /dr
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withr >0,t>0,v>0, u>0.

The last section is devoted to compositions involving the hyperbolic Brown-
ian motion, that is a diffusion on the Poincaré upper half-space H} = {x1,..., 2, :
Zn > 0} with particular attention to the planar case Hi and the three-dimensional
Poincaré half-space H f:’_ In the space H i we study the hyperbolic distance from
the origin of a hyperbolic Brownian motion stopped at the first-passage time T,

t > 0 of the standard Brownian motion whose probability law can be explicitly
written as
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with >0, ¢ > 0. In H? the distribution of J3(t), ¢t > 0 reads

2v/2 nt sinh
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The evaluation of the integrals leading to (1.12) and (1.13) necessitates the
following formula
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where p,v,8,v > 0 and K, is the modified Bessel function (see [9, formula
3.478]). The equations governing (1.12) and (1.13) are respectively
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The hyperbolic distance of a hyperbolic Brownian motion plays in the non-
Euclidean spaces HY, n = 2,3,... the same role of Bessel processes in the
Fuclidean spaces. The structure of the probability law of ng (t), t > 0is
rather complicated (see formulae (4.9) and (4.11) below) and therefore we have
restricted ourselves only to compositions involving first-passage times. Much
more flexibility is allowed by three-dimensional hyperbolic Brownian motion
Bg'p (t), t > 0. Millson formula (see [10]), in principle, permits us to examine
compositions of higher-dimensional hyperbolic Brownian motions stopped at
random times.

2 Composition of Bessel Processes with differ-
ent types of processes

We first present some information about the Bessel process of order v > 0 and
starting from = > 0. The Bessel process R} (t), t > 0 is a diffusion with law
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p(t,r;0,x) = i <;) exp {— o }Ig—l (7) , x,r>0,t>0 (2.1)

governed by the infinitesimal generator
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The Bessel function 7,(z) is defined as

B [ (2/2)V+2k
I(z) = ;) T v T 1) (2.3)

For v = n , n € N, the Bessel process represents the Euclidean distance of a
n-dimensional Brownian motion (By(t),..., By(t)), ¢ > 0 from the origin. For

(2.4)




the explicit law (2.1) reads
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p(t,T,O,a:):%(;) eXp{_ of }Igl (7)7 x,r>20,t>0 (25)

and simplifies for x = 0 as
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=" k(r,t), r>0,t>0 (2.6)

where the function k = k(r,t), r € RT, ¢ > 0 is the heat kernel satisfying the
p.d.e.
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where A is that in (2.2) with ¥ = n. We point out that the probability density
(2.6) satisfies the p.d.e.

dp 1 (0% d (p 1(0% ~v—-10p ~-1

R B 717(7) == _ — 2.8

ot 2{87“2 % )8r r 2] Hr2 r aTJr r2 pe (2:8)
for v = n. The differential operator figuring in (2.8) is usually referred to as the
adjoint of (2.2). For the operators introduced above the following interesting
fact turns out to be very useful
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Our interest here is to study the composition of the Bessel process 1R} (t),
t > 0 outlined above with different processes or also with an independent Bessel
process 2R (t), t > 0.
2.1 The Iterated Bessel process
We consider here the iterated Bessel process

In(t) = \RYRY(1), ¢ >0 (2.10)

where 1R}, 2R} are independent Bessel processes of dimension ~ starting at
x = 0 and possessing density
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The distribution of (2.10) reads
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ds, r>0,t>0 (2.12)
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and has Mellin transform equal to
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The distribution (2.12) can be expressed in terms of Fox functions which are
defined in the following manner:
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where 0 € R and
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By direct inspection of (2.13) we see that in our case n =0, m =2, p=q = 2,
bl = ’}//2—1/2, b2 = 7/2—1/4, ﬂl = 1/2, /62 = 1/4, ap = az = ’}//27 a1 = Qg = 0.
By considering the following property of the Mellin transform
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we conclude that (2.12) can be represented in terms of Fox functions as
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In view of the property of Fox functions (see [15])
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Moreover, the Mellin transform (2.13) generalizes the moments of (2.10) and

after some easy calculation, we have
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Formula (2.20) shows that the mean distance of the iterated Bessel process

increases as ¢t and the dimension v of the space where the iterated Bessel

processes develop enters only in the multiplying coefficient in (2.20). In the

next theorem we derive the governing equation of the law (2.12) of the process
(2.10).

Theorem 2.1. The density function (2.12) satisfies, for 0 < v <1 the equation

dg 1 <82 (7_1)81><82 +7—16+(7—1)(3—27)>q

-

m
4

@)%, m=12,... (2.20)

v

E{Ir(t)}" =2

ot 28 \arz arr) \or? r Or r2
1 o 1
— (= —(=-1D==)s0). 2.21
To@0iT () (aﬂ Y )8rr) ) (2:21)
For ~v > 1 the governing equation becomes
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Proof. It is convenient to write the distribution (2.12) as

alr,t) = / " p(r, 9)p(s, t)ds (2.23)

where
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We start our proof by evaluating the time-derivative of (2.23) as

dq [~ 0 o
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We note that
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and thus for s — 07 and s — oo vanishes for all v > 0. A further integration
by parts yields that
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for 0 < v <1, because
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and p(r,s) — d(r) for s — 0F. Furthermore,

p(s,t) = consts7 " le™ %

and this explains why v < 1 implies the appearance of the delta function. By
collecting all pieces together we have that
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By exploiting the following manipulations
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In order to transform equation (2.27) into the form of the statement of Theorem
2.1 we note that
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as a direct check shows. Furthermore, if we write
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By applying the same trick as above we have that
( P y-19 ) 10 ¢

a2 v or)rorm

(9 4y-10 1 (y=1) 10
—(arﬁ v &“)T’Y—l{_ 2 +rar}q
1 0? 01 (y=1) 190
=T (aﬂ‘”‘”arr){‘ = +rar}q-

An analogous step must be applied to the singular term involving the Dirac
delta function so that result (2.21) follows. O

Remark 2.1. For 7 = 1 equation (2.21) becomes
dg 1 0% 1 d%5(r)
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which is the fourth-order equation governing the iterated Brownian motion.
This is because the process Ir(t), t > 0 for v = 1 becomes the reflected iterated
Brownian motion. It is well-known that the law of the iterated Brownian motion
satisfies the fractional equation

d2q 1 0%q
otz 923 0%’

Remark 2.2. For v = %, equation (2.22) takes the form
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This is the simplest equation involving iterated Bessel functions.
If we consider the slightly modified process
Jr(t) = 1R(|2RJ()*), t>0 (2.30)

we have the advantage that the law can be expressed explicitly in terms of
modified Bessel functions. In fact, we have that the probability density g of
Jr(t), t > 0 reads

27771 Rl B e r
g(r,t) = Mt)?l“?(g)/o Se = Fds = WKO (\/i) (2.31)
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where

001 fI:Q 9
Ko(z) = ; SXP{ T S ds, x>0

(see [9, formula 3.478]).

Theorem 2.2. The probability law of the process Jr(t), t > 0 is governed by
the following third-order equation

9g 1 9% 9q g (y—1)?
at—‘z{’”ara”(?—”awarr , nE>0. (2.32)

Proof. We start by working on the probability density (2.31) which can be
written as

q(r,t) = /000 p(r,s)l(s,t)ds, r>0,t>0 (2.33)
with
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I(s,t) = (Zj)_;lf_(f) . 5>0,t>0 (2.35)
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We note that the density (2.35) is a solution of the following equation
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as a direct check shows (see also [18]). In view of (2.36) from (2.35) we have
that
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Formula (2.32) can be derived by simple calculation. O

2.2 The Bessel process at first-passage times

Let T3 = inf{s : B(s) =t} where B is a Brownian motion (possibly with drift
1) independent from the Bessel process R(t), t > 0 starting from zero. In this
section we study the new process RY(T;), ¢ > 0 concentrating our attention
on its law and some related distributions. Stopping the Bessel process RY at
the random time Ty can cause either a slowing down (with respect to the nat-
ural time) or a speed up of the time flow. The probability of slowing down is
measured by the following integral

2
t
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PriT, <t} = /0 ﬁdm (2.37)

which decreases for all ¢ since
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Furthermore, we observe that
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and this confirms the asymptotic speed up of the time flow implied by the
subordinator T3, t > 0. We have now the explicit distribution of RY(T}), t > 0.

t>0. (2.38)

[V N

(2.39)

Theorem 2.3. The distribution of RY(T}), t > 0 reads
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Remark 2.3. We check that the distribution (2.40) integrates to unity,

o0 2t T (LH) o0 r'y—l
Y - = 2
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With similar calculations we can obtain the p-moments for 0 < p < 1
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We note also that for v = 1, the density law (2.40) coincides with a folded
Cauchy with scale parameter ¢ and location parameter equal to zero.

For the distribution function of RY(T}), t > 0 we have the following result

r{RY r _ﬁr(%ﬂ) > y !
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for v > 1. The recursive formula (2.41) yields some interesting special cases

W7 v=2
Pr{RY(T}) >r} = % [tQL,Q + 2% (g — arctan %)} , Y=3, (2.42)
2
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An interesting related distribution is presented in the next theorem.

Theorem 2.4. The process

- 1

R(t) = TET ¢ 0 (2.43)

has distribution

Pr{R(t) € dw}/dw
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Remark 2.4. For v = 1 the distribution (2.44) offers the following expression

A
(w— B)2+ A%’

_t
14t2
2
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We are able to check that (2.46) integrates to unity. Indeed
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because A2+ B?— B = 0. In the general case we can verify that (2.44) integrates
to unity for all v > 0 in the following manner
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Remark 2.5. As a by-product of our calculations we show that

[ = () T 3 (34)

We start from the relationship in the proof of Theorem 2.4 integrated in (0, 1)
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> yld t\E (g
y'hdy -y
t o (t2+y)"{+ - 1+t2 (1+y)7;rl Y
Thus the identity
) L S ) Rl G i
Gare T e b e
emerges. Therefore,
t 1 5y 1
t— v t 2 ' (2)I (=
/ ((1 + j)) W= (1 + t2> 2(132”(12)) ' (2.48)
2

Remark 2.6. Another result related to distribution (2.40) states that

3 r\z- r\ 31
Pr {M;(Tt)P € dr} Jdr = n B( ! (;) ' (1 - ;) (2.49)

2)2)

for 0 < r < t, v > 0. It sufficies to evaluate the following integral
t3 'H'l 1
Pri————-¢€ dr} Jdr = / —dy.
{ﬂ+mwmw rg W\fjﬁny+ﬁwl
For v =1 from (2.49) one obtains the law of sojourn time on (0, 00) of Brown-
ian motion and the even-order pseudo processes, while for odd values of v the

distribution of the sojourn time on the half-line for odd-order pseudo processes
emerges (for 7 = 3 see [16], v =2n+ 1, n > 2 see [11]).

Remark 2.7. For v = n the process R"(T}), t > 0 can be represented as

R™(T)) = zn:B]?(Tt), t>0 (2.50)

where B;(t), t >0, j = 1,2,...,n are independent Brownian motions and the
r.v.’s B, ( 1), t > 0 possess Cauchy distribution. Therefore (2.50) represents the
Euchdean distance of an n-dimensional Cauchy random vector (C1(t), ..., Ca(t)),
t> 0.
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Remark 2.8. For us it is relevant to study the distribution of

1
S(t) = ———, t>0.
( ) R’Y(Tt)
After some calculation we find that
ot T (4 1
P{S(t) € dr} =dr — (3) , rt>0. (2.51)

VT T(3) (1+r22)"5
We note that for ¢ = ﬁ , 7 = n the density (2.51) coincides with a folded
t-distribution with n degrees of freedom and its density takes the form
2 T() 1

f“mF:WQIW@ (14 2)%

r>0. (2.52)

For n = 1, the density (2.52) coincides with a folded Cauchy and coincides with
(2.40) for v =1 and at time ¢ = 1.

Theorem 2.5. The probability law (2.40) of the process RY(Ty), t > 0 is a
solution to the following equation

0? 02 01

Proof. Tt is easy to check that the density of the first-passage time

2
s

te” 2
s,t) = , St>0 2.54
Jet) = s (2.54)
satisfies the equation
’f_of
—-— =2 t . 2.
5 =250 s> 0 (2.55)
In view of (2.55) we have that
8%q ° 0? e 0
Gt = | rregmtends =2 [ i) (s ds
S§=00 o 8
=2p(r, s)f(s,1) =2 op(rs)f(s,t)ds
s—0 0 85

O

Remark 2.9. For 7 = 1 the Bessel process coincides with the reflected Brown-
ian motion so that R*(T};), t > 0 is a reflected Brownian motion stopped at the
random time 7} and therefore becomes a folded Cauchy process. It is easy to
prove that the Cauchy density

Q(Tvt) = 71'( !

2 +12)’ r,t>0 (2.56)

solves the Laplace equation and this agrees with (2.53).
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By inverting the role of the Bessel process and of the first-passage time we
obtain a new process somehow related to RY(T}), ¢t > 0 which we denote by

Trv) = inf{s: B(s) = R"(t)} (2.57)

where Tr~(;), t > 0 is the first instant where a Brownian motion B first attains
the level RY(t), t > 0 (and R” is independent from B). The probability law of
(2.57) becomes

2 2
®© g7 g7 le %

e
2 ds
o V2mad (2t)3D(3)
o0
= 2 / 876_§(%+%)d8
0

Pr{Tgy € dz} /dx = (2.58)

VA+n® T(E)
It can be checked that the distribution (2.58) integrates to unity.

Remark 2.10. It can be easily checked that the following relationship holds
a2y L RY(Ty), > 0. (2.59)
From (2.59) one can also infer that

i.d. 2
Ty = (R (T )", t>0. (2.60)

In particular, for v = 1 the result (2.60) says that

<8

Tri(t L (B(T\/g))2 id- (C(\/f))g, t>0. (2.61)

Remark 2.11. We note that the probability density (2.58) for v =1, ¢t =1
coincides with the ratio of two independent first-passage times through level 1
of two independent Brownian motions. In other words we have that

1
Pr {TRl(l) € dw} = Pr {Wl/g € dw} = %54_21

dw, w>0 (2.62)
where Wi/, = T11/2/T12/2 and T11/2, T12/2 are the first-passage times of B' and
B? through level 1 and are stable r.v.’s of order 1/2.

Remark 2.12. The last statement is a special case of the following result. For
stable positive, independent r.v.’s T}, T2 with Laplace transform

Ee M= A>0,0<v<1 (2.63)
the ratio T} /T2 L1, where
5 v—1
Pr{W, € dw} /dw = 22 v w >0 (2.64)

7 14+ w2 4 2w” cosmv’

(see e.g. [5], [12]). We provide a simple and self-contained proof of this result
based on Mellin transforms. Let us consider two independent, positively skewed

16



stable r.v.’s Y7, Y5 of degree v > 0 with Laplace transform (2.63). The density
function g of the ratio Y1/Y5 reads

g(w) = /000 zf(z) f(zw)dz, w >0 (2.65)

where f is the density of Y7 and Y3. The Mellin transform of (2.65) becomes

Moo = [ g (w)dw = / T { / N :cf(x)f(xw)dx} dho
—(Mg)(n) (Mg)@—m). 0<Rin} <L (2.66)

In order to write f we resort to the Fourier transform (see e.g. [19]) and write

Flo) = & /Oo exp {—iﬂx — 18] cos % (1 — isgn(f) tan %) } dj. (2.67)

2 J_ o

This is because
Ee?Y =[by (2.63)] = exp {—(—i)"} = exp {—|8|"e F ()]
veos ™ (1— i ™
:exp{—|ﬂ| cos — (1 isgn(B) tan 5 )} (2.68)

We now evaluate

wanm =" a o [ ew{-ine - sre o as) o

:F(ﬁ) {/_ |8~ exp {—i%nsgn(ﬁ) - |/6'|Ve—i7r;sgn(ﬁ)}dﬂ}

TV

=— { 0<><> B~ Texp {—z%n — BYe i }dﬂ

e — LT v it
+/O Gresp (! - pre }dﬂ}.
Since
| aresp{ < pre i hass [ prep (iT] - g fag
—e % [ e (< s ® [ g e (-7 ¥ jap
0 O

n

—_iTn 0o sy e}
e 1-m_ 1 _, _;n7,m e 2 1-m_ 1 _, ;0% _,m
= 2 v “leTFeTt R TiT g, 4 2w “leTFel2 Ty
v 0 v Jo

_ le—iﬂn-&-i%l—\ (1 - 77) + leiﬂn—i%l—‘ (1 - 77)
174 14 v v

2 1-— 2 1-
cos<7r7]7r>l“< n)sin(wn)F( 77)
v 2 v v v

we have

(Mf)(n) = % sin () T (1;”> , 0<R{n} <L (2.69)
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Analogously

(MF)2 —n) :Wsm(%_m)r(”;l) (2.70)
__ Wsm(m)r (” ; 1) - F(lﬂ_ ) sin (7)) T (";1 n 1)
and thus the Mellin transform of g becomes
(Mg)(n) = F(”)ZSV‘ Dy (1 — 77) sin® () T (77;1 + 1) (2.71)

and in light of T'(z)T'(1 — z) = 7/ sin 7 we obtain

(Mg)() =T (1 - ”) r (1 _ 1;”) sin (1) = *“‘m((“]fn) (2.72)

v sin (7

Let us take the density

T sin v
h = >0,0 1 2.73
() m(x2 + 1+ 2z cosvm)’ r=00svs (2.73)
and evaluate its Mellin transform
sinwty [ " dx
h = . 2.74
(MA) () T /0 22+ 14 2z cosvm (2.74)

We have that

/ 2" h(z)dx
0

_sin7y /OO "
- T 0 (.’I} + e—i‘n’u)(x + ei‘n’u)
1 oo
=— / z" 1 - — 1 - dx
2mi J (x+e i) (x4 eimv)

:i. z" [/ e~ u@+eT ™) gy —/ e“(”eiw)du} dx
27TZ 0 0 0

F(n + 1) > —iTV du > 1T du
= [/0 exp {—ue™"™} e /o exp { —ue'™} u”*l}
F(’I] + 1)F(—’I]) —imvn _ imun

ori e e

r DI'(—
= —(77 + D0(=n) sinmyn = —— : .
m sin —nm sinnpm

sinTvn  sinwun

Furthermore

e e} v—1 o3
1 z~! sinmw dr. Rl > 1
/0 * m(z? + 14 22¥ cosv) z, R} v

:/oo (e — 1/oo y%*lh(y)dy _ Lsinmy — 7 _ 1 sin 7
0 0

. 1 T 1— .
v v sin =7 vsin —Ix

where the change of variable has been introduced in the first step.
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Remark 2.13. A relationship between Mittag-Leffler functions and the distri-
bution appearing in (2.64) exists and reads

1
e’} —Avitx .v—1 _:
e x sin v
dr = B ,(—=X\t¥ 2.75
/0 m(x? + 1+ 22¥ cos mv) v 1o ) ( )

with A >0,0<v<1.

We now consider the composition Z(t) = C(S,(¢)), ¢ > 0 where C is a
Cauchy process independent from the stable law S, with Laplace transform

Ee v — =" A >0,0<v <1, t>0. (2.76)
We remark that for v = 1/2, (2.76) gives Ee~*51/2() = ¢=tVA which represents
the Laplace transform of the first-passage time of Brownian motion for level
t/\/2, t > 0. The probability distribution of Z(t), t > 0 reads

Pr{Z(t) € dz}/dz /000 ﬁpy(s,t)ds
1 +oo

- / (s, 0)ds dB (2.77)
0

:% .

where p,(s,t), s > 0, t > 0 is the law corresponding to (2.76). Therefore, in
view of (2.76) we have that

1 > ) v
Pr{Z() € d}/dz = 5- / e8I 43w e Rt >0, (2.78)
Y8

— 0o

3 Some generalized compositions

We somehow generalize the previous results by considering the twice iterated
Brownian first-passage time. By

Ir(t) = T%tz =inf{s, : B'(s;) = inf{sy: B?*(sp) =t}}, t>0 (3.1)

we mean a process which represents the first instant 7' where a Brownian
motion B hits the level 772 and T represents the first instant where a Brownian
motion B? (independent of B') hits level t. Clearly the probability density of
the process (3.1) reads

2

2 .
® ge7 % te

Pr{Ir(t) € da}/dx = | Wﬁd& (3.2)
For the n-stage iterated Brownian first-passage time we have

Lit) = T}F,l, t>0 (3.3)
and the corresponding law becomes

[*(t,x) =Pr{I}, € dx}/dx (3.4)
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2 +2

/ / s1e” = 826 o te Zn-1 p
.. S1...dS,—
V2rad \/27s} 3 ! nl
For the n-times iterated Brownian first-passage time
I7(t) = inf{s; : B'(s1) =inf{sy : B%*(sy) = ... =inf{s, : B(s,) =t}}} (3.5)
we have the following theorem.

Theorem 3.1. The distribution (3.4) of the process I:(t), t > 0 satisfies the
following p.d.e.

0% n_q O
n 22 -1~ rn .
() =2 ) (36)
and possesses Laplace transform
/ e M (t, z)dx = exp {—t)\‘%" 217%"} . (3.7)
0
Proof. In view of (2.55), by successive integrations by parts we have that
2*"q .,
L) = (38)

g2

* s1e” e 826 S 9" te Tm1
on dsl...dsn,lz
V2rad \/2ns? Ot 3
n

b2 L— 2

n—1
/ / spe” 2 826 T on-1 02 te Zon-1 d d
— S1...A8p—1 =
n—1 n
V2rz3 \/27s} Ds? 3
n

n__ 8 n
22 1%]0 (t,z)

The Laplace transform of (3.4) has a very nice structure and reads

/ e ANt x)de = (3.9)
0
— 2
- t 25p—1
/ / / s1€_ 2 ¢ dSl...dSn_1d$=
Voma? \/27rsf; 1
s% +2
oo oo YT t T 25, 1
/ / eV o te dsy...dsp,_1 =
0 0 \/2773:{, \/27TS§’L_1

o—tV/2 ...\/ﬁ:exp{_t)\%nzl—%n}, t>0u>0.

If we take the Laplace transform of equation (3.8) we get that

0%
t,A) = 22" LUl (t, ). 1
DLt 3) =2 7 (1, 3) (3.10)
It is straightforward to realize that (3.9) satisfies equation (3.10). O
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The 2™ initial conditions pertaining to (3.6) are given in the following form

* o dt o 1 _1\k
/0 e )L:de - (—/\2" 2 2") . (3.11)
Remark 3.1. If we consider the generalization of (2.40), that is
RY(IZ(t)), t>0
the corresponding probability law satisfies the 2™-th order equation

0¥'q 221 ( 02 01

oz~ 2 \az 0 Vg7

52 ) q, r>0,t>0. (3.12)

Remark 3.2. The following shows that between the iterated first-passage time
I7 and the iterated Brownian motion there is a strict connection. Indeed the
distribution (3.2) can be written as

_£2 o 2 2
t x 2s

— — ds
vV Noresl V 27rs3 T Jo V2mwx+27ms
:;Pr{B2(|B (z)]) € dt}/dt, x>0,t>0.

Pr{Ir(t) € dz}/dx =

We now consider some subordinated processes involving the first-passage
time of a Brownian motion with drift p, say T}, ¢ > 0. To make this topic
as self-contained as possible we present a derivation of the distribution of T},
t>0.

Lemma 3.1. The maximal distribution of a Brownian motion with drift u reads

P{maxB()>ﬁ}:Pr{Tg§t}, 6>0,t>0 (3.13)

0<s<t

w2 2

2#5/00 e_Td /OO e_wTd
=e w + w.
% V2T B;gt V2T

Proof. For 3 > a we have that

Pr {Orgai(t B,(s) > B, Bu(t) < a} =Pr {T;; <t, Bu(t) < a} (3.14)
—E {H[ngt] Pr {B (1) < a‘Bﬂ(Tg)}} .
Furthermore,

Pr {B (1) < a‘ BM(TZ;)} (3.15)

-/ weXp{_<w—ﬂ—u<t—T5>>2}
oo\ [2m(t — T%) 2(t = T)

« dw e2u(’w—5) (w — ﬂ + ,Uf(t - TE))Q
/ I a 2t — Tf)
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y _ _TEY2
B -w=y = /ﬁ dyeth“ exp{(ﬁ Y+ pu(t Tg))}

\/7 2(t — Tg)
5 {62#(ﬁ*Bu(t))]1[Bu ()225-a] M(Tg)} .

Thus by inserting (3.15) into (3.14) we get that

Pr{maxB (s) > B, B,L(t)<a}:

0<

_BL _
B {Tpp g B{e# O POy, (1509 -a| Bu(T5) |} =
B {20 POy i, 539-a) = B {0 Lip, (155501}
In the light of the calculation above we can write that
e s Bls) > 9} =
Pr{ g B,(5) > 0, B,(0) < 8} + Pr (B0) > ) =

E {62“(6_3“(“)]1[3}‘@»%3]} + Pr{B,(t) > B} =

_ (wtpt)? _ (w—pt)?
2 2t

6 oo e [e.¢]

24 ) —
e ——dw —|—/ —_— =
/ﬁ \/27‘1’ 8 \/27r

28 _Td _p {T“<t}.
B-Hn /2 ﬁ#t v " B =

This concludes the proof. O

We list here some consequences of Lemma 3.1 :
i) the density of T reads

_ B—ut)?
e

W, 6>0, t>0 (316)
7

q(B,t) = Pr {T[; € dt} Jdt =

ii) the density ¢(0,t) satisfies equation

8%q dq dq
T4 5,9 _ 9% 1
052 286 28t 6>0,t>0 (3.17)

iii) the following relations hold

(3.18)

o0 —Blul £6—2B|u\7 <0
/ t Pr{T% € dt} = B e :{ | H
0

||

~ V2B (1 N
/ e_’\tPr{Tg € dt} = ePre VAT (3.20)
0

forﬂ>0,,u€R,n>%,)\>O.
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We now present the distribution of RY(T}"), ¢t > 0 which generalizes the result
(2.40).

Theorem 3.2. The distribution of RY(T!"), t > 0 has the following form
qu(r,t) =Pr {RY(T}") € dr} /dr

y+1

At t,y—1 2 1
cr ( s > Koot (Julvr2 +22) (3.21)

T2IT (3) Var \r2 2
withr >0,t>0, peR.
Proof.

o= 2B e as) (322)
q, (7, = r € as .
g o (28)3T ()

_ ’?tetﬂr'Y—l OOS_'YTH_le » +tz su dS

20 (3) var Jo
4t etrpr—1 w? kN
: ( > Ko <|u|\/r2 +t2) . (3.23)

T9ID (2)V2r \rP A 2
Result (3.21) emerges on applying formula (1.14). O

Remark 3.3. By applying the asymptotic formula for the Modified Bessel
function K,

2v~1T

K, (z) ~ T(V), for x— 0" (3.24)
(see p 136 [14] or p. 929 [9]) we have that
4 tr-1 2% T (A

qO(T’t) =7 > A ( ~2, 1)

ATV 1 o

2 try—1 v+
= r , ,t>0.
L (3) V7 (r2 +12)"3 ( 2 ) '

The equation governing the distribution g, (r,t) is given in the next theorem.

Theorem 3.3. The distribution (3.22) solves the following p.d.e.

0 02 0? 01
I — — - = — 1 > 0. 2
(“at 8t2>qu (32 (r=Dz- = )qu, rt>0, p>0. (3.25)
Proof. We apply the derivatives 2 at2 —2ul 5 to distribution
qu(r,t) = / p(r, s)pu(s,t)ds, r>0,t>0, p>0. (3.26)
0
We readily have that (in light of (3.17))
0? 0 e 0
= _ 9~
(W u8t> u(rt) = / p(r, s) aspu(s,t)ds

- 2/ 55 (1 9)pu(s,)ds = [(3.17)] = (58:2 —(v— 1);i> qu(r,t).

O
For © =0 in (3.25) one retrieves equation (2.53).
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4 Compositions of hyperbolic Brownian motions
on the Poincaré half-space

We consider the classical model of hyperbolic space represented by the Poincaré
half-space Hy = {x,y: y > 0} with the metric

2 _ dx? + dy?

ds e

(4.1)

The hyperbolic Brownian motion on Hj is the diffusion process with generator
‘H defined as

2 2 2
D
Hy =5 { ot W} (4.2)

and its transition function is the solution to the Cauchy problem

ou _
{ 5 = Hou, z€R, y>0 (4.3)

u(z,y,0) = 6(y — 1)8(x).
It is convenient to study the hyperbolic Brownian motion in terms of hyperbolic

coordinates (1, «) where 7 is the hyperbolic distance of (z,y) from the origin
(0,1) of Hy . In explicit terms (1, @) and (x,y) are related by

224+ +1
coshn = ————. 44
U 2 (4.4)
Furthermore, « is connected with (z,y) by
24,2
¢4y -1
t = 4.5
an o 5 (4.5)
We note that the formulas transforming (z,y) into (, ) are
_ sinh 7 cos « >0
T = o5 nfsinlhnsina’ n (46)
y= coshn—sinhnsina’ 2 <a< 2

Some details on these formulas can be found in [17], [4]. The Cauchy problem
(4.3) can be converted into hyperbolic coordinates as follows

9t ~ 2 |sinhy on "™ 9y I e t 4.

subject to the initial condition
u(n,a,0) =d(n) forall «e€l0,2m).

If we concentrate on the distribution of the hyperbolic distance of the Brownian
motion particle from the origin we disregard the dependence in (4.7) from «
and study

Ou 1 1 o : o)
{ Bt — 2sinhn oy (smhna—n) u (4.8)
u(n,0) = d(n).
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It is well-known that the solution to (4.8) has the following form

2

( 7:)—6_é R L S >0,t>0 (4.9)
amnt) = 7t3 Jy, v/coshy —coshnp 0 ’ ’ ’
If we pass from problem (4.8) to
ou _ 10 il
{ Ot — sinhn on (Slnhn%) u (410)
u(n,0) = 6(n)

(by means of the change of variable ' = ¢/2) we obtain a somewhat different
distribution which reads

t! 02

e~ T o0 pe ar
) = / .
amt) V/m(2t)3 ), /coshy —coshy 7

n>0,t>0 (4.11)

In the first paper [8] (and also in the subsequent literature) the factor 1/2 does
not appear and the heat kernel is (4.11) (up to some constants). Of course the
probability density pa(n,t) is given by

p2(n,t) = sinhnq(n,t), n>0,1t>0. (4.12)

A detailed derivation of (4.9) and (4.11) is given in [13].
We note that the probability distribution (4.12)

2

Sinhne‘% o0 (pe_%
1) = dey, >0,t>0 4.13
pa(1;1) V3 n cosh ¢ — coshn A ( )
solves the adjoint equation
op 1 (0% 0
8;:2{37722 —%(cothnpg) , n>0,t>0 (4.14)

For the distribution (4.13) further characterizations are possible. Indeed, we
can rewrite pa(n,t) as follows

sinhn
v/cosh Ty — coshn

where the mean is taken with respect to the distribution of T}, ¢ > 0, which is
the first-passage time of standard Brownian motion. Moreover,

p2(nt) = V2e S E {H[Tm,] } , n>0,t>0  (4.15)

_t
e 38

(n.1) BT sinh n
) = 2
b2t V2rt3 (R >n] \/cosh R2(t) — coshn

}, n>0,t>0 (4.16)

where R?(t), t > 0 is the 2-dimensional Bessel process described above and the
mean-value is taken with respect to the distribution of Bessel process R2.

We give now an alternative form of p2(n,t) in terms of the Euclidean distance.
Indeed, the distribution of B"?(¢), t+ > 0 in H, can be written as

2
e"s d [®gpe
) =—2 — v/cosh ¢ — coshnd 4.17
p2(n,t) hﬂtdn/n t P naye ( )
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_1 d
=— 237%%E {H[Rz(t)>n] \/COSth(t) — coshr]} , n>0,t>0.

If we take an Euclidean right triangle with one cathetus of length /coshn and
hypotenuse v/cosh ¢, then \/cosh ¢ — coshn represents the length of the sec-
ond cathetus. Therefore the integrals above represent the length of the second
cathetus weighted by means of the probability distribution of the Bessel pro-
cess in the plane. Thus, the formula (4.17) hightlights the relation between the
distribution of the hyperbolic distance in H2+ and the corresponding Euclidean
distance in R%2. We can recognize the additional factor of (4.17) as a gamma
distribution with parameters 1/2, 1/8.

We now examine the hyperbolic Brownian motion B"?(t), t > 0 stopped at
the first-passage time T}, ¢ > 0 of an independent standard Brownian motion B
defined as T; = inf{s: B(s) =t}. In other words we study the process

Jo(t) = BIP(T}), t>0 (4.18)
with distribution

t2
te 2z

ﬁds, n>0,t>0 (4.19)

P, (n,t) = /Oo p2(n, )

vtz

2s 8
=t sinh
sin 77/ / \/coshgo—coshnsf‘ifyr

t sinhn pdy 1 1
= K. /2 12
V231 J, +/coshy —coshn (92 +12) 2\gV¥ +

where we have used formula (1.14). The functions K, are related by the follow-
ing recursive formulas

dsdp

Kyoi(z) = Kooy (z) + 2%1(”(:5) (4.20)
and thus
Ka(z) = Ko(x) + %Kl(z). (4.21)

The function K, is the so-called Modified Bessel function of the second order.
In analogy with the representation (4.17) we can give the following expression
for the distribution of hyperbolic Brownian motion stopped at T3, t > 0

2
ps,(n,t) = \/>d77 { t)\/cosh Cy — coshn Ko ( C(t) +t2> ]I[C(t)>n]}

with n > 0, t > 0, where C(t), t > 0 is a Cauchy process. For the distribution
(4.19) we can state the following result.

Theorem 4.1. The process (4.18) has distribution (4.19), say pj, = ps,(n,t)
which solves the following Cauchy problem
0? 0? o 1
_ = — - =— 0)=2¢ t> 0. 4.22
8t2pJ2 (8772 877 tanhn) P2 Q(’r]a ) (n)a 0> ( )
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Proof. The distribution of (4.18) can be written as

punt)= [ palmgls.tids
0
where g(s,t) is the distribution of T3, ¢ > 0. In view of (4.14) we have therefore
that
0? e 9,
_ﬁpJQ = / P2(7775)2E9(3at)d3
0

o 0 02 0 1
=9 ) — ds = —py — — [ ——
/0 9(s,8) 5_p2(1, 5)ds aZP” " an (tanhan2)
O

The hyperbolic Brownian motion on Hy = {z,y,2;2z > 0} is the diffusion
with generator

0? 0? 0? 0
—_,2) =z 4 = ~ v_ =
M=z {83:2 + y? + 82’2} "oz (423)

The distribution of the hyperbolic distance of Brownian motion in H;™ possesses
the form

hnet 2
p3(n,t) =ks(n,t) sinh®n = %n e" 1, n>0,t>0. (4.24)
T

where k3(n,t) is the heat kernel. The kernel

PR}
e ne- 4

ks(n,t) = - , >0,t>0 4.25
5(77 ) 2\/@ s1nh77 n ( )
is the solution to
Ou __ 1 1%} s h2,. 0
{ 5 = st oy (s g ) u (4.26)
u(n,0) = 6(n).
By means of the transformation ¢ = t'/2 equation (4.26) is converted into
-~ — |[sinh®*n— 4.27
ot 2sinh?ndn (Sm 77377) ! 20

and formula (4.24) takes the form

(1) :2Sinhne*§n67§ _ sinhn(ft/2

o3 qz(n,t), 1n>0,t>0. (4.28)

The law ¢3(n,t) is the distribution of the 3-dimensional Bessel process or the
Euclidean distance on R?. Alternative form for the distribution psz(n,t) involve
the first-passage time of a standard Brownian motion

sinhn

ps(n,t) =2sinhne™2 Pr{T, € dt}/dt = 2 Pr{T} edt}/dt  (4.29)

el
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where T, = inf{s : B(s) = n}, T} = inf{s : B'(s) = n} with B' denoting
a Brownian motion with drift equal to 1 and B a Brownian motion without
drift. It is well-known that the probability law g¢3(n,t) appearing in (4.28) can
be expressed in terms of distribution of one dimensional standard Brownian
motion B(t), t > 0 since

qs(n,t)dn = 2Pr{max B(s) € dn} — Pr{B(t) € dn}, n>0,t>0. (4.30)

From (4.28) we can obtain that

sinh R3(t) ‘
ES———>(=¢e2, t>0 4.31
)t 3y
because on integrating w.r.t. 1 both members of (4.28) we obtain
e _t > sinh
1= [ mtdn =t [ S g0 (432)
0 0

where g3(n,t) is the distribution of R3(t), t > 0 which is 3-dimensional Bessel
process. Moreover, distribution (4.24) solves the p.d.e.
Ops 0%ps3 9 0 1
tanh nn bs

ot~ o2 "oy
which is the adjoint of the operator appearing in (4.26).

(4.33)

The process J3(t), t > 0 obtained by composing the 3-dimensional hyperbolic
Brownian motion BiF (t), t > 0 with T} = inf{s : B(s) = t} with B independent
from ng , has a probability law equal to

t2 n2 t2
e te 2 o e 1 te %
P ,t :/ p3(n, 8)——=ds = n sinh / et - ———ds
75 (1,1) ; 31, 8) o= ds = n sinh) ; 2 st Vars
2v/2 nt sinhy
_VENT SN g (\/ 2 2t2), ~0,¢>0. 4.34
s T KACA WAL + 7 (4.34)

For the governing equation of (4.34) we present the following result.
Theorem 4.2. The distribution of J3(t), t > 0, say ps, = ps,(n,t), solves
02 0? 0 1
—=3Pis =\ a3 25 o
ot an On tanhn
subject to the initial condition
s (1,0) = 0(n). (4.36)
Proof. Distribution (4.34) can be written as

P (1,1) =/ p3(n)g(s, t)ds
0
where g¢(s,t) is the distribution of T}, ¢ > 0. We have

H? &0 0
_wpefs - A p3(777 8)2%9(5115)615

—9 t)o- 5= \o ~ 2oy tanhn
/0 9(s,1) gps(m s)ds (8772 o tanhn)p‘]s

> pr, Mt>0 (4.35)
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