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Abstract

We study here a heat-type differential equation of order n greater than
two, in the case where the time-derivative is supposed to be fractional.
The corresponding solution can be described as the transition function of
a pseudo-process Ψn (coinciding with the one governed by the standard,
non-fractional, equation) with a time argument Tα which is itself random.
The distribution of Tα is presented together with some features of the
solution (such as analytic expressions for its moments).
Keywords: Higher-order heat-type equations, Fractional derivatives,

Wright functions, Stable laws.

1 Introduction

The study of diffusion equations with a fractional derivative component have
been firstly motivated by the analysis of thermal diffusion in fractal media in
Nigmatullin (1986) and Saichev, Zaslavsky (1997). This topic has been exten-
sively treated in the probabilistic literature since the end of the Eighties: see,
for examples, Wyss (1986), Schneider, Wyss (1989), Mainardi (1996), Angulo
et al. (2000). Recently fractional equations of different types have been also
studied, such as, for example, the Black and Scholes equation (see Wyss (2000))
and the fractional diffusion equations with stochastic initial conditions (see Anh,
Leonenko (2000)).
Our aim will concern the extension, to the case of fractional time-derivative,

of a class of equations which is well known in the literature, namely the higher-
order heat-type equations. Therefore we will be interested in the solution of the
following problem, for 0 < α ≤ 1, n ≥ 2,

{
∂α

∂tαu(x, t) = kn
∂n

∂xnu(x, t) x ∈ R, t > 0,
u(x, 0) = δ(x)

(1)
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where δ(·) is the Dirac delta function, kn = (−1)q+1 for n = 2q, q ∈ N, while
kn = ±1 for n = 2q + 1. The fractional derivative appearing in (1) is meant, in
the Dzherbashyan-Caputo sense, as

(Dαf)(t) =
dα

dtα
f(t) =

{
1

Γ(m−α)

∫ t

0
f(m)(z)

(t−z)1+α−m dz, for m− 1 < α < m
dm

dtm f(t), for α =m
,

where m−1 = ⌊α⌋ and f ∈ Cm (see Samko et al. (1993) for a general reference
on fractional calculus).
In the non-fractional case (which can be obtained from ours as a particular

case, for α = 1) the pseudo-processes Ψn = Ψn(t), t > 0 driven by n-th order
equations like

∂

∂t
p(x, t) = kn

∂n

∂xn
p(x, t), x ∈ R, t > 0, (2)

for n > 2, have been introduced in the Sixties and studied so far by many au-
thors starting from Krylov (1960), Daletsky (1969) and many others. Moreover
the distributions of many functionals of Ψn have been obtained: in Hochberg,
Orsingher (1994) the distribution of sojourn time on the positive half-line is
presented, for n odd, while for an arbitrary n the same topic is analyzed in
Lachal (2003). For n = 3, 4, the case where the pseudoprocess is constrained to
be zero at the end of the time interval is considered in Nikitin, Orsingher (2000)
and the corresponding distribution of the sojourn time is evaluated. In Beghin
et al. (2000) the distribution of the maximum is obtained under the same cir-
cumstances. In the unconditional case the maximal distribution is presented in
Orsingher (1991), for n odd, while the joint distribution of the maximum and
the process for diffusion of order n = 3, 4 is presented in Beghin et al. (2001).
Lachal (2003) has extended these results to any order n > 2.
Some other functionals, such as the first passage time, are treated in Nishioka

(1997) and Lachal (2006). Finally in Beghin and Orsingher (2005) it is proved
that the local time in zero possesses a proper probability distribution which
coincides with the (folded) solution of a fractional diffusion equation of order
2(n− 1)/n, n ≥ 2.
In the fractional case under investigation we prove that the fundamental

solution of (1) can be expressed in the following form:

uα(x, t) =

∫ ∞

0

pn(x, u)v2α(u, t)du. (3)

where

pn(x, t) =
1

2π

∫ +∞

−∞
eixz+knt(iz)

n

dz

is the fundamental solution to the non-fractional n-th order equation (2) and

v2α(u, t) =

{
2v2α(u, t) u ≥ 0
0 u < 0

, (4)
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where v2α(u, t) is the solution to the fractional diffusion equation

∂2α

∂t2α
v(u, t) =

∂2

∂u2
v(u, t) u ∈ R, t > 0, (5)

for 0 < α ≤ 1.
Formula (3) proves that the process related to (1) is a pseudo-process Ψn

evaluated at a random time Tα = Tα(t), t > 0 and that the probability law of
the latter is solution to the equation (5), so that we can write it as Ψn(Tα). By
using some known results on this kind of equations we can therefore conclude
that the density of Tα can be also written as

v2α(u, t) =
1

tα
W
(
− u

tα
;−α, 1− α

)
, u ≥ 0, t > 0 (6)

whereW(·; η, β) denotes theWright function W (x; η, β) =
∑∞

k=0 x
k/k!Γ (ηk + β) .

It is interesting to underline that the introduction of a fractional time-
derivative exerts its influence only on the “temporal” argument, while the gov-
erning process is not affected and depends only on the degree n of the equation.
If we restrict ourselves to the case α ∈ [1/2, 1], so that 1 ≤ 2α ≤ 2, it is

possible to obtain a more explicit form of the solution. Indeed, in this case, we
can take advantage from a well-known result by Fujita (1990): the solution to
(5) coincides with

v2α(u, t) =
1

2α
p̃ 1
α
(|u|; t), u ∈ R,

where by p̃ 1
α
(·; t)we have denoted the stable law of index 1/α, namely S1/α(σ,−1, 0),

with scale parameter σ = (t cos(π − π
2α))

α (in the notation by Samorodnitsky,
Taqqu (1994)). Therefore the distribution of the random time Tα coincides with

v2α(u, t) =

{ 1
α p̃ 1

α
(u; t), u ≥ 0

0, u < 0
(7)

and the fundamental solution of (1) can be expressed in the following form:

uα(x, t) =
1

α

∫ ∞

0

pn(x, u)p̃ 1
α
(u; t)du. (8)

As particular cases of the previous result we obtain some known expressions:
in the non-fractional case, α = 1, we easily get Tα(t) a.s.

= t. For α = 1/2 it can
be verified that (7) reduces to the transition function of a reflecting Brownian
motion and then (8) coincides with the density of Ψn(|B(t)|), t > 0 where B
denotes a standard Brownian motion.
As far as the other interval is concerned (i.e. α ∈ (0, 1/2]), an explicit

expression of the solution can be evaluated by specifying α = 1/m, m ∈ N,
m > 2. In this particular setting equation (5) becomes

∂2/m

∂t2/m
v(u, t) =

∂2

∂u2
v(u, t), u ∈ R, t > 0
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and then it coincides with a special case of the fractional telegraph equation
considered in Beghin, Orsingher (2003). As a consequence of these results it
can be shown that our equation (1) is solved by

uα(x, t) =

∫ ∞

0

pn(x, u)pG(t)(u)du,

where G(t) =
∏m−1

j=1 Gj(t), t > 0 and Gj(t), j = 1, ...,m − 1 are independent
random variables with the following probability law

pGj(t)(w) =
1

m
j

m−1−1t
j

m(m−1)Γ( j
m)
exp

(
− wm

m−1√mmt

)
wj−1, w > 0 (9)

and the corresponding pseudoprocess is represented, in this case, asΨn (G(t)) , t >
0.
Some interesting results can be obtained by specifying (1) for particular

values of n : for example, taking n = 2, we can conclude that the process
related to

∂α

∂tα
u(x, t) =

∂2

∂x2
u(x, t) x ∈ R, t > 0, (10)

is, for α ∈ [1/2, 1), represented by B(Tα), with Tα = Tα(t), t > 0 distributed
again with the density (7). This is proved to be in accordance with the results
already known on (10). On the other hand, for α ∈ (0, 1/2] equation (10) turns
out to be solved by the density of the process B (G(t)) , t > 0, where the random
variables appearing in the temporal argument possess again distribution (9).
In the special case n = 3 the results above coincide with those presented in

De Gregorio (2002), while, for n = 4, they represent a probabilistic alternative
to the analytic approach provided by Agrawal (2000).

2 First expressions for the solution

We start by considering the n-th order fractional equation and the following
corresponding initial-value problem, for 0 < α ≤ 1, n ≥ 2,

{
∂α

∂tαu(x, t) = kn
∂n

∂xnu(x, t) x ∈ R, t > 0
u(x, 0) = δ(x)

(11)

where kn = (−1)q+1 for n = 2q, q ∈ N, while kn = ±1 for n = 2q + 1 and δ(·)
is the Dirac delta function. The first step consists in evaluating the Laplace
transform of the solution uα(x, t), namely

Uα(x, s) =

∫ ∞

0

e−stuα(x, t)dt, (12)

and recognizing that it is related to the Laplace transform of the solution pn(x, t)
of the corresponding non-fractional n-th order equation (which can be derived
from (11) for α = 1).
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Theorem 2.1 Let Φn(x, s) =
∫∞
0 e−stpn(x, t)dt be the Laplace transform of

the solution to (2), then (12) can be expressed as follows

Uα(x, s) = sα−1Φn(x, s
α). (13)

Proof
By taking the Laplace transform of (11) and considering the initial condition,

we get

sαUα(x, s)− sα−1δ(x) = kn
∂n

∂xn
Uα(x, s). (14)

Then, by integrating (14) with respect to x in [−ε, ε] and letting ε→ 0, we
have the following condition for the (n− 1)-th derivative

−sα−1 = kn
∂n−1

∂xn−1Uα(x, s)

∣∣∣∣
x=0+

x=0−
,

which must be added to the continuity conditions in zero holding for the j-th
derivatives, for j = 0, .., n − 2. Therefore our problem is reduced to the n-th
order linear equations





kn
∂n

∂xnUα(x, s) = sαUα(x, s), x = 0
∂j

∂xjUα(x, s)
∣∣∣
x=0+

x=0−
= 0, for j = 0, 1, ..., n− 2

∂n−1

∂xn−1Uα(x, s)
∣∣∣
x=0+

x=0−
= −kns

α−1

. (15)

If we now impose the boundedness condition for x→±∞, we obtain

Uα(x, s) =

{ ∑
k∈I ckeθks

α/nx, if x > 0∑
k∈J dke

θks
α/nx, if x ≤ 0

, (16)

where θk are the n-th roots of kn, I = {k : Re(θk) < 0} and J = {k : Re(θk) > 0} .
The n unknown constants ck, k ∈ I and dk, k ∈ J, appearing in (16) must be
determined by taking into account the matching conditions in (15), as follows:

{ ∑
k∈I ckθ

j
k −

∑
k∈J dkθ

j
k = 0, for j = 0, ..., n− 2∑

k∈I ckθ
n−1
k −∑k∈J dkθ

n−1
k = −kns

α/n−1 . (17)

The linear system in (17) can be rewritten, by defining

zk =

{
ck, if k ∈ I
−dk, if k ∈ J

, (18)

as the following Vandermonde system

n−1∑

k=0

zkθ
j
k =

{
0, for j = 0, ..., n− 2
−kns

α/n−1, for j = n− 1 . (19)
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By following an argument similar to Beghin and Orsingher (2005) (see p.1024-
5) we get

zk = (−1)nknsα/n−1
n−1∏

r=0
r �=k

1

θr − θk
(20)

=

{
− 1

nsα/n−1e
2kπi
n , if kn = 1

− 1
nsα/n−1e

(2k+1)πi
n , if kn = −1

,

where, in the last step, we have used formula (2.19) obtained therein. We now
substitute into (16) the constants evaluated in (20), taking into account (18)
and distinguishing the case of n even from the odd one. Indeed, for n = 2q+1,
the roots of kn are respectively

θk =

{
e
2kπi
n , for kn = 1

e
(2k+1)πi

n , for kn = −1
(21)

so that (16) becomes, in this case,

Uα(x, s) =

{
− 1

nsα/n−1
∑

k∈I θkeθks
α/nx, for x > 0

1
nsα/n−1

∑
k∈J θke

θks
α/nx, for x ≤ 0

. (22)

Analogously, for n = 2q and kn = (−1)q+1, the roots are θk = e
(2k+q+1)πi

n so
that we get

θk =

{
e
(2k+q+1)πi

n = e
2kπi
n , for kn = 1

e
(2k+q+1)πi

n = e
(2k+1)πi

n , for kn = −1
, (23)

where, in the first line, we have used the following relationship

e(q+1)πi = (−1)q+1 = kn = 1,

while, in the second one, we have considered the fact that

eqπi = (−1)kn = 1.

Since (23) coincides with (21) we obtain even for n = 2q formula (22). Finally
we can draw the conclusion of the theorem by comparing it with formula (12)
of Lachal (2003), which reads

Φn(x, s) =

{
− 1

ns1/n−1
∑

k∈I θke
θks

1/nx, for x > 0
1
ns1/n−1

∑
k∈J θke

θks
1/nx, for x ≤ 0

.

�
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By inverting the Laplace transform (13) we can obtain a first expression of
the solution in terms of a fractional integral of a particular stable law. We will
denote by Sα(σ, β, µ) the probability density of a stable random variable X of
index α, with characteristic function

EeisX = exp
{
−σα|s|α(1− iβ(sign s) tan

πα

2
+ iµs

}
, α = 1, s ∈ R, (24)

and by I(1−α) the Riemann-Liouville fractional integral of order 1−α, which is

defined as I(1−α) [f(w)] (t) =
1

Γ(1−α)

∫ t

0 (t−w)−αf(w)dw.

Theorem 2.2 Let pα(·;u) be the stable density Sα(σ, 1, 0), with parameters
σ = (u cosπα/2)1/α, β = 1, µ = 0, then the fundamental solution to (11) can be
expressed, for 0 < α ≤ 2, α = 1, as

uα(x, t) =

∫ ∞

0

pn(x, u)I(1−α) [pα(w;u)] (t)du. (25)

Proof
We recall that, for 0 < α ≤ 2 and α = 1, a stable random variable X ∼

Sα(σ, 1, 0) has Laplace transform

E(e−sX) = e−
σα

cos(πα/2) s
α

, s > 0

(see Samorodnitsky and Taqqu (1994) for details), so that, in our case (for
σ = (u cosπα/2)1/α), it reduces to E(e−sX) = e−sαu. Therefore we can rewrite
(13) as

Uα(x, s) = sα−1
∫ +∞

0

e−sαtpn(x, t)dt (26)

= sα−1
∫ +∞

0

(∫ +∞

0

e−szpα(z;u)dz

)
pn(x, u)du

= sα−1
∫ +∞

0

e−sz

(∫ +∞

0

pα(z;u)pn(x, u)du

)
dz.

For 0 < α < 1 the first term appearing in (26) can be easily inverted by
considering that

sα−1 =
1

Γ(1− α)

∫ +∞

0

e−stt−αdt

so that the inverse Laplace transform of (26) can be written as

uα(x, t) =
1

Γ(1− α)

∫ t

0

(t−w)−α

(∫ +∞

0

pα(w;u)pn(x, u)du

)
dw (27)

=
1

Γ(1− α)

∫ +∞

0

(∫ t

0

(t−w)−αpα(w;u)dw

)
pn(x, u)du.
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Finally we recognize in the last expression a fractional Riemann-Liouville
integral I(1−α) of order 1 − α of the stable density (where the integration is
intended with respect to the first argument, since the second represents a con-
stants in the scale parameter). �

The previous result suggests that the solution to our problem can be de-
scribed as the transition function pn = pn(x, u) of a pseudoprocess Ψn with a
time-argument Tα which is itself random. Only for α = 1 we can derive from
Theorem 2.1 the obvious result that Tα(t) a.s.

= t, so that the solution to (11)
coincides, as expected, with pn(x, t). In all other cases the governing process
coincides with the non-fractional one, while the introduction of a fractional
time-derivative exerts its influence only on the time argument (as remarked
before).

To check that Tα possesses a true probability density we can observe that it
is non-negative since it coincides with the fractional integral of a stable density
Sα(σ, 1, 0) with skewness parameter equal to 1, which, for 0 < α < 1, has
support restricted to [0,∞) .Moreover it integrates to one, as can be ascertained
by the following steps:

∫ ∞

0

du

Γ(1− α)

∫ t

0

(t−w)−αpα(w;u)dw

=
1

Γ(1− α)

∫ ∞

0

du

∫ t

0

(t−w)−αdw
1

2πi

∫ γ+i∞

γ−i∞
eswe−sαuds

=
1

2πiΓ(1− α)

∫ t

0

(t−w)−αdw

∫ ∞

0

du

∫ γ+i∞

γ−i∞
eswe−sαuds

=
1

2πiΓ(1− α)

∫ t

0

(t−w)−αdw

∫ γ+i∞

γ−i∞
s−αeswds

=
1

Γ(α)Γ(1− α)

∫ t

0

wα−1(t−w)−αdw =
B(α, 1− α)

Γ(α)Γ(1− α)
= 1 .

Our aim is now to explicit, by means of successive steps, the density v2α =
v2α(u, t) of Tα(t), t > 0: we first prove that it satisfies a fractional diffusion
equation of order 2α and, as a consequence, can be expressed in terms of a
Wright function of appropriate parameters.

Theorem 2.3 The fundamental solution to (11) coincides with

uα(x, t) =

∫ ∞

0

pn(x, u)v2α(u, t)du, (28)

where

v2α(u, t) =
1

tα
W
(
− u

tα
;−α, 1− α

)
, u ≥ 0, t > 0 (29)

and W (·;α, β) denotes the Wright function.
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Proof
It is proved in Orsingher and Beghin (2004) that, for 0 < α < 1,

I(1−α) [pα(|w|;u)] (t) =
1

Γ(1− α)

∫ t

0

(t−w)−αpα(|w|;u)dw

coincides with the solution v2α(u, t) of the following initial-value problem, for
0 < α < 1, 




∂2α

∂t2α v(u, t) = ∂2

∂u2 v(u, t) u ∈ R, t > 0
v(u, 0) = δ(u)
∂
∂tv(u, 0) = 0
lim|u|→∞ v(u, t) = 0

, (30)

where the second initial condition applies only for α ∈ (1/2, 1) . As a conse-
quence, formula (25) can be rewritten as (28) with

v2α(u, t) =

{
2v2α(u, t), for u ≥ 0
0, for u < 0

. (31)

Since it is known (see, among the others, Mainardi (1996)) that the solution
to (30) can be expressed as

v2α(u, t) =
1

2tα

∞∑

k=0

(−|u|t−α)k

k!Γ(−αk + 1− α)

=
1

2tα
W

(
−|u|

tα
;−α, 1− α

)
, u ∈ R, t > 0,

we immediately get (29). �

Remark 2.1
By means of the previous result we can remark again that the random time

Tα possesses a true probability density, which is concentrated on the positive
half line and moreover it is possible, thanks to representation (29), to evaluate
the moments of any order δ ≥ 0 of this distribution. We recall the well known
expression of the inverse of the Gamma function as integral on the Hankel
contour

1

Γ(x)
=

1

2πi

∫

Ha

eττ−xdτ,

which implies the representation of the Wright function as

W (x; η, β) =
∞∑

k=0

xk

k!Γ (ηk + β)

=
1

2πi

∫

Ha

eτ
∞∑

k=0

xkτ−ηk−β

k!
dτ

=
1

2πi

∫

Ha

τ−βeτ+xτ−ηdτ.
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Therefore we can show that

∫ +∞

0

uδv2α(u, t)du (32)

=

∫ ∞

0

uδ

tα
W
(
− u

tα
;−α, 1− α

)
du

=

∫ ∞

0

uδ

tα
du

2πi

∫

Ha

ey−
u
tα yαyα−1dy

=
1

2πi

∫

Ha

eyyα−1dy
1

tα

∫ +∞

0

e−
u
tα yαuδdu

=
tαδ

2πi

∫

Ha

eyy−αδ−1dy

∫ +∞

0

e−zzδdz

=
Γ(1 + δ)tαδ

Γ(1 + αδ)
=

tαδΓ(δ)

αΓ(αδ)
.

From (32) it is again evident that
∫+∞
0

v2α(u, t)du = 1 by choosing δ = 0.

It is interesting to analyze the particular case obtained for α = 1/2: in-
deed, from the previous results, we can show that the process governed by
∂1/2

∂t1/2
u(x, t) = kn

∂n

∂xnu(x, t), x ∈ R, t > 0, can be represented as Ψn (|B(t)|) , t >
0, where B(t), t > 0 denotes a standard Brownian motion. This can be seen

by noting that S1/2

(
u2

2 , 1, 0
)
coincides with the Lévy distribution, so that the

fractional integral in (25) reduces to

I(1/2)

[
p1/2(w;u)

]
(t) =

1

Γ(1/2)

∫ t

0

ue−u2/4w

2
√

π(t−w)w3
dw (33)

=
e−u2/4t

√
πt

, u > 0, t > 0,

where the second step follows by applying formula n.3.471.3, p.384 of Grad-
shteyn and Rhyzik (1994), for µ = 1/2. Formula (33) represents the density
of a Brownian motion with reflecting barrier in u = 0. This result is con-
firmed by noting that equation (30), for α = 1/2, reduces to the heat equa-

tion ∂
∂tv(x, t) =

∂2

∂x2 v(x, t) and then the corresponding process coincides with
a Brownian motion with σ2 = 2. Alternatively, from (29), by applying some
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known properties of the Gamma function, we can write

v1(u, t) =
1√
t

∞∑

k=0

(−ut−1/2)k

k!Γ
(
1− k+1

2

) (34)

=
1√
t

∞∑

k=0
k e ven

(−1)k/2(ut−1/2)kΓ
(
k+1
2

)

πk!

=
1

π
√
t

∞∑

k=0
k e ve n

(−1)k/2(ut−1/2)kΓ (k + 1)√π21−(k+1)

k!Γ
(
k
2 + 1

)

=
1√
πt

∞∑

j=0

(−1)ju2j(4t)−j

j!
=

e−u2/4t

√
πt

.

3 On the moments of the solution

We are now interested in evaluating the moments of the solution to equation
(11), that is the moments of the pseudoprocess Ψn(Tα(t)), t > 0: as we will see,
they can be obtained in two alternative ways.
By using the representation of the solution derived in (28) and thanks to the

independence of the leading process from the temporal argument, we can write
the r-th order moments as

E (Ψr
n(Tα(t))) (35)

=

∫ ∞

0

EΨr
n(s)v2α(s, t)ds,

for r ∈ N, t > 0. The moments of the n-th order pseudoprocess can be evaluated
by means of the Fourier transform of the solution to equation (2) which can be
expressed as follows

E
(
eiβΨn(t)

)
=

∫ +∞

−∞
eiβxpn(x, t)dx = e(−iβ)nknt (36)

=
∞∑

j=0

(iβ)nj

(nj)!

(−1)njkjntj(nj)!
j!

.

Therefore we get

EΨr
n(t) =

{
(−1)r(knt)r/nr!

(r/n)! r = nj, j = 1, 2, ...

0 r = nj
,
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which, inserted together with (32) into (35), gives, for r = nj, j = 1, 2, ...

E (Ψr
n(Tα(t))) (37)

=
(−1)njkjn(nj)!

j!

∫ ∞

0

sjv2α(s, t)ds

= (−1)njkjntαj
Γ(nj + 1)

Γ(αj + 1)
,

while it is equal to zero for r = nj.
We can alternatively derive the moments of the pseudoprocesses by evalu-

ating them directly from the characteristic function of the solution. The latter
can be obtained by performing successively the Fourier and Laplace transforms
of equation (11) as follows: let us denote by ũα(β, t) the Fourier transform of
the solution, i.e.

ũα(β, t) =

∫ +∞

−∞
eiβxuα(x, t)dx, β, t > 0,

then we get form (11)

∂αũα

∂tα
(β, t) = kn(−iβ)nũα(β, t). (38)

By applying now the Laplace transform to (38) we get

sαŨα(β, s)− sα−1 = kn(−iβ)nŨα(β, s),

so that the Fourier-Laplace transform of the solution can be written as

Ũα(β, s) =
sα−1

sα − kn(−iβ)n
. (39)

Now recall that for the Mittag-Leffler function

Eα,β(z) =
∞∑

k=0

zk

Γ(αk + β)

the Laplace transform (for β = 1) is equal to

∫ ∞

0

e−szEα,1(cz
α)dz =

sα−1

sα − c

(see Podlubny (1999), formula (1.80) p. 21, for k = 0, β = 1); hence from (39)
we get the following expression for the characteristic function of the solution

ũα(β, t) = Eα,1(kn(−iβ)ntα). (40)

In the particular case α = 1 the Mittag-Leffler function reduces to the expo-
nential so that (40) coincides with the Fourier transform of the solution to the
n-th order equation, reported in (36), as it should be in the non-fractional case.
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Finally we can evaluate the moments of the solution by rewriting formula
(40) as

ũα(β, t) =
∞∑

j=0

(iβ)nj

(nj)!

(−1)njkjntαj
Γ(αj + 1)

Γ(nj + 1),

so that we get again expression (37).

4 More explicit forms of the solution

In order to obtain a more explicit form of the solution to (11), in terms of known
densities, we need to distinguish between two intervals of values for α.

(i) Case 1/2 ≤ α < 1
If we restrict ourselves to the case α ∈ [1/2, 1) , so that 1 ≤ 2α < 2, it is

possible to apply a result obtained in Fujita (1990), which expresses the solution
to a time-fractional diffusion equation in terms of a stable density of appropriate
index. By adapting that result to our case, we can conclude that the solution
to (30) coincides with

v2α(u, t) =
1

2α
p̃1/α(|u|; t), u ∈ R, t > 0,

where p̃1/α(·; t) denotes a stable density of index 1/α ∈ [1, 2) with parameters
σ = (t cos(π − π

2α))
α, β = −1, µ = 0 (for brevity S1/α(σ,−1, 0)).

The density of Tα(t), t > 0 is then proved to be proportional to the positive
branch of a stable density, as the following expression shows:

v2α(u, t) =
1

α
p̃1/α(u; t), u > 0, t > 0. (41)

Remark 4.1
It is possible to recognize, in the previous expression, a known density, by

resorting to results on the supremum of stable processes (see, for example, Bing-
ham (1973)). More precisely, let us define Y (t) = sup0≤s≤t X1/α(s) where
X1/α(t), t > 0 is a stable process of index 1/α and with characteristic function

E(eisX1/α(t)) = exp

{
−t|s|1/α

(
1 + i tan

π

2α

s

|s|

)}
, t, s > 0.

It corresponds, for any fixed t, to the stable law p̃1/α(·; t) defined above
and, for t varying, to a spectrally negative process, which has no positive jumps
(since, for β = −1, the Lévy-Khinchine measure assigns no mass to (0,∞),
see Samorodnitsky and Taqqu (1994), p.6). Under these circumstances and for
1/α ∈ [1, 2) , it is known that the Laplace transform of Y (t) is equal, for any
s, t > 0, to

E(e−sY (t)) = Eα,1(−stα),
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where Eα,β(x) is the Mittag-Leffler function defined above. Since it is also well-
known that

∫ ∞

0

e−sup̃1/α(u; t)du = αEα,1(−stα), t, s > 0,

we can conclude that

E(e−sY (t)) =

∫ ∞

0

e−su 1

α
p̃1/α(u; t)du.

Alternatively it can be shown, by adapting the result of Bingham (1973),
that the density of Y (t) can be written as

P {Y (t) ∈ du} =
t−α

απ

∞∑

n=1

(−1)n−1
n!

sin (πnα) Γ (1 + nα)
( u

tα

)n−1
du

=
1

α
p̃1/α(u; t)du, u > 0, t > 0

which coincides with (41).
From the previous results we can conclude that, for 1/2 ≤ α < 1,

I(1−α) [pα(w;u)] (t) =
1

α
p̃1/α(u; t), u > 0, t > 0.

Then, as a result of the fractional integration of the stable density pα(·; t),
which is totally skewed to the right (with support [0,∞)), we obtain the positive
(normalized) branch of a new stable density p̃1/α(·; t) (defined on the whole real
axes, since it is 1/α ∈ (1, 2]), which represents the distribution of the maximum
of a stable process of index 1/α.

(ii) Case 0 < α ≤ 1/2
We turn now to the other interval of values for α, i.e. [1/2, 1) , so that, in this

case, it is 0 < 2α ≤ 1. An explicit expression of the solution can be evaluated
by specifying α = 1/m, m ∈ N, m > 2. In this particular setting, problem (30)
becomes, for 0 < α < 1,





∂2/m

∂t2/m
v(u, t) = ∂2

∂u2 v(u, t), u ∈ R, t > 0
v(u, 0) = δ(u)
lim|u|→∞ v(u, t) = 0

(42)

so that it can be considered as a special case of the fractional telegraph equation
studied in Beghin, Orsingher (2003), for λ = 0 and c = 1. By applying formula
(2.11) of the paper mentioned above, the solution to (42) can be expressed as

v2/m(u, t)

=
m

m+1
2

(2π)
m−1
2

1

2t
2−n
2n

∫ ∞

0

dw1...

∫ ∞

0

dwm−1 ·

·e−
wm1 +...+wmm−1

m−1√
mmt w2 · · · wm−2

m−1 [δ(u−w1 · · ·wm−1) + δ(u+w1 · · ·wm−1] .
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Therefore the solution to our problem (11) can be expressed, in this case as

u1/m(x, t) =

∫ ∞

0

pn(x, u)pG(t)(u)du,

where G(t) =
∏m−1

j=1 Gj(t), t > 0 and Gj(t), j = 1, ...,m − 1 are independent
random variables with the following probability law

pGj(t)(w) =
1

m
j

m−1−1t
j

m(m−1)Γ( j
m)
exp

(
− wm

m−1√mmt

)
wj−1 w > 0. (43)

Indeed we can check that

m−1∏
j=1

pGj(t)(wj) (44)

=
m−1∏
j=1

1

m
j

m−1−1t
j

m(m−1)Γ( j
m)
exp

(
−

wm
j

m−1√mmt

)
wj−1
j

=
m

m+1
2

t
1
2− 1

m (2π)
m−1
2

exp

(
−
∑m−1

j=1 wm
j

m−1√mmt

)
m−1∏
j=1

wj−1
j ,

where, in the second step we have applied the multiplication formula of the
Gamma function

Γ(z)Γ

(
z +

1

m

)
...Γ

(
z +

m− 1
m

)
= (2π)

m−1
2 m

1
2−mzΓ (mz) ,

for z = 1/m.
The corresponding pseudoprocess is represented, in this case, asΨn (G(t)) , t >

0.

Remark 4.2
We can check the previous results, obtained in the two cases above, by

choosing α = 1/2. From both cases we obtain again that the pseudoprocess
governed by our equation can be represented by Ψn (|B(t)|) , t > 0.
Indeed from the case 1/2 ≤ α < 1 we get, by means of (41), that the density

of Tα(t), t > 0, for α = 1/2, coincides with the folded normal. More precisely,
in this case, S2(

√
t,−1, 0) coincides with N(0, 2t) and then

v1(u, t) = 2p̃2(u; t) =
e−u2/4t

√
πt

(45)

for u > 0, t > 0.
On the other hand, if we consider the expression of the density of Tα obtained

for 0 < α ≤ 1/2, we get, for α = 1/2 and m = 2, from (44) that again it is

pG1(t)(u) =
e−u2/4t

√
πt
. (46)
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Moreover both (45) and (46) coincides with (33) obtained above, as expected.

Remark 4.3
Finally some interesting results can be obtained by specifying (11) for partic-

ular values of n. In the special case n = 3 the results above coincide with those
presented in De Gregorio (2002), while, for n = 4, they represent a probabilistic
alternative to the analytic approach provided by Agrawal (2000).
By taking n = 2, we can conclude that the process related to

∂α

∂tα
u(x, t) =

∂2

∂x2
u(x, t) x ∈ R, t > 0, (47)

for 0 < α ≤ 1, is represented by B(Tα), with Tα(t), t > 0 possessing again
density (29). We can prove that this is in accordance with what is already
known on (47): for n = 2 we can substitute in (28) the transition function of
the Brownian motion, so that we get:

uα(x, t) =
1

tα

∫ ∞

0

e−x2/4udu√
4πu

W
(
− u

tα
;−α, 1− α

)
(48)

=
1

tα

∫ ∞

0

e−x2/4udu√
4πu

1

2πi

∫

Ha

ey−
u
tα yα

y1−α
dy

=
1

4itα
√
π3

∫

Ha

ey

y1−α
dy

∫ ∞

0

e−
x2

4u− u
tα yα

√
u

du.

If we prove now that

∫ ∞

0

e−
x2

4u− u
tα yα

√
u

du =
√
πtα/2y−α/2e

− |x|
tα/2

yα/2
(49)

and substitute (49) into (48), we finally get the known result

uα(x, t) =
1

2tα/2
1

2πi

∫

Ha

e
y− |x|

tα/2
yα/2

y1−α/2
dy

=
1

2tα/2
W

(
− |x|

tα/2
;−α

2
, 1− α

2

)
.

In order to verify formula (49) we use the following relationship, known for
the Laplace transform of the first-passage time of the Brownian motion,

e−|x|
√
s =

∫ ∞

0

e−su |x|
2
√

π
√
u3

e−
|x|2
4u du,

which, integrated with respect to x gives (49), for s = yα/tα. Alternatively, we
can apply formula n.3.471.9, p.384 of Gradshteyn and Ryzhik (1994), for β =
x2/4, γ = yα/tα, ν = 1/2 (noting that K1/2(z) =

√
π/2ze−z, see Gradhseyn

and Ryzhik (1994), n.8469.3, p.978).
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