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Abstract

In this paper different types of compositions involving independent fractional Brow-
nian motions B}{j (t), t >0, j = 1,2 are examined. The partial differential equations
governing the distributions of Ip(t) = B}, (|B%, (t)|) and Jp(t) = By, (|Bf, (t)['/H)
are derived by different methods and compared with those existing in the literature
and with those related to B'(|B3, (t)]). The process of iterated Brownian motion is
examined in detail: Its factorization as Ir(t) = H?Zl B (t) together with its moments
is presented. A series of compositions involving Cauchy processes and fractional Brow-

nian motions are also studied and the corresponding non-homogeneous wave equations
are derived.

Keywords: Fractional Brownian motions, Cauchy processes, Modified Bessel func-
tions, Iterated Fractional Brownian motion, Mellin transforms, Fractional equations.

1 Introduction

In the recent probabilistic literature there are some papers devoted to the interplay between
various forms of compositions of different processes and the partial differential equations
governing their distributions.

The best known example of composition of processes is the iterated Brownian motion
(IBM) defined as

I(t)=B'"(|B*®)]), t>0 (1.1)

where B! and B? are independent Brownian motions. The IBM has been introduced by
Burdzy [2] and its properties like the iterated logarithm law, the fourth-order variation
and many others have been analyzed in a series of papers dating back to the middle of
Nighties, Burdzy [3], Khoshnevisan and Lewis [6]. The study of iterated Brownian motion
has been stimulated by the analysis of diffusions in cracks (see for example, Chudnovsky
and Kunin [4], DeBlassie [5]). It is well-known that the distribution of (1.1), say q(z,t),
satisfies the fractional differential equation
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subject to the initial condition
q(z,0) = o(z) (1.3)
as well as the fourth-order p.d.e. (see DeBlassie [5]).

dqg 1 9% 1 d?
5_273@-{—2 27#@5(@, xeR t>0. (1.4)

Clearly %5(:@ = ¢” must be understood in the sense that for every test function ¢,

< ¢,0" >=¢"(0).

The time-fractional derivative appearing in (1.2) must be understood in the sense
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ds, m—1<v<m.

and
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where m — 1 = |v].
For the n-times iterated Brownian motion

() = B(|B*(...(IB""(®)]) .. )] (1.5)
the distribution function solves the fractional equation

1/2n 2

;1/2”(]:221"_268162(], zE€R, t>0. (1.6)
Extensions of these results to the d-dimensional case are treated in Nane [§], Orsingher
and Beghin [12]. The aim of this paper is to present different types of iterated processes
constructed with independent fractional Brownian motions and to explore the partial
differential equations governing the corresponding distributions.
By considering fractional Brownian motions and Cauchy processes (suitably combined) we
obtain qualitatively different equations including a non-homogeneous wave equation. In
the probabilistic literature second-order hyperbolic equations emerge in the study of the
telegraph process and of planar random motions with infinite directions. We show here
that processes like C1(|C2%(t)]) (C7, j = 1,2 are independent Cauchy processes) also are
related to wave equations. We consider here different types of combinations of processes
involving the fractional Brownian motion and the Cauchy process. In particular, we show
that for

Lopy (t) = C(Ba @), >0 (L.7)

(where C' is a Cauchy process independent from the fractional Brownian motion By) the
probability law is a solution to the non-homogeneous heat equation

dq _ 207! 211 9%
— =——— — Ht — R, ¢ 1.
T~ 52 ° eR, t>0, (1.8)

with H € (0,1). In the special case H = % the p.d.e. (1.8) becomes the governing equation
of the process

lop(t) = C(IB@)]), t>0. (1.9)



For the vector process

I3e(t) = BAIC@), ... B(C@)), >0 (1.10)
we have that the joint law ¢ = q(x1,...,zy,t) solves the fourth-order equation
a2q 1 2 1 n

This fact has been noted by Nane in [8], [9]. It seems that it is difficult to obtain the
equation corresponding to

(By, (IC®),....By (IC®)), t>0 (1.12)

where the independent fractional Brownian motions B{LI_ (t) are involved.
Finally we prove that the composition of two independent Cauchy processes

Io(t) = CL(Co (1)), ¢ >0 (1.13)
has a probability law satisfying the non-homogeneous wave equation

0%q 2 0%q

— = 4 — R, ¢t>0 1.14
ot? 7T2tm2+(9x2’ TER ( )

which, in our view, is the most striking result of all these combinations of well-known
processes.

We also prove that the one-dimensional distribution of (1.13) coincides with the multi-
plicative process

IO (1)) 2 SOUVINC(VED), 1> 0, (1.15)

It is also true that the composition of Cauchy processes satisfies the following curious
relationship

1
1 9
ct(le2()1)
We remark that if the guiding process is a Cauchy process the related equation has a
forcing function defined on the whole space-time domain, while in the case of a guiding
process coinciding with Brownian motion, the forcing term is concentrated on the z line.

The core of our paper concerns the iterated fractional Brownian motion whose general
form is given by

cl(|c2())) L t>0 (1.16)

Ir(t) = By, (IBR,(t)]), t>0 (1.17)
where the processes quj (t), t > 0 have covariance function
. A 1 , , , _
B { By (5Bl (0} = & (425 + s — jt— o), j=1,2 (1.15)
and 0 < Hy, Hy < 1.

For the iterated fractional Brownian motion

In(t) = BY(|B%(t)]), t>0, He(0,1) (1.19)



where B! is a standard Brownian motion independent from the fractional Brownian motion
B%I, we show that the equation governing its distribution ¢ = ¢(z,t) is

dg  Hi2H-1 9 . Hi2H-1 2
ot 22 9zt 9/or2H da?

with ¢(x,0) = §(z).

The introduction of the fractional Brownian motion makes the equation (1.20) slightly
different from (1.4) in that it has non-constant coefficients. In the case where (1.19) is
replaced by the related process

5(z), zeR,t>0, He(0,1) (1.20)

Lp(t) =t"BY(|B%(t)]) t>0,K >0, He(0,1) (1.21)

the corresponding equation becomes a bit different and has the form

dq 0 H 410 0%q  HE?EFH g2
t— = 2K — e Rk R, t>0 K>0 (1.22

with an additional lower-order term with space-dependent coefficients.
For the general iterated fractional Brownian motion

Ir(t) = By, (|BE,(t)]), t>0,0< Hy, Hy <1 (1.23)

we have arrived at a substantially different equation which shows the fundamental role of
the process Bp,. The equation pertaining to process (1.23) reads
Op 5, 0%p

op 07
1+ HH)t 2L + 228 — g2 {2 Ly

o s oo o 2} zER, t>0. (1.24)

We note that equation (1.24) has almost the same structure of (5.2) of Orsingher and De
Gregorio [11] which emerges in the study of random motions at finite velocity in hyperbolic
spaces.
For the process (1.23) we have the general expression of even-order moments

I'(2k) I'(2kHy)

E{B}, (1B, (0} = 227k7kH1t2kH1H2mW (1.25)

which for H; = Hy = 1/2 yields

2k/2 (2K /2

E{BY B2\ = 1.26
(BB O = ey (1.26)
which is formula of the remark 3.3 of Orsingher and Beghin [12].
Similarly for the n-times iterated fractional Brownian motion we have that
ok gnt2RIGENH, 2k [T2) Hy)
E{Bly 1Bk 1B 01D} = s . (1.27)

D(k[Tj=o H))

forn>1,keN, Hy=1and H; € (0,1) for j=1,2...,n
Another process obtained by composing independent fractional Brownian motions is

JL(t) = BL(1BL(1)|7), t>0, He(0,1) (1.28)



which has proved to be much more tractable than (1.17). For (1.28) it is even possible to
obtain the explicit law in the following form

2

’ 0 ) € 1, € .29

where Ky(x) is the Bessel modified function defined as

1 _22_ 2
Ko(:c):/ ¢ 227" ds, x#0. (1.30)
0

The p.d.e. governing the distribution (1.29) is

x,t) = —Ht* 1 <2x - x$> q(z,t) (1.31)

We have also considered an extension of (1.28) by taking into account the process

J3(t) = BL(1BH (1B (1) 7))

whose distribution is related to a fourth-order p.d.e. with non-constant coefficients which
reads

=

), t>0, He(0,1) (1.32)

2 3 4
g‘j_Ht2H1{4§2+5x§3+x§4}q, reR, t>0. (1.33)

We note that for the extension of (1.28), say J}(t), the following equivalences in distribu-
tion hold

Jr(t) = BL(1BE (.| By )7 .. )|#) < BY(BA(... BT @), )%), t>0. (1.34)

We will also prove that for Jz ' (t), t > 0 the factorization
TNt ZdH L(t), t>0, He(0,1) (1.35)

in terms of independent fractional Brownian motions Biﬁ, 1=1,2...,n holds. In view of

n

decomposition (1.35) one can also observe that

&.

Bl (1B, (1)[7) = BY(BR(0I") = By ()Bh (1), >0, H € (0,1]. (1.36)

M

We have considered some multidimensional compositions of Brownian motions. In Ors-
ingher and Beghin [12], Nane [8] it is proved that the n-dimensional vector process

(B*(IB®))),-...B"(|B®)]), t>0 (1.37)

(where B',..., B",B are independent Brownian motions) has a distribution function
which is a solution to

o2y 1
otz — 932 Z 92’

u(xy, ..., xn,0) =

§(zj), z€R", t>0. (1.38)
1

n

J



In Allouba and Zheng [1], DeBlassie [5] it is shown that the law of (1.37) satisfies the
fourth-order equation

2
n 2 n

Ou_ 1 zn:iz wt — Zd—H(S(x) reR", t>0 (1.39)
or ~ 2\ & 0a? 2v/2mt & da? 13T o '

For the n-dimensional process (B*(| By (t)|), ..., B*(|Bu(t)|)) we arrive at the fourth-order
p.d.e.

n

aq HtZH—l HtZH_l

Jj=1

N%q, zeR",t>0 (1.40)

1

which includes (1.39) as a special case for H = 5.

2 The iterated fractional Brownian motion

For the iterated Brownian motion I(t) = B(|B%(t)|), t > 0 it has been shown by different
authors that the distribution

2 2

(,t) 2/00625 a R, t >0 (2.1)
z,t) = — —— —ds, z€R, t> .
b 0 V2ws/2nt

with initial condition p(z,0) = d(x) is the solution to the fourth-order equation

@ — i@ + ;diz(s
ot 230x%  9/9ort dx?

(see for example Allouba and Zheng [1], DeBlassie [5], Nane [8]).
The distribution (2.1) is also the solution to the time-fractional diffusion equation

(), zeR,t>0 (2.2)

81/2q 1 82(]

78t1/2 = Wﬁ’ reR, t>0 (23)
subject to the initial condition g(x,0) = d(z) (see Orsingher and Beghin [10], [12]).
We now show below that the law

2 2

_a? s
X o 92HL o 92H2

0 V2ms2Hi \/ori2H>

p(z,t) =2 ds, z€R,t>0, H,H e (0,1) (2.4)
the fractional iterated Brownian motion Ir(t) = By, (|B7;, (t)]), t > 0 is a solution to a
second-order differential equation with non-constant coefficients.

We first need the following auxiliary results concerning the density of fractional Brownian
motion.

Theorem 2.1 The fractional Brownian motion By (t), t > 0, H € (0,1) has a probability
density pp(x,t), x € R, t > 0 which solves the heal equation

82
wPH

0

O _ ppeH- 25
ottt (2.5)

with initial condition pg(z,0) = d(x).



Proof: The distribution of By (), t > 0 can be written as inverse Fourier transform

1 o0 ) 19242H
pu(z,t) = / e BTt dg. (2.6)
— 0

™

A simple calculation proves that (2.5) holds. For H = 1 equation (2.5) coincides with the
classical heat-equation.

Remark 2.1 For the Gaussian law

22

710
g(z,t) = ——, z€R, t>0 (2.7)

\/27Tg(t)’

with g € C1, g : (0,00) — (0,00), we can easily accertain that the governing equation is

0 dg1l 92

g,=49-9 R, > 0. 2.
51~ qroo? TER >0 (2.8)

We prove below that the processes 15 (t) = B'(|B%(t)|) and its slightly extended ver-
sion Ly (t) = t¥ BY(|B%(t)|) have a distribution satisfying a fourth-order p.d.e. somewhat
similar to (2.2). We analyze in the next theorem the law of Ly (t) and extract the related
equation for I (t) by assuming that K = 0.

Theorem 2.2 The law of the process
Lp(t) =t5"BY(|B4#)), t>0,K>0 (2.9)

1s solution of the fourth-order equation

dq 0 H ,5.0n0% H2K+H 52
— = 2K— B . |, R,¢>0, K >0 (2.10
ot Ox (zq) 4 Ox? Vor Ox? (z), @€R,t>0, K>0 (2.10)

subject to the initial condition q(x,0) = d(x).

Proof: We start by writing down the distribution of Lg(t), t > 0 as

S
0 e 2st2K o 242H

0 V2rst2K \/or2H

By taking the time derivative of (2.11) we have that

p(z,t) =2

ds, z€R, ¢t>0, K>0. (2.11)

22 2 2 2

Op 2/006 el W ds+2/oo e ds (2.12)
0o Ot 0

ot Vorst?K | \/ort2H V2orst2K ot Vort2H
2 7)2 32
9 T 252K T 2i2H
Y () P
o 07% \ Vorst2K Vort2H
‘732 S

St oH /°° R
0 V2nst2K 052 | Vor2H



In the last step we used equations (2.5) and (2.8). The first integral in (2.12) can be
developed as

132 52
2K 0 X e 22K o 22H 2K 0
— < 22 ds p = ——— (zp).
t Oz 0 V2rst2K \/or2H t Ox

By integrating by parts the second integral in (2.12) we have that

12 52 S=00
2Ht2H—1 e 252K e 202H
V2smt2K Os \ \/ort2H 0

2 2

2Ht2H71 /oo 0 eiﬁﬁ 0 672755W d
— _— e — —_— —_— S =
0o O0s \ Vorst2K | 0s \ /ort2H

m2 32 S=00
2Ht2H71 0 e 2st2K e 2t2H
s \ V2srt2K | \/2nt2H oo
2 2

2H 21 / 008722 ¢ ) e 2,
0o 0s5% \ Vorst2K | \/or2H

= st?K

By assuming ¢ and in view of (2.8) we can write that

g2 g2 g2 g2
0 e 252K 2K 92 o7 22K 0% e 22K H#EK 94 T 52K

gew U O e g L2 9 e
0s /2 st2K 2 022 \/orst2K o 0s% /o st2K 22 Ozt \/onst2K
All this leads to

ow_ 2o
ot t oz P
932 32 x
F2HA2E-1 s e 2s2K e 2u2H
0% \ Vonst2K | /ort2H 0
902 32
n Ht4K+2H71 o ® e 22K e 220 p
a0 A A S
22 ot 0 Vonst2K \/oxi2H
2K 0 HHT2E=1 g2 H o*
= (zp)+ ——— —b(x) + 7t4K+2H—17p.
t Ox Vor  dx? 22 ort

This concludes our proof.

|
Remark 2.2 For K = 0, equation (2.11) simplifies and becomes
0q H ,50% Ht! 2
t— =St — 4+ ——-—-6 R, t H 1). 2.1
5 = 3! Gt amggt®) TERA>0HE (O (213)
Clearly for H = 1/2 reobtain DeBlassie’s result
dq 1 9% 1 &2
—_ == —d(x), eR,t>0. 2.14
ot 230z4 * 22t d? (), @ (2.14)

It is useful to have a look at table 1, for comparing the governing equations examined
so far.



Process Governing Iterated Governing
equation process equation
B(t 99 _ 10% B(|B(t g _ T
(> ot — 2 0zx2 (’ ()D Bt_236x4+\/ﬁdx2
a2 &
8t1/2 T 23/2 922
B(t) | % = HPH124 | {KB(|By(t))) | t% = 2K 2 H 4K +2H 0q
ut) | 5= 922 (IBu(®)]) | t5 = z (xg) + 7t ot
Ht2K+H d2

It is easy to check that the vector process (B}i,1 (t),.

satisfies the heat equation

o 1 op.—10%q
Ao oNT g2
ot 2 Z::l / a:cg

For the n-dimensional vector process (B!(|Bg(t)]),...B"

tion can be written as

52
* —iY" L ajzi—E3" ol e 220
q(x1, ..., xp,t) =2 ; ds e g=199% 72 2g=1 Ji\/mdal odo,. (2.16)
By taking the time derivative and considering (2.5) we have that
52
@ _ 2/00 ds / —ZZ] 1Q5T5— 223 1 JHt2H 1 o @ doy do
ot =)y o S 952  Vampm | 1o
- S22H e
S / et Xm0 =5 Xj o pry2H— A daq ..
(27‘(‘)” n 88 V 27Tt2H s=0
2H
+Ht2H 1/ ZZJ 1%5%5— QZ] 1 ?88 c day . ..day
n 4 s \ voreeH
n 2H
_Ht2H 1/ ZZ] 10T — 2 j=1 ?aa c = 1...dOén
n 4 s \ Vo2l
2
1 o2 € T
_ 2H-1 -y m =5y el & T
Ht @ / Za ) j= 3 2.5=1% Wdoq...dan i
s=
n 2 32
> ds o2 € 2077
+Ht2H_1/ o2 | e iXimiauTim3 a0 day . ..do

HtZHfl i d2 5( )
= —— —_— €T
vert = dx? !

Table 1

Ht2H 1
>

;... By (t)), t > 0 has a law which

(2.15)

(|Br(t)])) the distribution func-

0?
12
i

n 62
Z@ q(l'l,...,xn,t)
j=1 "7



HtQH—l Ht2H_1
= 7WA5(331)"'5(%) t—

—\n 92
where A =37 57

Azq

The iterated fractional Brownian motion Ij(t) = By (|Bf,(t)]) brings about substan-
tially different p.d.e.’s and we start our analysis from the first-order equation of the next
theorem.

Theorem 2.3 The distribution of the iterated fractional Brownian motions I,(t) = By, (|B12L12 )
s a solution of the first-order p.d.e.

op 0
ta = —Hng% (zp), zr€e€R, t>0 (2.17)

where Hy, Hy € (0,1).

Proof: The time derivative of

B
0 oT92HT o 22H2

plx,t) =2 s 2.18
(1) 0 V2ms2Hi \/2rt2H> ( )
writes
12 52
0 ® e 2201 § e 222
9 (@ t) =2 g d
8tp(x ) 0 V2ors2Hi Ot \/ort2H> ¥

22

S2
00 T2 ] 82 e 2u2Hz
= 2H,t*™2 ! / = ds
0 2 s2H1 0% \/27t2H2

CL‘2 82 CL‘2 82
e 221§ e 222 |s=co 0 9 e 2:2HL 9 e 22H2

g [ 2 g ds
V2 s2H1 0 \/ort2Hz2 |s=0 0 052rs2H1 05 \/27(2H:

_ z2 _ 52
e 2s2H1 O ¢ 242H2

[o¢]
0
= —2H. t2H2_1/ — —
? 0 05 2rs2H 08 \/ort2H>

22

ds = [ by (2.5)]

2

:_2H2t2H2—1 /00H182H1_182 e 252M (_ S ) e 2:2H2 ds
0 0x?% /o s2H: t2H2 ) \/ort2Hs

11:2 82
oH, 0% e 2:2M1 ¢ 22H2

— s
0z \/o7 $2H1 /o t2Hz

z2 52

00 LT 2HT o 32Hp

oo
= 2H1H2t_1 / S
0

d d
= —2H,Hot ' — ds = —H Hot ' =
e 8933: 0 V2rs2Hi \/ont2H2 ° PR 0 (zp)

and this concludes the proof of theorem.

We study in the next theorem the ensemble of solutions to (2.17)

10



Theorem 2.4 The first order partial differential equation

! % + {L‘@
H1H2 ot ox

= —u (2.19)
has a general solution of the form

u(z, t) = lfQ;;J TER—{0}, t>0 (2.20)

with Hy, Hy € (0,1) and f € C'(R).

Proof: The auxiliary equations pertaining to (2.19) are

dt dx du

The first couple of members of (2.21)

dt  d
HiHy - = f

has solution

CltH1H2 =T

while equating the second and third term of (2.21) we get

log z = — log u + constant
and thus
1 1 1 T
w= =) =27 ()

Remark 2.3 We note that the functions of the form

1 x 1 T
u(x’t) - ;f (tH1H2) - tHleg <tH1H2>

with f,g € C1(R) are solutions to (2.17) or (2.21).
The law of the iterated fractional Brownian motion belongs to the class of functions (2.20)
because it can be written as

2H; Y

1 [ z e iy e 2 1 T
33/0 tHit>  [omy2H (/2 dy = f(tHlHZ)

or
I B
1 00 o gpH1 Hay? M e_L 1 x
Y NG T T = mm Y (tH1H2)

22 22

Furthermore if we choose f(z) = ze~ 2 or g(z) = e~ = we see that the Gaussian kernel of
Brownian motion belongs to the class of solutions to (2.17) with HyHy = 1.

11



Theorem 2.5 The density of the iterated fractional Brownian motion I:(t) = Bllq1 (|Bi,2 )]
for Hy,Hy € (0,1)

(1)2 52

e’} 6_ 2s2H1 6_ 912Ho

0 V2rs2Hi \/ort2H>

s a solution to the following second-order p.d.e.

Op | 20%p

qlz,t) =2 ds, zeR,t>0, H,H,e(0,1) (2.22)

2
= H?H} {Qxap + an Z;

— 1).
9 83[;}’ xeR, t>0, H,Hy € (0,1)

(2.23)

We give now two different proofs of this result.

First proof: We start by taking the time derivative of (2.22) and by taking into account
(2.5) we have that

.:('2 32
o 0 oo § [ o 20M
p:z/ ¢ e (2.24)
ot 0 V2rs2Hi Ot \ \/27i2H2
__a? __s?
= 2Hyt* 1 /OO S B
0 V2ns2H1 0s% \ \/ori2H2
1)2 52

9 e 2s2M 0 e 262H2

—_2H2t2H21/ i I I
o 0s \ Vors2Hi | Os \ V/or(2H:

In the last step an integration by parts has been carried out.
The critical point emerges on carring out the second integration by parts which yields

22 2
0 0 52 e 2s2H1 e 2:2H2
9D _ o pyy2Ha1 / — ds (2.25)
ot o 052\ Vors2Hi | \/ont2Hs
12 52 $=00
e 2:2H1 e 222

0
_ of],12Ha-1
? 0s \ Vors2Hi | \/ont2H2 0
s=

By applying once again (2.5) we have that
2 2

o 00 82 7% 7371{2
9p —2H2t2H21/ gz T s (2.26)
ot o 0%\ Vors2Hh | \/ort2H:

12
0% [ e 271 1
O H, Hoi2H2—1g2H1—1
e 022 \ Vors2H1 | \/ort2H2

S=
From (2.26) it is clear that for H; > 1/2 the first term disappears for s — 07 while for

0 < H; <1/2 we get a Dirac function as in all previous cases examined above.
It is convenient to rewrite (2.26) in the following manner

:L‘2 52
dp 9 Ho—1 /°° 9? [ e 22T e 222 2H\Hs 5, 4 d?
— = 2Ht*""? — d 21 Hy)—d
at 2 0 882 \/27T$2H1 \/27Tt2H2 5"_ A /277_ (071/2]( 1)dx2 (:E)

12



(2.27)

where the first integral can be developed as follows

1‘2 82
> 9 0? e 2s2H1 e 202H2
2Hot?H2 =1 / —— Q Hys? ds (2.28)
o Os ox Vors2H Vort2H:
ac2
0o 62 e 2521
= 2H. t2H21/ Hy(2H, — 1)s*1 72 | ———
? 0 12— 1) dx? 22t
__a? 2
L2 9t [ e 2 e 2 ds
oxt | \ors2H V 2mt2H2
and can be conveniently rewritten as
22 o2 52
0? e 2s2H1 0? 0 e 22H1 e 222

ds.

[e.e]
2H H. tHQ—l/ 2H1—2 Hi—1)— [ == | g, 2 v
12 0 5 ( ! )81'2 \/271-32H1 181'2 xaﬂc \/27T52H1 2T

We note at this point that for H; = 1/2 the first integral in the last member of (2.28)
disappears and immediately we obtain equation (2.13). For H; # 1/2 an additional
analysis is necessary and a qualitatively different result is obtained.

The time derivative (2.27) multiplyed by ¢t'~#2 becomes

2

- HQa — 9H H. /OOSZH12 (H _1)i2 i
at 1252 0 L 8332 \/27[‘52H1
$2 52
82 0 e 22T e 2022 H1H2 d2
—H{—= — d 2 H 1)
! 92 m@x\/2ﬂ$2H1 N $+ NG Lo, ]( 1)d 50(2)-
22
e'e] (9 e_2s2H1
= 2H,H. / s2 —H T——
S S Rl WNCeer
_ z2 s2
_|_H1872 x2 e 2s2H1 e 22Hz s H1H2 d?

022\ Vamsrtt | | var Bt ar a2’ o)

To get rid of the s~2 appearing in the above integral we derive both members w.r. to time
t and realise that

12
9 (g Op\ HH2 /°° o [ e 2o
A . 1— Hy)— | o
at< ot tHaFT | ( Voz ¥ ons2th

IL'2 82

82 2 e 2s2H1 e 2:2H3

Ox? V2ms2Hi V2ort2He i

+H1—

13



H\H 0?
- et {0 = )+ i (7))
HlHQ 0 (9p
:tHz-l-l{l_'—Hl p)+Ha< or
- T L0 )2 o)+ i [

and after some calculations,

9 207
6 82
op
ot

In light of theorem (2.5), by writing —Hngﬁ(:Ep) = ¢2
equation (2.23) emerges.

Second proof: By taking the time derivative of (2.17) multiplyed by ¢ we have that

2 <t8p> 9P, 2P

at\ot) ot o
B 0 Op
= by, < 8t>

82
= H{Hj {855 (zp) + o (ﬂfp)}

0 0 &p
= H12H22—x (zp) + HHj [zrax - xZW}

Op
= —HHot
12a

In the last step we used again (2.17).

Op 0%p
+ H?H3 [2 a—+ 28:32]

Remark 2.4 The equation (2.23) displays the structure of the telegraph equation with
non-constant coefficients emerging in the case of finite-velocity one-dimensional motions in
a non-homogeneous medium (see Ratanov [13]). An equation similar to (2.23) emerges in
the study of hyperbolic random motions of finite velocity in hyperbolic spaces ( Orsingher
and Beghin [11]).

For the n-times fractional Brownian motions we can easily evaluate the even-order
moments.

Theorem 2.6 For the n-times iterated fractional Brownian motion

Ii(t) = Biy, (|1 B, (- | By L (8)] - )])

n+1
the explicit form of the moments reads
2n+1t2’fH"“H » Tk H;
By = b )
T L TR TS )

with Hy =1 and H; € (0,1) for j=1,2...,n

keN, n>1 (2.29)

14



Proof: We proceed by recurrence by first evaluating

ZE2 82
o (TR o 3
E{I};(t)}Qk—Z/x% ° © " dsda.
R 0 V2mrs2Hi \/ori2H2

Since

2

22 /OO 6_2:7[{1 Qk:d 2k+1 2k’H1F ]f+ 1
———adr = —=s =
0 V2rs2 VT 2

I'(k)
we obtain that
S2
[e'e} T 5,2Ho kHi—1
okH, € 2777 _ 2 2k H1 Ho < 1)
s ds = t 'l kHy + = 2.30
/0 vV 2mt2H2 VT 2 ( )

22 D9k HY)
- 2kHL T(kHy)

and thus

E {I};(t)}% _ 92—k(1+Hy);2kH1 Hy Fé?:%?éil;{[g)

If we assume that result (2.29) holds for n — 1 in view of (2.30) we immediately have the
claimed formula.

Remark 2.5 The variance of the iterated fractional Brownian motion

Var {Bly, (1B, (1))} = 21‘H1Fr(<2§?>)t2m (2.31)

is an increasing function of the time ¢ which grows more rapidly than the variance of I BM
t

Var {B'(IB*®))} = /5 (2.32)

for all Hy,H> such that

1
HH; > 27

For H1Hy > 1/2 Var {B}{1 (|Bi,2 (t)])} increase more rapidly than the variance of standard
Brownian motion.

15



3 The iterated fractional Brownian motion and modified
Bessel functions

A process related to the iterated fractional Brownian motion Ig(t), t > 0 is here analysed.
Unlike the n-times iterated Brownian motion

I"(t) :Bl(|BZ(...\B"H(t)|...)|)7 t>0 (3.1)
for which the probability distribution is expressed as a n-fold integral, for the process
1 1
Ji(t) = By (IBR(-.. B (O] .. )[1), t>0 (3.2)

the probability density can be explicitly expressed in terms of modified Bessel functions.
In particular, for n = 1, 2,3 we have the following expressions

Pr{Ji(t) € da} = d:c— 0 (’;}‘) (3.3)
Pr{Ji(t) €da} =dx /OOO %%K (li) ds (3.4)
Pr{J}(t) € de} = d /OOO %Ko ('x’> M%KO <l}1|> (3.5)

In general, for n = 2m we have that

Pr{Jg"(t) € dz} =

o0 o0 1 || 1 |sm—1]\ 1 [Sm|
d dsy ... dsm—Ko | — | - .. K K 3.6
m/o 51 /0 m ms1 0 <31 ) TSm1 ° ( sy ) mtH O\ tH (3.6)

and for n =2m +1

Pr{JF"(t) € da} =dx ) € ds1} (3.7)

2

/ \/7]37“{

:/0 Pr{J#"(sn) Edm}m (3.8)

We shall call Jj(t) the weighted iterated fractional Brownian motion.
The function K, (z) can be presented in several alternative forms as

g a2 ™
Ko(x) = s e 1277 ds, |arg z| < 1 (3.9)
0

1
(see p. 119 Lebedev [7]) or, for R{v} > —3
1 —z [e's] _1
T\2 e —z 1/7— Y73
(see p. 140 Lebedev [7]) or, for v # 0, v = £1,+2,...
mly(x) — L()

2 sin v ’

K,(z)= largz| <7 (3.11)

16



(see p. 108 Lebedev [7]) where

O N 2k+r 1
I,(z) = (7> - , 12
(z) kzo 5 NGRSy 2| < o0, |argz| <7 (3.12)

is the Bessel Modified function of the first kind (see p. 108 Lebedev [7]).
For the process

1

Jp(t) = By(IBE(1)[7), t>0 (3.13)
the distribution function, in view of formula (3.9), becomes

2 2

1 © oT5T ¢ 22 1 ||
p(w,t) =2 ; m\/mds:mh,f(g i) wER\{0}, t>0,H€(0,1)

(3.14)

where the change of variable s = v/2zt must be introduced.
In the spirit of the previous sections we give the partial differential equations governing
the distributions (3.3) and (3.4). We now state our first result for the process J5(t), t > 0.

Theorem 3.1 For the process
1

Jh(t) = BL(|B%(t)|7), t>0,H € (0,1) (3.15)

obtained by composing two independent fractional Brownian motions B}q and B%I, the
distribution (3.14) for x # 0, solves the p.d.e.

) Y )

for allz #0,t>0 and H € (0,1).
First proof: We derive equation (3.16) by two different methods. The first one repeat-
edly uses the relationship of theorem (2.1) while the second one is based on the properties

of the modified Bessel functions K, (z).
We start by calculating the time derivatives of (3.14) as follows:

9 (.t = [ by (25)]

ot
12
e 22 0
= 2/0 ,727_‘_52 apH(Svt)ds
22
00 75,2 82
:2Ht2H—1/ € 9 (s t)d
o Varw 02V OD
12 §=00 1:2
T22 0 9 [ e 22 0
—opp2H-1]) € : —pH(s,t —/ — —pu(s,t)ds
V2rs2 0s ( )s=0 o 0s \V2rs?2 | Os (5,)
Since
0 s
%pH(x, s) = —ﬂ—HpH(s,t) (3.17)

17



22

T 92
it is easy to see that both functions =< and ng(s,t) tend to zero as s — oco. For
V2rs? S 2

s — 0 clearly %pH(s, t) — 0 while the other term converges to zero because e 252 — 0 as
s — 0 for z #£ 0.
This means that

22

9 4 _ 2H—1 /OO 9 (e 2 9
8tp (]J,t) = —2Ht 0 Os \/w aSpH(Sat)dS

z2 §=00 z2
0 [ e 27 © 92 [ e 22
_ 2H—-1
s=0
= [ by (2.8)]

o) 82 252 84 042
Y / R TS Ry pr(s,t)ds
0

| 92 [ e 22 ok T2
= H?HL 2/ A TR pH(s,t)ds
0

_ 0? 03

In the previous steps it is important to consider that

3?2
(L) L0 (L[ cuattgg) 2 L[ et
0s \ Vars2 | 0s \27m J_o 27 J o0

where the inversion of derivative and integral is justified since

—iax—%a252 La2s2

e

possess finite integral. For the same reason the limit w.r. to s can be brought inside the
integral and

pr(s,t) = 0.

T
8—1>I(I)1+ Os \/27-(32

18



Second proof: This proof is based on the following properties of the modified Bessel
function (see p. 110 Lebedev [7])

LK) = Rul2) ~ Ko () (3.18)
and
Ky1(2) = Kyo1(2) + %KV(Z). (3.19)

We perform our calculations on the representation (3.14) of the distribution of the iterated
fractional Brownian motion. We need to evaluate the partial derivatives appearing in
equation (3.16) for x € RT, for the derivative w.r. to time we have that

0 1 T H T Hx d
meKWwﬂ:VwH%Qﬂ‘mmH@%@
= [ by (3.18)]

Hzx x H T
T q2HAL K <t?> i+l Ko (tiH) ’

We now pass to the partial derivatives with respect to space. We have successively that

(3.20)

—=_Z_
thH

2 [ ()] =t (2) o
;; [ﬂlHKO (;{)} — [ by (3.18)] (3.22)
L d

x
Kﬂw»'
Some more calculations are necessary for the third order partial derivative which reads

e[ ()] =~ (s () + o ) =

19



1 (1 T th 1 T
e () (2 4 ) ()
7Tt3H{x O\¢H +< x+tH> P\

Therefore, combining the previous results one obtains

(25 =) [ )] == {0 () s )

and thus

0? 03 1 T H x T T
2H—1 _
i (%2 + xw) [meHKO (w)] = AR () + 1 ()}
which coincides with the time derivative (3.20).
This concludes the second proof.

We now examine the twice iterated fractional Brownian motion and show that its
probability distribution solves a fourth-order p.d.e.

Theorem 3.2 The process J2(t) = B}{(|B?{(|B§{(t)\%)|%) has a probability density

2 2 2

2(2,1) 4/00 eI (% eaE ewm dzd (3.24)
b \xr,t)= 2ds .
0o V2mws?Jo V2mz222rt2H

22

o [T L k(2 a
N /0 vV 2rs2 7TtH 0 <ﬁ) 5
12

00 T2
:2/ pl(s,t)ds, ze€R, t>0, He (0,1
0 V2ms? (s:1) .1

satisfying the following fourth-order p.d.e.

2 3 4
0 2(x,t) = Ht?H -1 {48 - 50 - 2

g 2
o’ 2 o3 Ot } 1) (3:25)

forx #0,t>0.

Proof: We start our proof by writing down the time derivative w.r. to time ¢ of (3.24)
and making use of the result (3.16) we get that

22

0 4 B e 2?2 0
Gt =2 [F Sl e (3.26)

2

x

00,757 82 83
:—2Ht2H1/0 €’ [2882+3883} p'(s,t)ds.

V2ms?

By applying a couple of integrations by parts we have that

2 2
o] 6_21? 82 00 82 6_21?
A ﬁ@pl(t’i,t)ds = /0 @ \/W pl(S,t)dS (327)
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while by applying three integrations by parts we obtain

2

e P < g3 e 27\
/0 Vars:  0st (S’t)dsz_/o o5 | * Vomaz | P (s, t)ds (3.28)

/ 0?2 e 252 n 0 e 2s2 1( 1d
=— —{ — 45— s,t)ds
o 05 ] Vors? 0s \ V2ors? b

In light of (3.27) and (3.28) the time derivative (3.26) becomes

0
8t p(x,t) =
2 = 2 =
<19 e 227 5} 0 [ e 27
—2Ht2H1/ = S P s t)ds —
0 9s% \ V2ns? 052 |” s V21s? p (s t)ds
<10 e 252 0|0 [ e 22 0 e 252
_2Ht2H1/ - N i S [ Lis.t)ds =
o )02\ Vans | 0s |05 \ vamsr | "0 \ Va2 ) | (20"
2 = 3 =
<1 0 e 22 0 e 2s?
2Ht2H—1/ — | == | +s=— pl(s,t)ds. 3.29
0 052 \ /272 053 \ V2rs2 (5. ( )

For simplicity, we now write

T
(&} 252

qZQ(.’B,S) - \/W

By repeated use of (2.8) we have that

0 * @
05217 05 %052 T 9527 Sa

and

Pq_ 0 [Pa 0% _, 0 0%
0s3  Os

faz 5 5ui | = 35500+ 56

Hence, by combining the previous results we can rewrite the time derivative (3.26) as
follows

9 o1 [ f 07 p O 1 O 1
2P (z,t) = 2Ht ; @Q(Jﬂas) + 4s wCI(%S) +s @Q(Jﬂas) p (s, t)ds.

(3.30)
In order to handle the operator
82 5 84 A 36
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it will be useful to note that

0 T
%Q(xa S) - _872(]('%7 8)

and

1 x2

82
gattees) = (~ 5+ % ) ates)

this implies that the operator (3.31) becomes

0? o* 9%
2 3 84 $2
_ Y 2Y (_Z L P e N
a2q+4883( 2) +8484< 824—54)(1
9? BE Y L (R
021 o8 (wg) —s @q—k ozt (%)
82 83 33 4 9
82 3 34

83 62 3
and
oo, o , 9

0? 0

by inserting (3.33) and (3.34) into (3.32) we have that

82 284 436 2 83 264
FrEARR LU A il Rl L i L s

and this leads to the claimed result.
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Let’s consider now the process

1 11 .
JR(t) = Bly (1B3,( - |B (07 | F)[), ¢>0, Hye (0,1), j=1,2,....n.
We have already seen a particular case in (1.34) and (1.36) where H] = Hy = ... =
H,+1 = H. We show that following equivalence in distribution hold

1 2 1 = myE B plp2 1 (2 2
J(t) = By, (I1Ba, (| | By, (O)[ e | B2)|70) = BY(|B2(... |By L (1) )%). (3.35)
It must be also noted that the unique relevant Hurst parameter H in Jj(t) is that in
B}Hil (t). For this reason and for the sake of simplicity we assume throughout the paper
that H; = H for j =1,2,...,n+ 1.
We can state the following result on the factorization of the iterated fractional Brownian
motion.

Theorem 3.3 For the process

_ n oL 1
Jp H(t) = By(IBE (... [ B@|7 ..)|7), ¢>0, He(0,1) (3.36)
with Bﬂ, 7 =1,2,...,n independent fractional Brownian motions, the following equalities
i distribution hold
n— i.d. n i.d. - i
TR ) "= BY(IB(... | BE@®))2 .. )P = HB%(t), t>0, He(0,1). (3.37)
i=1

Proof: The proof of the first equality in (3.37) is a trivial matter. Indeed the equivalence

in distribution follows from the property By (t) “ p (t2H) for each t. For the proof of the

second equality in (3.37) we proceed by evaluating the Mellin transform of the density of
() as
2

2
s 2
x it Sn—1

2 2 —
2.51 e 252 e 212H

e
Rn—1 \/2715% \/27753 U Vor2H

_ 2%F (%) tH(oa—l).
Var

The Fourier transform of the distribution of Jz*(¢) can be written as

S1... dSn_l

o0
./\/ln_l(a,t)—/ g ton—l
0

Fno1(B,t) = /R ePep, o (z,t)dx (3.38)
Sl e
_ ki;o (Zflijf /R 22p (2, 1) da
2 R
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We now evaluate the characteristic function of
n

[
j=1

which becomes

2 (1)

3|

Eew i B]’% (t)

|
M8
|
=
&
—-
oY
3

o @8 j oo |
_kz_o ol EE{Bg(t)}
N 8% [ 2T (k) |
_kZ:O (2k)! 31_11 V2
tQHk

(i) [ 2T (k+ L)
g 2

and this coincides with (3.38). This confirms the equivalences in distribution of (3.37).

|
Remark 3.1 The result of the previous theorem permits us to write down the following
special factorization

Bl (1B ()] 7)<

e

"BL(1)B%(t) < BY(|BY (1)), t>0, He(0,1).

4 The iterated Cauchy process

The Cauchy process has been investigated from many viewpoints and some authors have
examined the structure of the jumps, some others have concentrated their analysis on
the behaviour of sample paths and others have obtained a number of its distributional
properties. We here consider the composition of independent Cauchy processes and its
connection with wave equations.

The Cauchy process C(t), t > 0 has a law

t) = —5——> eR, t>0
p(.%',) 7['(t2+$2) x )

which satisfies the Laplace equation
—+-—==0 z€R, t>0 (4.1)
x

and also the space-fractional equation

Op op
= == R, t > 0. 4.2
ot ol reR, t>0 (4.2)
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While (4.1) can be checked straightforwardly some additional care is needed for (4.2).

The first order spatial derivative appearing in (4.2) is defined as
()@= s oot [ e
We now evaluate the Fourier transform of (4.3).
Lo (o) e =1 e cgc{/oo i [ =
- _wﬁ/ {Ld /:O Sl
- [ {/m e
— ) oo LBy _ ,—if
=7 ([ o) (/0 )

2 : s
= 28 </ e’ﬂsf(s)ds> </ Smﬁydy) .
™ R 0 Yy
It is well-known that

2 [ sinBy 18|
= 2Ty = L
7T/o (0 Y B

and thus the Fourier transform of the fractional derivative (4.3) becomes

L (o) e =101 500

Since

A ¢
Bz dr = e~ 18l
/Re T2 a2) e

equation (4.2) immediately emerges.

The iterated Cauchy process defined as
Ic(t) = CH(|C*(@)]), t>0
has a probability law represented by the function
oo
q(z,t) = 732/0 ﬁ#d:ﬂ z€eR, t>0.
We prove that
Theorem 4.1 The function q = q(x,t) has the following explicit form

2t

t

|z
and satisfies the non-homogeneous wave equation

g 0%q 2
wzw—iﬂatm? .’IJGR,t>O

q(z,t) =

25
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Proof: The integral can be easily evaluated by observing that

s t st 1 1
2+ 22124+ 52 222 |a2+s2 2452

The proof that ¢ satisfies the equation (4.7) can be carried out in two alternative ways.
By taking the second-order time derivative of (4.5) and by applying (4.1) we have that

Pq_2 [* s 0P N
o2 w2 Jy s24 22012 \ 12 + 52
2 /°° s 0 t
- . ds
w2 Jo 82+ 22 0s2 \ 2+ 52
_2/m34931?@
w2 fy 0s \s2+22) 0s \ 12+ s2

2 0 s t |7 2 /°° 9? S t
_ —— [ — —_ S
72 0s \ 2+ 22 ) t2 + 52 2 Jo 05?2 \s2+a2) 12+ 52

0
2 92 2 [ s t
=5 ta333 s 2ls
mextt  0x?w? Jy stHatti+s
2 0%q

w22t 9a?
The second proof that (4.6) satisfies (4.7) requires some additional attention and is based
on the explicit calculations

0%q  2%t(t? + 3x2?) oo £ (z% 4 3t?)

_— = — |0 — e —

92~ w2 —22)3 S TR — 22)2

Pq  2%(t*+32%) ., t t(t? — 52?)
x

g4 _2°0 oY)y ATV
922 m2(12 — 12)3 0g 7222(12 — z2)2

+2

which readily give that

Pq_ g _ 2

o2 0x2 w2x2t

The iterated Cauchy process has an equivalent representation in terms of products of
independent Cauchy processes as shown in the next theorem.

Theorem 4.2 The following identity in distribution holds for all t > 0

CH|C (1)) 2 M (V20)CP(V2L). (4.8)

| =
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Proof: It suffices to show that for w > 0

2w
1 12 o VA VA

Pr{ =CY(V2t)C2(v2t == / d e,

7”{2 (V2O )<w} 2 7k My wrarary 2

and therefore the density p = p(w,t) of the random variable £C1(v/2t)C?(1/2t) becomes

2t [ g 1
p(w,t) = /
0

il d
o2 2%+ 22t + 2w "

22t /°° T tx d
= —————— —_ X
2m2(w? —t2) Jy |2t + 2% tz? 4 2w?
t 2t + 2 ‘oo 2t log
= O = 0og —
m2(w? —12) 21zt 2u?lo &

w2 (w? — 12) t’
Similar calculations must be done for w < 0.

Composing more than two Cauchy processes make the research of their distribution
and of the governing equation a puzzling question.

Two different compositions of the Brownian motion and Cauchy process are now anal-
ysed. We first obtain the p.d.e. (1.8) which is the governing equation of the process
Icp, = C(|Bu(t)]), t > 0. The transition law of the process Icp,, is given by

2

neo [ % e s d 4.9
pla,t) = /0 (8% + x2) /ort2H > 9

By performing the time derivative of (4.9) we obtain that

2

p 2/00 s 0 emm
ot " Jo w(s24+x2)ot \ VoreeH

52
— 9H2H-1 /°° 5 O [ e 2W
N o w(s2+x?)0s? \ \Vor2H

52
_ _2Ht2H—1/Ooa S O [ e
B o Os \m(s2+a2)) 0s \ \/ort2H

52
B 0s \7(s?2 +22) ) /ort2H .

00 82 s e_ztsﬁ
2H2H—1 / - d
" o 92 \r(2+a2)) Vamih

It must be observed that the first term of the sum becomes

52 (e}

22— g2 e 22

n(s2 + 222 \omiPH |

11 2|t
22 \/ont2H  227m\/2m
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and this permits us to write

o2
ot x272r Ox?

which concludes the proof.

Remark 4.1 The process Ipc(t) = B(|C(t)]), t > 0 has probability density

2

e 2 s
\V2ms 7T(82 + tQ)

The governing equation (1.11) has been obtained in Nane [8].
We give here the following proof

12
0%p /OO e 2 02 t
ZE_9 — ds
ot? 0 V2mrs 0t2 \ w(s? +12)
0o _a? 2
— _2/ e ol t ds
0o V2ms 0s? 7T(S2 + t2)
IQ
/°° 0 [ e = 0 t
=2 — — | ————=< | ds
o O0s \ V2rs | 0s \ w(s?2+12)

S§=00 12

o0 92 e 2s t

ds, zeR, t>0. (4.10)

I2
0 e 2s t
0s o21s | w(s?+12) .
S=!

2 (z) i@
T T r a2’ T 2 g

Remark 4.2 The transition law of the process C(|C?(t)|) can be written down in an
alternative form by exploiting the subordination relationship

2 t2
t o0 e 2s e 2s
PRI / t ds.
m(x? + 12) 0 2rs  \/2ms3
Indeed we have that

2 [ s t

3 55 28

e Jo STt xctt+ s
2 2 t2

e 2z
= ds / dw —_—
/ V2w \/ 27r 271'2 2mz3

2
w T 22 1 1 0 52 52
/ dz/ dwe b e / ds se  2we 2z
V27w \/27rz3 V2712 2mw3
e 2we = 1 1 1

Vi VB VE Vs L+l
t 1 22 IQ'LU

= dz/ dw e_tT_T
271'2 0 0 w+z

28

dz




L [ /Ood b es_Llp t (4.11)
== 2 w————e ==SE{ 555" :
2 Jo 0 zx? + wt? 72 x271 + 127y

The result (4.11) shows that the density of the iterated Cauchy process still preserves the
structure of the Cauchy distribution with exponentially distributed weights.

Remark 4.3 We can give another alternative and significant representation of the distri-
bution of the iterated Cauchy process.
Since

C(van e — (\1@)

we can write that

1
20T (V2D C? (V2t)

Furthermore by combining the previous results we can say that

CH(|C2 (1)) =

1

id.
cl|c*))) = ager

The last result can be derived by observing that

P{cucw } =refet(le(3)1) > 4

o] 00 1

s t
= dsd
/1/w/0 7r(32+:1:2)7r(t%+52) o

which leads to the density of W given by

2 1 [* s i 2 [ s t
w,t) = —— -t —ds == ds
plw.?) 7r2w2/0 s2 4 d5 & 4 52 7r2/0 s2w? + 11422

2 [ = t dz 2 z t

o0
_ == dz
w2 Jo z2+11+tl%2w 772/0 22+ 1w? + 1222

o [ ¥ 2 [® ¢ y
=— s T W= 5 s 2o 2
7= Jo %4_1111 +y ™ Jo Yy +Httw +y
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