Poisson process with different Brownian clocks

L.Beghin* E.Orsingher ${ }^{\dagger}$

March 31, 2010

Abstract

In this paper different types of Poisson processes N subordinated to random time processes X, depending on Brownian motion, are analyzed. In particular the processes X considered here are the elastic Brownian motion $B^{e l}$, the Brownian sojourn time on the positive half-line Γ_{t}^{+}, the first-passage time T_{t} (through the level t) of a Brownian motion, with or witout drift, and the γ-Bessel process ${ }_{\gamma} R$, for $\gamma>0$.

In all these cases we obtain the explicit state probability distributions $p_{k}(t)=$ $\operatorname{Pr}\{N(X(t))=k\}, k \geq 0, t>0$, their governing difference-differential equations and some moments. The connections among different models and, in particular, of $N\left({ }_{\gamma} R(t)\right)$ with birth and death processes are obtained and discussed.

Key words: Fractional difference-differential equations; Generalized MittagLeffler functions; Fractional Poisson processes; Processes with random time; Elastic Brownian motion; Birth and death process; Confluent hypergeometric functions.

AMS classification: 60K99; 33E12; 26A33.

1 Introduction

In a series of previous papers fractional extensions of the Poisson process have been analyzed by different authors (Jumarie [7], Laskin [8], Beghin and Orsingher [2]-[3]). The idea underlying these papers is to construct the fractional Poisson process by introducing a fractional time-derivative in the difference-differential equation governing the state probabilities $p_{k}^{\nu}(t), t>0$, that is, for $0<\nu<1$,

$$
\begin{equation*}
\frac{d^{\nu} p_{k}}{d t^{\nu}}=-\lambda\left[p_{k}(t)-p_{k-1}(t)\right], \quad k \geq 0, t>0, \lambda>0 \tag{1.1}
\end{equation*}
$$

with initial conditions

$$
p_{k}(0)=\left\{\begin{array}{ll}
1 & k=0 \tag{1.2}\\
0 & k \geq 1
\end{array} .\right.
$$

The derivative appearing in (1.1) is intended in the following sense:

$$
\frac{d^{\nu}}{d t^{\nu}} u(t)=\left\{\begin{array}{l}
\frac{1}{\Gamma(m-\nu)} \int_{0}^{t} \frac{1}{(t-s)^{1+\nu-m}} \frac{d^{m}}{d s^{m}} u(s) d s, \quad \text { for } m<\nu<m-1 \tag{1.3}\\
\frac{d^{m}}{d t^{m}} u(t), \quad \text { for } \nu=m
\end{array},\right.
$$

where $m=\lfloor\nu\rfloor+1$.
Cahoy [4] has shown that the fractional Poisson process exhibits a long-memory behavior with intermittency (which means clustering of events). This feature makes

[^0]the process more suitable for several applications, for example, in queueing systems (Saji and Pillai [11]) and in financial analysis (Mainardi et al. [9]).

In Beghin and Orsingher [2] it is proved that the fractional Poisson process $N_{\nu}(t), t>$ 0 , with state probabilities p_{k}^{ν} can be represented as

$$
\begin{equation*}
N_{\nu}(t) \stackrel{i . d .}{=} N\left(\mathcal{T}_{2 \nu}(t)\right), \quad t>0 \tag{1.4}
\end{equation*}
$$

where N is the homogeneous Poisson process with rate λ (which is obtained in the particular case $\nu=1$). The time process $\mathcal{T}_{2 \nu}(t), t>0$ appearing in (1.4) is independent from N and possesses a probability density obtained by folding the solution to the following fractional diffusion equation:

$$
\left\{\begin{array}{l}
\frac{\partial^{2 \nu} u}{\partial t^{2 \nu}}=\frac{\partial^{2} u}{\partial x^{2}}, \quad t>0, x \in \mathbb{R} \tag{1.5}\\
u(x, 0)=\delta(x)
\end{array}\right.
$$

for $0<\nu<1$, with the additional condition $v_{t}(y, 0)=0$, for $1 / 2<\nu<1$. In particular, for $\nu=1 / 2$, the process (1.4) becomes

$$
\begin{equation*}
N_{1 / 2}(t)=N(|B(t)|), \quad t>0 \tag{1.6}
\end{equation*}
$$

where B is a standard Brownian motion with volatility parameter equal to 2 (whose density is governed by (1.5) for $\nu=1 / 2$).

In the next section we treat a process of the form (1.6), where B is replaced by the elastic Brownian motion $B_{\alpha}^{e l}(t), t>0$, with absorbing rate $\alpha>0$ (see Ito and McKean [6]), defined as

$$
B_{\alpha}^{e l}(t)=\left\{\begin{array}{cc}
|B(t)|, & t<T_{\alpha} \tag{1.7}\\
0, & t \geq T_{\alpha}
\end{array}\right.
$$

where T_{α} is a random time with distribution

$$
\begin{equation*}
\operatorname{Pr}\left\{T_{\alpha}>t \mid \mathcal{B}_{t}\right\}=e^{-\alpha L(0, t)}, \quad \alpha>0 \tag{1.8}
\end{equation*}
$$

$\mathcal{B}_{t}=\sigma\{B(s), s \leq t\}$ is the natural filtration and $L(0, t)=\lim _{\varepsilon \downarrow 0} \frac{1}{2 \varepsilon}$ meas $\{s \leq t:|B(t)|<\varepsilon\}$ is the local time in the origin of B. We show that the process

$$
\widehat{N}^{e l}(t)=N\left(B_{\alpha}^{e l}(t)\right), \quad t>0, \alpha>0
$$

has state probabilities $\widehat{p}_{k}^{e l}, k \geq 0$, which can be expressed by generalized Mittag-Leffler functions (see Saxena and Mathai [12]) or in terms of the survival probabilities of $B^{e l}$. This distribution coincides with that of process (1.6) for $\alpha=0$. Finally we prove that the state probabilities of $\widehat{N}^{e l}$ are solutions to difference-differential equations of the form (1.1) for $\nu=1 / 2$.

The remaining part of the paper concerns different compositions of the Poisson process with randomly varying times, leading to higher-order governing equations, instead of fractional ones.

In section 3 we analyze the process obtained by composing the standard Poisson process with the first-passage time of a Brownian motion through the level t. It is defined as $\widehat{N}(t)=N\left(T_{t}\right), t>0$, where

$$
T_{t}=\inf \{s>0: B(s)=t\}
$$

and B is a standard Brownian motion independent from N.
We obtain the explicit distribution of \widehat{N}, i.e. $\widehat{p}_{k}(t)=\operatorname{Pr}\{\widehat{N}(t)=k\}, k \geq 0$, as follows

$$
\begin{equation*}
\widehat{p}_{k}(t)=\frac{2^{\frac{3}{4}-\frac{k}{2}} \lambda^{\frac{k}{2}+\frac{1}{4}} t^{k+\frac{1}{2}}}{k!\sqrt{\pi}} K_{k-\frac{1}{2}}(t \sqrt{2 \lambda}) \tag{1.9}
\end{equation*}
$$

where $K_{\nu}(z)$ is the modified Bessel function of order ν (see definition (3.7) below). We show that the probability generating function has the following simple structure

$$
\begin{equation*}
\widehat{G}(u, t)=\sum_{k=0}^{\infty} u^{k} \widehat{p}_{k}(t)=e^{-t \sqrt{2 \lambda(1-u)}}, \quad|u| \leq 1, t>0 . \tag{1.10}
\end{equation*}
$$

Since the expected number of events turns out to be infinite, we consider also the Poisson process with clock $T_{t}^{\mu}=\inf \left\{s>0: B^{\mu}(s)=t\right\}$, where B^{μ} is a Brownian motion with drift μ. For its distribution $\widehat{p}_{k}^{\mu}(t)=\operatorname{Pr}\left\{N\left(T_{t}^{\mu}\right)=k\right\}, k \geq 0$, we obtain the second-order governing equation

$$
\begin{equation*}
\frac{d^{2}}{d t^{2}} p_{k}-2 \mu \frac{d}{d t} p_{k}=2 \lambda\left[p_{k}-p_{k-1}\right], \quad k \geq 0 \tag{1.11}
\end{equation*}
$$

The corresponding probability generating function \widehat{G}^{μ} takes the form

$$
\widehat{G}^{\mu}(u, t)=e^{\mu t-t \sqrt{\mu^{2}+2 \lambda(1-u)}}, \quad|u| \leq 1
$$

and solves the following equation:

$$
\begin{equation*}
\frac{\partial^{2}}{\partial t^{2}} G-2 \mu \frac{\partial}{\partial t} G=2 \lambda(1-u) G \tag{1.12}
\end{equation*}
$$

For the Poisson process stopped at the n-times iterated first-passage instant

$$
\begin{equation*}
\widehat{N}^{n}(t)=N\left(T_{1}\left(T_{2} \ldots\left(T_{n-1}\left(T_{n}(t)\right)\right) \ldots\right)\right), \quad t>0, \tag{1.13}
\end{equation*}
$$

where

$$
\begin{equation*}
T_{j}(t)=\inf \left\{s>0: B_{j}(s)=t\right\} \tag{1.14}
\end{equation*}
$$

and $B_{j}(t)$, for $j=1, \ldots, n$, are Brownian motions independent among themselves and from N, we obtain the 2^{n}-th order equation

$$
\begin{equation*}
\frac{d^{2^{n}}}{d t^{2^{n}}} p_{k}(t)=2^{2^{n}-1} \lambda\left[p_{k}(t)-p_{k-1}(t)\right], \quad t>0, k \geq 0 \tag{1.15}
\end{equation*}
$$

governing the state probabilities $\widehat{p}_{k}^{n}(t), t>0$. For the version of the process (1.13) where the Brownian motion figuring in (1.14) is endowed with drift $\mu>0$, we have derived the probability generating function, which reads

$$
\begin{equation*}
\widehat{G}_{\mu}^{n}(u, t)=e^{\mu t-2^{\frac{1}{2}}} \sqrt{\frac{\mu^{2}}{2}-\mu+2^{\frac{1}{2}} \sqrt{\frac{\mu^{2}}{2}-\mu+2^{\frac{1}{2}} \sqrt{\ldots \ldots 2^{\frac{1}{2}} \sqrt{\frac{\mu^{2}}{2}+\lambda(1-u)}}}}, \quad|u| \leq 1 \tag{1.16}
\end{equation*}
$$

and from which we extract

$$
\begin{equation*}
\mathbb{E} \widehat{N}_{\mu}^{n}(t)=\frac{\lambda t}{\mu^{n}}, \quad n \geq 1 \tag{1.17}
\end{equation*}
$$

In section 4 we examine the Poisson process with subordinator represented by the Brownian sojourn time on the positive half-line, i.e. $\Gamma_{t}^{+}=$meas $\{s<t: B(s)>0\}$. This process is defined as

$$
\begin{equation*}
\bar{N}(t)=N\left(\Gamma_{t}^{+}\right), \quad t>0 \tag{1.18}
\end{equation*}
$$

and displays a slowing down behavior of the time flow (with respect to the natural time t). This fact is reflected by the relation

$$
\mathbb{E} \bar{N}(t)=\frac{\lambda t}{2}=\frac{1}{2} \mathbb{E} N(t) .
$$

The state probabilities of \bar{N} can be expressed in terms of confluent hypergeometric functions ${ }_{1} F_{1}(\alpha, \beta ; x)$ and are related to the distribution $p_{k}, k \geq 0$ of the homogeneous Poisson process by means of the following formula

$$
\begin{equation*}
\bar{p}_{k}(t)=p_{k}(t)\binom{2 k-1}{k} 2^{1-2 k} F_{1}\left(\frac{1}{2}, k+1 ; \lambda t\right) . \tag{1.19}
\end{equation*}
$$

We show that the distribution (1.19) satisfies the equations

$$
\begin{equation*}
\frac{d}{d t} p_{k}(t)=\frac{k}{t} p_{k}(t)-\frac{k+1}{t} p_{k+1}(t), \quad k \geq 0 \tag{1.20}
\end{equation*}
$$

with time-depending coefficients.
In the last section we derive a surprising connection between the process

$$
\tilde{N}_{\gamma}(t)=N\left(R_{\gamma}^{2}(t)\right), \quad t>0
$$

where $R_{\gamma}(t), t>0$ is a γ-Bessel process starting at zero (defined in (5.1) and (5.2) below) and the birth and death process $M(t), t>0$ (with equal birth and death rates).

We show that the distribution ${ }_{\gamma} \widetilde{p}_{k}=\operatorname{Pr}\left\{\widetilde{N}_{\gamma}(t)=k\right\}, k \geq 0$ can be written as

$$
\begin{equation*}
{ }_{\gamma} \widetilde{p}_{k}(t)=\frac{(2 \lambda t)^{k}}{(2 \lambda t+1)^{k+\frac{\gamma}{2}}} \frac{\Gamma\left(k+\frac{\gamma}{2}\right)}{k!\Gamma\left(\frac{\gamma}{2}\right)} \tag{1.21}
\end{equation*}
$$

and simplifies substantially, when $\gamma=2$, and in this case takes the form

$$
\begin{equation*}
{ }_{2} \widetilde{p}_{k}(t)=2 \lambda t \frac{(2 \lambda t)^{k-1}}{(2 \lambda t+1)^{k+1}}=2 \lambda t \operatorname{Pr}\{M(t)=k\} \tag{1.22}
\end{equation*}
$$

The equation governing the distribution (1.22) coincides with (1.20), which is related to the previous process $\bar{N}(t)=N\left(\Gamma_{t}^{+}\right)$.

2 Poisson processes at elastic Brownian times

We consider now the process $\widehat{N}^{e l}(t)=N\left(B_{\alpha}^{e l}(t)\right), t>0$ obtained by means of the composition of the Poisson process with the elastic Brownian motion $B_{\alpha}^{e l}=B_{\alpha}^{e l}(t), t>$ 0 , with absorbing rate $\alpha>0$. See Ito and McKean [6], p. 45, for details on elastic Brownian motion. It is defined in (1.7) -(1.8) and possesses transition function given by

$$
\begin{equation*}
q^{e l}(s, t)=2 e^{\alpha s} \int_{s}^{+\infty} w e^{-\alpha w} \frac{e^{-\frac{w^{2}}{2 t}}}{\sqrt{2 \pi t^{3}}} d w+q_{\alpha}(t) \delta(s) \tag{2.1}
\end{equation*}
$$

where $\delta(s)$ is the Dirac's Delta function with pole in the origin and

$$
q_{\alpha}(t)=1-\operatorname{Pr}\left\{B_{\alpha}^{e l}(t)>0\right\}=1-2 e^{\frac{\alpha^{2} t}{2}} \int_{\alpha \sqrt{t}}^{+\infty} \frac{e^{-\frac{w^{2}}{2}}}{\sqrt{2 \pi}} d w
$$

is the probability that the process is absorbed by the barrier in zero up to time t.
Then the probability distribution of $\widehat{N}^{e l}$ is defined, for any $k \geq 0$, by

$$
\begin{align*}
\widehat{p}_{k}^{e l}(t) & =\operatorname{Pr}\left\{N\left(B_{\alpha}^{e l}(t)\right)=k\right\}=\int_{0}^{+\infty} p_{k}(s) q^{e l}(s, t) d s \tag{2.2}\\
& =2 \int_{0}^{+\infty} \frac{(\lambda s)^{k}}{k!} e^{-\lambda s} e^{\alpha s} \int_{s}^{+\infty} w e^{-\alpha w} \frac{e^{-\frac{w^{2}}{2 t}}}{\sqrt{2 \pi t^{3}}} d w d s+q_{\alpha}(t) \int_{0}^{+\infty} \frac{(\lambda s)^{k}}{k!} e^{-\lambda s} \delta(s) d s
\end{align*}
$$

and is explicitly evaluated in the next theorem.
Theorem 2.1 For $k \geq 1$ and for any $\lambda \neq \alpha$ the state probabilities of $\hat{N}^{\text {el }}$ are given by

$$
\begin{align*}
\hat{p}_{k}^{e l}(t) & =\operatorname{Pr}\left\{N\left(B_{\alpha}^{e l}(t)\right)=k\right\} \tag{2.3}\\
& =\frac{\lambda^{k}}{(\lambda-\alpha)^{k+1}} \operatorname{Pr}\left\{B_{\alpha}^{e l}(t)>0\right\}-\frac{\lambda^{k}}{(\lambda-\alpha)^{k+1}} \sum_{j=0}^{k} \frac{(\alpha-\lambda)^{j}}{j!} \frac{d^{j}}{d \lambda^{j}} \operatorname{Pr}\left\{B_{\lambda}^{e l}(t)>0\right\},
\end{align*}
$$

while, for $k=0$, we have instead

$$
\begin{align*}
\hat{p}_{0}^{e l}(t) & =\operatorname{Pr}\left\{N\left(B^{e l}(t)\right)=0\right\} \tag{2.4}\\
& =1-\frac{\lambda-\alpha-1}{\lambda-\alpha} \operatorname{Pr}\left\{B_{\alpha}^{e l}(t)>0\right\}-\frac{1}{\lambda-\alpha} \operatorname{Pr}\left\{B_{\lambda}^{e l}(t)>0\right\}
\end{align*}
$$

Proof From (2.2), we have that

$$
\begin{align*}
& \widehat{p}_{k}^{e l}(t) \tag{2.5}\\
&= 2 \int_{0}^{+\infty} \frac{(\lambda s)^{k}}{k!} e^{-\lambda s} e^{\alpha s} \int_{s}^{+\infty} w e^{-\alpha w} \frac{e^{-\frac{w^{2}}{2 t}}}{\sqrt{2 \pi t^{3}}} d w d s \\
&=\frac{2 \lambda^{k}}{k!} \int_{0}^{+\infty} w e^{-\alpha w} \frac{e^{-\frac{w^{2}}{2 t}}}{\sqrt{2 \pi t^{3}}} d w \int_{0}^{w} s^{k} e^{-s(\lambda-\alpha)} d s \\
&=[\text { by successive integrations by parts] } \\
&=2^{k} \int_{0}^{+\infty} w e^{-\alpha w} \frac{e^{-\frac{w^{2}}{2 t}}}{\sqrt{2 \pi t^{3}}}\left[-\frac{w^{k} e^{-w(\lambda-\alpha)}}{(\lambda-\alpha) k!}-\frac{w^{k-1} e^{-w(\lambda-\alpha)}}{(\lambda-\alpha)^{2}(k-1)!}-\ldots-\frac{e^{-w(\lambda-\alpha)}-1}{(\lambda-\alpha)^{k+1}}\right] d w \\
&=-\frac{2 \lambda^{k}}{(\lambda-\alpha)^{k+1}} \int_{0}^{+\infty} w e^{-\alpha w} e^{-w(\lambda-\alpha)} \sum_{j=0}^{k} \frac{w^{j}(\lambda-\alpha)^{j}}{j!} \frac{e^{-\frac{w^{2}}{2 t}}}{\sqrt{2 \pi t^{3}}} d w+\frac{2 \lambda^{k}}{(\lambda-\alpha)^{k+1}} \int_{0}^{+\infty} w e^{-\alpha w} \frac{e^{-\frac{w^{2}}{2 t}}}{\sqrt{2 \pi t^{3}}} d w \\
&= \frac{\lambda^{k}}{(\lambda-\alpha)^{k+1}} \operatorname{Pr}\left\{B_{\alpha}^{e l}(t)>0\right\}-\frac{2 \lambda^{k}}{(\lambda-\alpha)^{k+1}} \sum_{j=0}^{k} \frac{(\lambda-\alpha)^{j}}{j!} \int_{0}^{+\infty} w^{j+1} e^{-w \lambda} \frac{e^{-\frac{w^{2}}{2 t}}}{\sqrt{2 \pi t^{3}}} d w \\
&= \frac{\lambda^{k}}{(\lambda-\alpha)^{k+1}} \operatorname{Pr}\left\{B_{\alpha}^{e l}(t)>0\right\}-\frac{2 \lambda^{k}}{(\lambda-\alpha)^{k+1}} \sum_{j=0}^{k} \frac{(\lambda-\alpha)^{j}}{j!}(-1)^{j} \frac{d^{j}}{d \lambda^{j}}\left(\int_{0}^{+\infty} w e^{-w \lambda} \frac{e^{-\frac{w^{2}}{2 t}}}{\sqrt{2 \pi t^{3}}} d w\right)
\end{align*}
$$

which coincides with (2.3). For $k=0$, formula (2.2) becomes instead

$$
\begin{align*}
\widehat{p}_{0}^{e l}(t) & =\operatorname{Pr}\left\{N\left(B^{e l}(t)\right)=0\right\}=2 \int_{0}^{+\infty} e^{-\lambda s} e^{\alpha s} \int_{s}^{+\infty} w e^{-\alpha w} \frac{e^{-\frac{w^{2}}{2 t}}}{\sqrt{2 \pi t^{3}}} d w d s+q_{\alpha}(t) \\
& =1-\operatorname{Pr}\left\{B_{\alpha}^{e l}(t)>0\right\}+2 \int_{0}^{+\infty} w e^{-\alpha w} \frac{e^{-\frac{w^{2}}{2 t}}}{\sqrt{2 \pi t^{3}}} d w \int_{0}^{w} e^{-s(\lambda-\alpha)} d s \tag{2.6}\\
& =1-\operatorname{Pr}\left\{B_{\alpha}^{e l}(t)>0\right\}+\frac{2}{\lambda-\alpha} \int_{0}^{+\infty} w e^{-\alpha w} \frac{e^{-\frac{w^{2}}{2 t}}}{\sqrt{2 \pi t^{3}}} d w\left[1-e^{-w(\lambda-\alpha)}\right] \\
& =1-\operatorname{Pr}\left\{B_{\alpha}^{e l}(t)>0\right\}+\frac{1}{\lambda-\alpha}\left[\operatorname{Pr}\left\{B_{\alpha}^{e l}(t)>0\right\}-\operatorname{Pr}\left\{B_{\lambda}^{e l}(t)>0\right\}\right] .
\end{align*}
$$

An alternative way of studying the probability distribution of this process is by evaluating the Laplace transform of (2.2). The implied results, which are valid for
any $\alpha, \lambda>0$, are expressed in terms of generalized Mittag-Leffler functions, defined as

$$
\begin{equation*}
E_{\alpha, \beta}^{\gamma}(z)=\sum_{r=0}^{\infty} \frac{(\gamma)_{r} z^{r}}{r!\Gamma(\alpha r+\beta)}, \quad \alpha, \beta, \gamma \in \mathbb{C}, \operatorname{Re}(\alpha), \operatorname{Re}(\beta), \operatorname{Re}(\gamma)>0 \tag{2.7}
\end{equation*}
$$

where $(\gamma)_{r}=\gamma(\gamma+1) \ldots(\gamma+r-1)$ (for $r=1,2, \ldots$, and $\left.\gamma \neq 0\right)$ and $(\gamma)_{0}=1$.
Theorem 2.2 The state probabilities of $\widehat{N}(t)=N\left(B^{e l}(t)\right), t>0$ are given by

$$
\begin{equation*}
\widehat{p}_{k}^{e l}(t)=\frac{(\lambda \sqrt{t})^{k}}{\sqrt{2^{k}}} \sum_{l=0}^{\infty}\left(-\frac{\alpha \sqrt{t}}{\sqrt{2}}\right)^{l} E_{\frac{1}{2}, \frac{l+k}{2}+1}^{k+1}\left(-\frac{\lambda \sqrt{t}}{\sqrt{2}}\right) \tag{2.8}
\end{equation*}
$$

for $k \geq 1$, while, for $k=0$, we get

$$
\begin{equation*}
\widehat{p}_{0}^{e l}(t)=1-E_{\frac{1}{2}, 1}\left(-\frac{\alpha \sqrt{t}}{\sqrt{2}}\right)+\sum_{j=0}^{\infty}\left(-\frac{\alpha \sqrt{t}}{\sqrt{2}}\right)^{j} E_{\frac{1}{2}, \frac{j}{2}+1}\left(-\frac{\lambda \sqrt{t}}{\sqrt{2}}\right) . \tag{2.9}
\end{equation*}
$$

Proof For any $\alpha, \lambda>0$ and $k \geq 1$, we evaluate the Laplace transform of the first line of (2.5):

$$
\begin{align*}
\mathcal{L}\left\{\widehat{p}_{k}^{e l} ; \eta\right\} & =2 \int_{0}^{+\infty} \frac{(\lambda s)^{k}}{k!} e^{-\lambda s} e^{\alpha s} \int_{s}^{+\infty} e^{-\alpha w-w \sqrt{2 \eta}} d w d s \tag{2.10}\\
& =2 \int_{0}^{+\infty} \frac{(\lambda s)^{k}}{k!} e^{-\lambda s} e^{\alpha s}\left[\frac{e^{-\alpha w-w \sqrt{2 \eta}}}{\alpha+\sqrt{2 \eta}}\right]_{w=s}^{w=+\infty} d s \\
& =2 \int_{0}^{+\infty} \frac{(\lambda s)^{k}}{k!} \frac{e^{-s(\lambda+\sqrt{2 \eta})}}{\alpha+\sqrt{2 \eta}} d s \\
& =\frac{2}{\alpha+\sqrt{2 \eta}} \frac{\lambda^{k}}{(\lambda+\sqrt{2 \eta})^{k+1}} \\
& =\frac{1}{\sqrt{2^{k}}} \frac{1}{\frac{\alpha}{\sqrt{2}}+\sqrt{\eta}} \frac{\lambda^{k}}{\left(\frac{\lambda}{\sqrt{2}}+\sqrt{\eta}\right)^{k+1}}
\end{align*}
$$

In order to invert (2.10) we recall the following formula (see Prabhakar [10]):

$$
\begin{equation*}
\mathcal{L}\left\{t^{\gamma-1} E_{\beta, \gamma}^{\delta}\left(\omega t^{\beta}\right) ; \eta\right\}=\frac{\eta^{\beta \delta-\gamma}}{\left(\eta^{\beta}-\omega\right)^{\delta}} . \tag{2.11}
\end{equation*}
$$

Therefore we invert the first term in (2.10) by taking in (2.7) $\delta=1, \beta=\frac{1}{2}, \omega=-\frac{\alpha}{\sqrt{2}}$ and $\gamma=\frac{1}{2}$, while, for the second term we put $\delta=k+1, \beta=\frac{1}{2}, \omega=-\frac{\lambda}{\sqrt{2}}$ and $\gamma=\frac{k+1}{2}$, so that we get

$$
\begin{align*}
& \widehat{p}_{k}^{e l}(t) \tag{2.12}\\
= & \frac{\lambda^{k}}{\sqrt{2^{k}}} \int_{0}^{t} E_{\frac{1}{2}, \frac{k+1}{2}}^{k+1}\left(-\frac{\lambda}{\sqrt{2}} \sqrt{s}\right) s^{\frac{k-1}{2}} E_{\frac{1}{2}, \frac{1}{2}}\left(-\frac{\alpha}{\sqrt{2}} \sqrt{t-s}\right)(t-s)^{-\frac{1}{2}} d s \\
= & \frac{\lambda^{k}}{\sqrt{2^{k}} k!} \sum_{j=0}^{\infty} \frac{(k+j)!\left(-\frac{\lambda}{\sqrt{2}}\right)^{j}}{j!\Gamma\left(\frac{j}{2}+\frac{k+1}{2}\right)} \sum_{l=0}^{\infty} \frac{\left(-\frac{\alpha}{\sqrt{2}}\right)^{l}}{\Gamma\left(\frac{l}{2}+\frac{1}{2}\right)} \int_{0}^{t} s^{\frac{k-1}{2}+\frac{j}{2}}(t-s)^{\frac{l}{2}-\frac{1}{2}} d s \\
= & \frac{(\lambda \sqrt{t})^{k}}{\sqrt{2^{k}} k!} \sum_{j=0}^{\infty} \sum_{l=0}^{\infty}\left(-\frac{\lambda \sqrt{t}}{\sqrt{2}}\right)^{j}\left(-\frac{\alpha \sqrt{t}}{\sqrt{2}}\right)^{l} \frac{1}{\Gamma\left(\frac{j+l+k}{2}+1\right)} \frac{(k+j)!}{j!},
\end{align*}
$$

which coincides with (2.8). Analogously, for $k=0$, the Laplace transform of the first expression in (2.6) reads

$$
\begin{align*}
& \mathcal{L}\left\{\widehat{p}_{0}^{e l} ; \eta\right\} \tag{2.13}\\
= & 2 \int_{0}^{+\infty} e^{-\lambda s+\alpha s} \int_{s}^{+\infty} e^{-\alpha w-w \sqrt{2 \eta}} d w d s+\int_{0}^{+\infty} e^{-\eta t} q_{\alpha}(t) d t \\
= & 2 \int_{0}^{+\infty} \frac{e^{-\lambda s-s \sqrt{2 \eta}}}{\alpha+\sqrt{2 \eta}} d s+\int_{0}^{+\infty} e^{-\eta t}\left(1-2 e^{\frac{\alpha^{2} t}{2}} \int_{\alpha \sqrt{t}}^{+\infty} \frac{e^{-\frac{w^{2}}{2}}}{\sqrt{2 \pi}} d w\right) d t \\
= & \frac{2}{\alpha+\sqrt{2 \eta}} \frac{1}{\lambda+\sqrt{2 \eta}}+\frac{1}{\eta}-2 \int_{0}^{+\infty} e^{-\eta t+\frac{\alpha^{2} t}{2}} \int_{\alpha \sqrt{t}}^{+\infty} \frac{e^{-\frac{w^{2}}{2}}}{\sqrt{2 \pi}} d w d t \\
= & \frac{2}{\alpha+\sqrt{2 \eta}} \frac{1}{\lambda+\sqrt{2 \eta}}+\frac{1}{\eta}-2 \int_{0}^{+\infty} \frac{e^{-\frac{w^{2}}{2}}}{\sqrt{2 \pi}} \int_{0}^{w^{2} / \alpha^{2}} e^{-\eta t+\frac{\alpha^{2} t}{2}} d t d w \\
= & \frac{2}{\alpha+\sqrt{2 \eta}} \frac{1}{\lambda+\sqrt{2 \eta}}+\frac{1}{\eta}-2 \int_{0}^{+\infty} \frac{1}{\sqrt{\frac{2 \pi \alpha^{2}}{2 \eta}} \frac{e^{-\eta} \frac{w^{2}}{2}-\eta}{\frac{\alpha^{2}}{2}} \frac{\alpha}{\sqrt{2 \eta}} d w+\frac{2}{\alpha^{2}-2 \eta}} \begin{array}{l}
=\frac{2}{\alpha+\sqrt{2 \eta}} \frac{1}{\lambda+\sqrt{2 \eta}}+\frac{1}{\eta}-\frac{2}{\alpha^{2}-2 \eta} \frac{\alpha}{\sqrt{2 \eta}}+\frac{2}{\alpha^{2}-2 \eta} \\
= \\
\frac{2}{\alpha+\sqrt{2 \eta}} \frac{1}{\lambda+\sqrt{2 \eta}}+\frac{1}{\eta}-\frac{2}{\alpha^{2}-2 \eta} \frac{\alpha-\sqrt{2 \eta}}{\sqrt{2 \eta}} \\
= \\
\frac{1}{\frac{\alpha}{\sqrt{2}}+\sqrt{\eta}} \frac{1}{\frac{\lambda}{\sqrt{2}}+\sqrt{\eta}}+\frac{1}{\eta}-\frac{1}{\frac{\alpha}{\sqrt{2}}+\sqrt{\eta}} \frac{1}{\sqrt{\eta}},
\end{array}
\end{align*}
$$

so that, by inverting (2.13), we get

$$
\begin{aligned}
& \widehat{p}_{0}^{e l}(t) \\
= & 1-\frac{1}{\sqrt{\pi}} \int_{0}^{t} E_{\frac{1}{2}, \frac{1}{2}}\left(-\frac{\alpha}{\sqrt{2}} \sqrt{s}\right) s^{-\frac{1}{2}}(t-s)^{-\frac{1}{2}} d s+ \\
& +\int_{0}^{t} E_{\frac{1}{2}, \frac{1}{2}}\left(-\frac{\alpha}{\sqrt{2}} \sqrt{s}\right) s^{-\frac{1}{2}} E_{\frac{1}{2}, \frac{1}{2}}\left(-\frac{\lambda}{\sqrt{2}} \sqrt{t-s}\right)(t-s)^{-\frac{1}{2}} d s \\
= & 1-\frac{1}{\sqrt{\pi}} \sum_{j=0}^{\infty} \frac{1}{\Gamma\left(\frac{j}{2}+\frac{1}{2}\right)}\left(-\frac{\alpha}{\sqrt{2}}\right)^{j} \int_{0}^{t} s^{\frac{j}{2}-\frac{1}{2}}(t-s)^{-\frac{1}{2}} d s+ \\
& +\sum_{j=0}^{\infty} \frac{1}{\Gamma\left(\frac{j}{2}+\frac{1}{2}\right)}\left(-\frac{\alpha}{\sqrt{2}}\right)^{j} \sum_{l=0}^{\infty} \frac{1}{\Gamma\left(\frac{l}{2}+\frac{1}{2}\right)}\left(-\frac{\lambda}{\sqrt{2}}\right)^{l} \int_{0}^{t} s^{\frac{j}{2}-\frac{1}{2}}(t-s)^{\frac{l}{2}-\frac{1}{2}} d s \\
= & 1-\sum_{j=0}^{\infty} \frac{1}{\Gamma\left(\frac{j}{2}+1\right)}\left(-\frac{\alpha \sqrt{t}}{\sqrt{2}}\right)^{j}+\sum_{j=0}^{\infty}\left(-\frac{\alpha \sqrt{t}}{\sqrt{2}}\right)^{j} \sum_{l=0}^{\infty} \frac{1}{\Gamma\left(\frac{j+l}{2}+1\right)}\left(-\frac{\lambda \sqrt{t}}{\sqrt{2}}\right)^{l} .
\end{aligned}
$$

Remark 2.1 By means of (2.10) we can evaluate the mean value of $\widehat{N}^{e l}$, as follows

$$
\begin{aligned}
\mathcal{L}\left\{\mathbb{E} \widehat{N}^{e l} ; \eta\right\} & =\sum_{k=0}^{\infty} \frac{k}{\sqrt{2^{k}}} \frac{1}{\frac{\alpha}{\sqrt{2}}+\sqrt{\eta}} \frac{\lambda^{k}}{\left(\frac{\lambda}{\sqrt{2}}+\sqrt{\eta}\right)^{k+1}} \\
& =\frac{\lambda}{\sqrt{2}} \frac{1}{\frac{\alpha}{\sqrt{2}}+\sqrt{\eta}} \frac{1}{\left(\frac{\lambda}{\sqrt{2}}+\sqrt{\eta}\right)^{2}} \sum_{k=0}^{\infty} k\left(\frac{\frac{\lambda}{\sqrt{2}}}{\frac{\lambda}{\sqrt{2}}+\sqrt{\eta}}\right)^{k-1} \\
& =\frac{\lambda}{\sqrt{2}} \frac{\eta^{-1}}{\frac{\alpha}{\sqrt{2}}+\sqrt{\eta}} .
\end{aligned}
$$

Therefore we get that

$$
\begin{equation*}
\mathbb{E} \widehat{N}^{e l}(t)=\frac{\lambda \sqrt{t}}{\sqrt{2}} E_{\frac{1}{2}, \frac{3}{2}}\left(-\frac{\alpha}{\sqrt{2}} \sqrt{t}\right)=\frac{\lambda}{\alpha}\left\{1-E_{\frac{1}{2}, 1}\left(-\frac{\alpha}{\sqrt{2}} \sqrt{t}\right)\right\} \tag{2.14}
\end{equation*}
$$

where, in the last step, we have used the following relation

$$
E_{\frac{1}{2}, \frac{3}{2}}(x)=x^{-1}\left[E_{\frac{1}{2}, 1}(x)-1\right] .
$$

The structure of the elastic Brownian motion is the reason of the fading behavior of $\mathbb{E} \widehat{N}^{e l}$. This is intuitively explained by the fact that the elastic barrier at the origin makes the time length shorter and shorter as t increases and thus the mean number of Poisson events is constrained to decrease. Moreover we establish an interesting relation between the expected number of events for the process $\widehat{N}^{e l}$ and the corresponding quantity for the process $N(|B(t)|), t>0$, which reads

$$
\begin{equation*}
\mathbb{E} N(|B(t)|)=\int_{0}^{+\infty} \lambda s \operatorname{Pr}\{|B(t)| \in d s\}=\frac{\lambda \sqrt{2 t}}{\sqrt{\pi}} \tag{2.15}
\end{equation*}
$$

Indeed by comparing (2.14) with (2.15) we can write that

$$
\begin{equation*}
\mathbb{E} \widehat{N}^{e l}(t)=\mathbb{E}\left(N\left(B^{e l}(t)\right)\right)=\frac{\sqrt{\pi}}{2} E_{\frac{1}{2}, \frac{3}{2}}\left(-\frac{\alpha}{\sqrt{2}} \sqrt{t}\right) \mathbb{E} N(|B(t)|) \tag{2.16}
\end{equation*}
$$

We note that the elastic Brownian motion with absorbing rate α reduces to the reflected Brownian motion for $\alpha=0$ and then, in this particular case, the constant in (2.16) becomes equal to one, as it should be.

By analogous steps we can evaluate the variance of the process: the Laplace transform of the second-order factorial moment is equal to

$$
\begin{align*}
& \sum_{k=0}^{\infty} k(k-1) \frac{1}{\frac{\alpha}{\sqrt{2}}+\sqrt{\eta}} \frac{\left(\frac{\lambda}{\sqrt{2}}\right)^{k}}{\left(\frac{\lambda}{\sqrt{2}}+\sqrt{\eta}\right)^{k+1}} \tag{2.17}\\
= & \frac{1}{\frac{\alpha}{\sqrt{2}}+\sqrt{\eta}} \frac{\left(\frac{\lambda}{\sqrt{2}}\right)^{2}}{\left(\frac{\lambda}{\sqrt{2}}+\sqrt{\eta}\right)^{3}} \sum_{k=0}^{\infty} k(k-1)\left(\frac{\frac{\lambda}{\sqrt{2}}}{\frac{\lambda}{\sqrt{2}}+\sqrt{\eta}}\right)^{k-2} \\
= & \frac{1}{\frac{\alpha}{\sqrt{2}}+\sqrt{\eta}} \frac{\left(\frac{\lambda}{\sqrt{2}}\right)^{2}}{\left(\frac{\lambda}{\sqrt{2}}+\sqrt{\eta}\right)^{3}} \frac{2}{\left(1-\frac{\frac{\lambda}{\sqrt{2}}}{\frac{\lambda}{\sqrt{2}}+\sqrt{\eta}}\right)^{3}} \\
= & \frac{1}{\frac{\alpha}{\sqrt{2}}+\sqrt{\eta}} \frac{\lambda^{2}}{\sqrt{\eta}^{3}} .
\end{align*}
$$

The Laplace transform (2.17) can be inverted by applying formula (2.11), for $\gamma=2$, thus giving

$$
\begin{equation*}
\mathbb{E}\left[\widehat{N}^{e l}(t)\left(\widehat{N}^{e l}(t)-1\right)\right]=\lambda^{2} t E_{\frac{1}{2}, 2}\left(-\frac{\alpha \sqrt{t}}{\sqrt{2}}\right) \tag{2.18}
\end{equation*}
$$

Therefore the variance is obtained as follows
$\mathbb{V} \operatorname{ar}\left(\widehat{N}^{e l}(t)\right)=\lambda^{2} t E_{\frac{1}{2}, 2}\left(-\frac{\alpha}{\sqrt{2}} \sqrt{t}\right)+\frac{\lambda \sqrt{t}}{\sqrt{2}} E_{\frac{1}{2}, \frac{3}{2}}\left(-\frac{\alpha}{\sqrt{2}} \sqrt{t}\right)-\frac{\lambda^{2} t}{2}\left(E_{\frac{1}{2}, \frac{3}{2}}\left(-\frac{\alpha}{\sqrt{2}} \sqrt{t}\right)\right)^{2}$.
It can be checked that (2.18) and (2.19) for $\alpha=0$ coincide with $\mathbb{E}[N(|B(t)|)(N(|B(t)|)(t)-1)]$ and $\mathbb{V a r}(N(|B(t)|))$, respectively.

We analyze now the particular case where $\alpha=\lambda$, since the previous results are considerably simplified and thus it is possible to evaluate the equation governing the distribution of $\widehat{N}^{e l}$, as we did for the other processes in the previous sections.

Theorem 2.3 For $\alpha=\lambda$ the state probabilities of $\widehat{N}^{e l}$ read

$$
\begin{equation*}
\widehat{p}_{k}^{e l}(t)=\frac{(\lambda \sqrt{t})^{k}}{\sqrt{2^{k}}} E_{\frac{1}{2}, \frac{k}{2}+1}^{k+2}\left(-\frac{\lambda \sqrt{t}}{\sqrt{2}}\right), \quad k \geq 1 \tag{2.20}
\end{equation*}
$$

and, for $k=0$

$$
\begin{align*}
\widehat{p}_{0}^{e l}(t) & =E_{\frac{1}{2}, 1}^{2}\left(-\frac{\lambda \sqrt{t}}{\sqrt{2}}\right)+\frac{\lambda \sqrt{t}}{\sqrt{2}} E_{\frac{1}{2}, \frac{3}{2}}\left(-\frac{\lambda \sqrt{t}}{\sqrt{2}}\right) \tag{2.21}\\
& =1-\frac{\lambda}{\sqrt{2}} \sqrt{t} E_{\frac{1}{2}, \frac{3}{2}}^{2}\left(-\frac{\lambda}{\sqrt{2}} \sqrt{t}\right) .
\end{align*}
$$

Proof The Laplace transform (2.10) can be immediately inverted, for $\alpha=\lambda$, as follows

$$
\begin{align*}
\widehat{p}_{k}^{e l}(t) & =\frac{\lambda^{k}}{\sqrt{2^{k}}} \mathcal{L}^{-1}\left\{\left(\frac{\lambda}{\sqrt{2}}+\sqrt{\eta}\right)^{-k-2} ; t\right\} \tag{2.22}\\
& =\frac{(\lambda \sqrt{t})^{k}}{\sqrt{2^{k}}} E_{\frac{1}{2}, \frac{k}{2}+1}^{k+2}\left(-\frac{\lambda \sqrt{t}}{\sqrt{2}}\right), \quad k \geq 1
\end{align*}
$$

by applying again (2.11). For $k=0$, if we put $\alpha=\lambda$ the Laplace transform (2.13) reduces to

$$
\mathcal{L}\left\{\widehat{p}_{0}^{e l} ; \eta\right\}=\frac{1}{\left(\frac{\lambda}{\sqrt{2}}+\sqrt{\eta}\right)^{2}}+\frac{\lambda}{\sqrt{2}} \frac{1}{\frac{\lambda}{\sqrt{2}}+\sqrt{\eta}} \frac{1}{\eta},
$$

which gives the first expression in (2.21). An alternative expression for $\widehat{p}_{0}^{e l}$ can be obtained by rewriting (2.13), for $\alpha=\lambda$, as follows

$$
\begin{equation*}
\mathcal{L}\left\{\widehat{p}_{0}^{e l} ; \eta\right\}=\frac{1}{\eta}-\frac{1}{\sqrt{2}} \frac{\lambda \eta^{-\frac{1}{2}}}{\left(\frac{\lambda}{\sqrt{2}}+\sqrt{\eta}\right)^{2}} \tag{2.23}
\end{equation*}
$$

The Laplace transform (2.23) can be inverted by applying (2.11) for $\delta=2, \beta=\frac{1}{2}$, $\omega=-\frac{\lambda}{\sqrt{2}}$ and $\gamma=\frac{3}{2}$, thus obtaining the second form of (2.21). We check that the two expressions of (2.21) coincide, by applying the relation holding for generalized Mittag-Leffler functions proved in Beghin and Orsingher [3] (see formula (3.8), for $\left.n=0, m=2, z=1, \nu=\frac{1}{2}\right)$:

$$
\begin{aligned}
& E_{\frac{1}{2}, 1}^{2}\left(-\frac{\lambda \sqrt{t}}{\sqrt{2}}\right)+\frac{\lambda \sqrt{t}}{\sqrt{2}} E_{\frac{1}{2}, \frac{3}{2}}\left(-\frac{\lambda \sqrt{t}}{\sqrt{2}}\right)-1+\frac{\lambda}{\sqrt{2}} \sqrt{t} E_{\frac{1}{2}, \frac{3}{2}}^{2}\left(-\frac{\lambda}{\sqrt{2}} \sqrt{t}\right) \\
= & E_{\frac{1}{2}, 1}\left(-\frac{\lambda \sqrt{t}}{\sqrt{2}}\right)+\frac{\lambda \sqrt{t}}{\sqrt{2}} E_{\frac{1}{2}, \frac{3}{2}}\left(-\frac{\lambda \sqrt{t}}{\sqrt{2}}\right)-1 \\
= & \sum_{j=0}^{\infty} \frac{\left(-\frac{\lambda \sqrt{t}}{\sqrt{2}}\right)^{j}}{\Gamma\left(\frac{j}{2}+1\right)}+\frac{\lambda \sqrt{t}}{\sqrt{2}} \sum_{j=0}^{\infty} \frac{\left(-\frac{\lambda \sqrt{t}}{\sqrt{2}}\right)^{j}}{\Gamma\left(\frac{j}{2}+\frac{1}{2}+1\right)}-1 \\
= & \sum_{j=0}^{\infty} \frac{\left(-\frac{\lambda \sqrt{t}}{\sqrt{2}}\right)^{j}}{\Gamma\left(\frac{j}{2}+1\right)}+\frac{\lambda \sqrt{t}}{\sqrt{2}} \sum_{l=1}^{\infty} \frac{\left(-\frac{\lambda \sqrt{t}}{\sqrt{2}}\right)^{l-1}}{\Gamma\left(\frac{l}{2}+1\right)}-1 \\
= & \sum_{j=0}^{\infty} \frac{\left(-\frac{\lambda \sqrt{t}}{\sqrt{2}}\right)^{j}}{\Gamma\left(\frac{j}{2}+1\right)}-\sum_{l=1}^{\infty} \frac{\left(-\frac{\lambda \sqrt{t}}{\sqrt{2}}\right)^{l}}{\Gamma\left(\frac{l}{2}+1\right)}-1=0 .
\end{aligned}
$$

Remark 2.2 By comparing (2.20) with (2.8) for $\alpha=\lambda$, we extract the following interesting relation holding for generalized Mittag-Leffler functions:

$$
\begin{equation*}
\sum_{l=0}^{\infty} x^{l} E_{\alpha, \alpha(l+k)+z}^{k+1}(x)=E_{\alpha, \alpha k+z}^{k+2}(x), \quad x \in \mathbb{R}, z \geq 0, k \geq 1, \alpha>0 \tag{2.24}
\end{equation*}
$$

Formula (2.24) can be directly verified as follows

$$
\begin{align*}
\sum_{l=0}^{\infty} x^{l} E_{\alpha, \alpha(l+k)+z}^{k+1}(x) & =\frac{1}{k!} \sum_{l=0}^{\infty} x^{l} \sum_{m=0}^{\infty} \frac{x^{m}(m+k)!}{m!\Gamma(\alpha(m+k+l)+z)} \tag{2.25}\\
& =\left[m^{\prime}=m+l\right] \\
& =\frac{1}{k!} \sum_{l=0}^{\infty} x^{l} \sum_{m^{\prime}=l}^{\infty} \frac{x^{m^{\prime}-l}\left(m^{\prime}-l+k\right)!}{\left(m^{\prime}-l\right)!\Gamma\left(\alpha\left(m^{\prime}+k\right)+z\right)} \\
& =\frac{1}{k!} \sum_{m=0}^{\infty} \frac{x^{m}}{\Gamma(\alpha(m+k)+z)} \sum_{l=0}^{m} \frac{(m-l+k)!}{(m-l)!} \\
& =\frac{1}{(k+1)!} \sum_{m=0}^{\infty} \frac{x^{m}(k+m+1)!}{\Gamma(\alpha(m+k)+z) m!},
\end{align*}
$$

which gives (2.24), by noting that the following result holds

$$
\begin{aligned}
& \sum_{l=0}^{m}\binom{m-l+k}{k} \\
= & 1+\binom{k+1}{k}+\ldots+\binom{m+k}{k} \\
= & 1+(k+1)+\frac{(k+1)(k+2)}{2}+\frac{(k+1)(k+2)(k+3)}{3!}+\ldots+\frac{(k+1)(k+2) \ldots(k+m)}{m!} \\
= & (k+2)\left[1+\frac{(k+1)}{2}+\frac{(k+1)(k+3)}{3!}+\ldots+\frac{(k+1)(k+3) \ldots(k+m)}{m!}\right] \\
= & \frac{(k+2)(k+3)}{2}\left[\frac{(k+1)}{3}+\ldots+\frac{(k+1)(k+4) \ldots(k+m)}{3 \cdot 4 \cdot \ldots m}\right] \\
= & \frac{(k+2)(k+3) \ldots(k+m+1)}{m!}=\frac{(k+m+1)!}{m!(k+1)!}=\binom{m+k+1}{m} .
\end{aligned}
$$

Remark 2.3 We check that the state probabilities sum up to one. Indeed we can rewrite the distribution (2.22) as follows, for $k \geq 1$, by using again formula (3.8) cited above,

$$
\begin{equation*}
\widehat{p}_{k}^{e l}(t)=\frac{(\lambda \sqrt{t})^{k}}{\sqrt{2^{k}}} E_{\frac{1}{2}, \frac{k}{2}+1}^{k+1}\left(-\frac{\lambda \sqrt{t}}{\sqrt{2}}\right)-\frac{(\lambda \sqrt{t})^{k+1}}{\sqrt{2^{k+1}}} E_{\frac{1}{2}, \frac{k+1}{2}+1}^{k+2}\left(-\frac{\lambda \sqrt{t}}{\sqrt{2}}\right) \tag{2.26}
\end{equation*}
$$

and consider it together with (2.21) so that we get

$$
\begin{align*}
& \sum_{k=0}^{\infty} \hat{p}_{k}^{e l}(t) \tag{2.27}\\
= & 1-\frac{\lambda}{\sqrt{2}} \sqrt{t} E_{\frac{1}{2}, \frac{3}{2}}^{2}\left(-\frac{\lambda}{\sqrt{2}} \sqrt{t}\right)+\sum_{k=1}^{\infty} \frac{(\lambda \sqrt{t})^{k}}{\sqrt{2^{k}}} E_{\frac{1}{2}, \frac{k}{2}+1}^{k+1}\left(-\frac{\lambda \sqrt{t}}{\sqrt{2}}\right)-\sum_{k=1}^{\infty} \frac{(\lambda \sqrt{t})^{k+1}}{\sqrt{2^{k+1}}} E_{\frac{1}{2}, \frac{k+1}{2}+1}^{k+2}\left(-\frac{\lambda \sqrt{t}}{\sqrt{2}}\right) \\
= & 1-\sum_{k=0}^{\infty} \frac{(\lambda \sqrt{t})^{k+1}}{\sqrt{2^{k+1}}} E_{\frac{1}{2}, \frac{k+1}{2}+1}^{k+2}\left(-\frac{\lambda \sqrt{t}}{\sqrt{2}}\right)+\sum_{k=1}^{\infty} \frac{(\lambda \sqrt{t})^{k}}{\sqrt{2^{k}}} E_{\frac{1}{2}, \frac{k}{2}+1}^{k+1}\left(-\frac{\lambda \sqrt{t}}{\sqrt{2}}\right)=1
\end{align*}
$$

In order to obtain the recursive differential equation governing the distribution of the process $\widehat{N}^{e l}(t), t>0$, we note that $\widehat{p}_{k}^{e l}(t)$ (in the form given in (2.26)) can be rewritten in terms of the probability distribution $p_{k}^{1 / 2}, k \geq 1$, of the fractional Poisson process $\mathcal{N}_{\nu}(t), t>0$, with parameters $\nu=\frac{1}{2}$ and $\frac{\lambda}{\sqrt{2}}$ (see Beghin and Orsingher [3]). We recall that

$$
p_{k}^{1 / 2}(t)=\operatorname{Pr}\left\{\mathcal{N}_{\frac{1}{2}}(t)=k\right\}=\frac{(\lambda \sqrt{t})^{k}}{\sqrt{2^{k}}} E_{\frac{1}{2}, \frac{k}{2}+1}^{k+1}\left(-\frac{\lambda \sqrt{t}}{\sqrt{2}}\right), \quad t>0
$$

solves the fractional recursive differential equation

$$
\begin{equation*}
\frac{d^{1 / 2} p_{k}}{d t^{1 / 2}}=-\frac{\lambda}{\sqrt{2}}\left[p_{k}^{1 / 2}(t)-p_{k-1}^{1 / 2}(t)\right], \quad k \geq 0 \tag{2.28}
\end{equation*}
$$

with initial conditions

$$
p_{k}(0)= \begin{cases}1 & k=0 \\ 0 & k \geq 1\end{cases}
$$

and $p_{-1}(t)=0$ (see Theorem 2.1 in Beghin and Orsingher [3]). The process $\mathcal{N}_{\frac{1}{2}}$ analyzed there is equal in distribution to $N(|B(t)|)$, where B is a Brownian motion with variance equal to $2 t$ (and this is the reason of the appearance here of $\frac{\lambda}{\sqrt{2}}$ instead of λ). Therefore we can write, in view of formula (2.12) of Beghin and Orsingher [3], that

$$
\begin{align*}
\widehat{p}_{k}^{e l}(t) & =\operatorname{Pr}\left\{\mathcal{N}_{1 / 2}(t)=k\right\}-\operatorname{Pr}\left\{\mathcal{N}_{1 / 2}(t)=k+1\right\} \tag{2.29}\\
& =\operatorname{Pr}\{N(|B(t)|)=k\}-\operatorname{Pr}\{N(|B(t)|)=k+1\} \\
& =p_{k}^{1 / 2}(t)-p_{k+1}^{1 / 2}(t), \quad \text { for } k \geq 1
\end{align*}
$$

Analogously, for $k=0$, we get, in view of (2.27), that

$$
\begin{equation*}
\widehat{p}_{0}^{e l}(t)=1-\sum_{k=1}^{\infty} \widehat{p}_{k}^{e l}(t)=1-p_{1}^{1 / 2}(t) \tag{2.30}
\end{equation*}
$$

Theorem 2.4 For $\alpha=\lambda$, the state probabilities $\widehat{p}_{k}^{e l}$ of $\widehat{N}^{e l}$, given in Theorem 2.3, are solutions to the following recursive differential equation

$$
\begin{equation*}
\frac{d^{1 / 2}}{d t^{1 / 2}} p_{k}(t)=-\frac{\lambda}{\sqrt{2}}\left[p_{k}(t)-p_{k-1}(t)\right], \quad k>1 \tag{2.31}
\end{equation*}
$$

with initial condition $\widehat{p}_{k}^{e l}(0)=0$; for $k=1$, the governing equation is given by

$$
\begin{equation*}
\frac{d^{1 / 2}}{d t^{1 / 2}} p_{1}(t)=-\frac{\lambda}{\sqrt{2}}\left[p_{1}(t)-p_{0}(t)+\frac{\lambda \sqrt{t}}{\sqrt{2}} E_{\frac{1}{2}, \frac{3}{2}}\left(-\frac{\lambda \sqrt{t}}{\sqrt{2}}\right)\right] \tag{2.32}
\end{equation*}
$$

with $\widehat{p}_{1}^{e l}(0)=0$, while, for $k=0$, it reads

$$
\begin{equation*}
\frac{d^{1 / 2}}{d t^{1 / 2}} p_{0}(t)=-\frac{\lambda}{\sqrt{2}}\left[p_{0}(t)-\frac{\lambda \sqrt{t}}{\sqrt{2}} E_{\frac{1}{2}, \frac{3}{2}}\left(-\frac{\lambda \sqrt{t}}{\sqrt{2}}\right)\right] \tag{2.33}
\end{equation*}
$$

with initial condition $\widehat{p}_{0}^{e l}(0)=1$.
Proof By (2.28) and (2.29) we can write, for $k \geq 2$,

$$
\begin{aligned}
\frac{d^{1 / 2}}{d t^{1 / 2}} \widehat{p}_{k}^{l}(t) & =\frac{d^{1 / 2}}{d t^{1 / 2}} p_{k}^{1 / 2}(t)-\frac{d^{1 / 2}}{d t^{1 / 2}} p_{k+1}^{1 / 2}(t) \\
& =-\frac{\lambda}{\sqrt{2}}\left[p_{k}^{1 / 2}(t)-p_{k-1}^{1 / 2}(t)\right]+\frac{\lambda}{\sqrt{2}}\left[p_{k+1}^{1 / 2}(t)-p_{k}^{1 / 2}(t)\right]
\end{aligned}
$$

which gives (2.31). For $k=1$, we have instead

$$
\begin{aligned}
& \frac{d^{1 / 2}}{d t^{1 / 2}} \widehat{p}_{1}^{e l}(t)=\frac{d^{1 / 2}}{d t^{1 / 2}} p_{1}^{1 / 2}(t)-\frac{d^{1 / 2}}{d t^{1 / 2}} p_{2}^{1 / 2}(t) \\
= & -\frac{\lambda}{\sqrt{2}}\left[p_{1}^{1 / 2}(t)-p_{0}^{1 / 2}(t)\right]+\frac{\lambda}{\sqrt{2}}\left[p_{2}^{1 / 2}(t)-p_{1}^{1 / 2}(t)\right] \\
= & {[\text { by }(2.30)] } \\
= & -\frac{\lambda}{\sqrt{2}}\left\{\widehat{p}_{1}^{e l}(t)-\widehat{p}_{0}^{e l}(t)-\frac{\lambda}{\sqrt{2}}\left[1-p_{0}^{1 / 2}(t)\right]\right\} \\
= & -\frac{\lambda}{\sqrt{2}}\left\{\widehat{p}_{1}^{e l}(t)-\widehat{p}_{0}^{e l}(t)-\frac{\lambda}{\sqrt{2}}\left[1-E_{\frac{1}{2}, 1}\left(-\frac{\lambda \sqrt{t}}{\sqrt{2}}\right)\right]\right\} \\
= & -\frac{\lambda}{\sqrt{2}}\left[\widehat{p}_{1}^{e l}(t)-\widehat{p}_{0}^{e l}(t)+\frac{\lambda \sqrt{t}}{\sqrt{2}} E_{\frac{1}{2}, \frac{3}{2}}\left(-\frac{\lambda \sqrt{t}}{\sqrt{2}}\right)\right] .
\end{aligned}
$$

The presence of the term $\frac{\lambda \sqrt{t}}{\sqrt{2}} E_{\frac{1}{2}, \frac{3}{2}}\left(-\frac{\lambda \sqrt{t}}{\sqrt{2}}\right)$ in (2.32) is explained by the fact that $\widehat{p}_{0}^{e l}(t)$ (given in (2.21)) can be obtained from the general formula (2.20) by putting $k=0$ and adding the term produced by the absorbing probability q_{α}. The same is true for $k=0$, so that we get (2.33) by similar steps, as follows:

$$
\begin{aligned}
\frac{d^{1 / 2}}{d t^{1 / 2}} \widehat{p}_{0}^{e l}(t) & =[\operatorname{by}(2.30)] \\
& =-\frac{d^{1 / 2}}{d t^{1 / 2}} p_{1}^{1 / 2}(t) \\
& =\frac{\lambda}{\sqrt{2}}\left[p_{1}^{1 / 2}(t)-p_{0}^{1 / 2}(t)\right] \\
& =-\frac{\lambda}{\sqrt{2}}\left[\widehat{p}_{0}^{e l}(t)-1+E_{\frac{1}{2}, 1}\left(-\frac{\lambda \sqrt{t}}{\sqrt{2}}\right)\right] \\
& =-\frac{\lambda}{\sqrt{2}}\left[\hat{p}_{0}^{e l}(t)-\frac{\lambda \sqrt{t}}{\sqrt{2}} E_{\frac{1}{2}, \frac{3}{2}}\left(-\frac{\lambda \sqrt{t}}{\sqrt{2}}\right)\right] .
\end{aligned}
$$

Equation (2.33) can be checked directly by taking the fractional derivative of $\widehat{p}_{0}^{e l}(t)$ in the form (2.21):

$$
\begin{aligned}
& \frac{d^{1 / 2}}{d t^{1 / 2}} \widehat{p}_{0}^{e l}(t)=-\frac{\lambda}{\sqrt{2}} \frac{d^{1 / 2}}{d t^{1 / 2}}\left[\sqrt{t} E_{\frac{1}{2}, \frac{3}{2}}^{2}\left(-\frac{\lambda}{\sqrt{2}} \sqrt{t}\right)\right] \\
= & -\frac{\lambda}{2 \sqrt{2 \pi}} \sum_{j=0}^{\infty} \frac{(j+1)\left(-\frac{\lambda}{\sqrt{2}}\right)^{j}}{\Gamma\left(\frac{j}{2}+\frac{3}{2}\right)} \int_{0}^{t}(t-s)^{-\frac{1}{2}} s^{\frac{j}{2}-\frac{1}{2}} d s+ \\
& -\frac{\lambda}{2 \sqrt{2 \pi}} \sum_{j=0}^{\infty} \frac{j(j+1)\left(-\frac{\lambda}{\sqrt{2}}\right)^{j}}{\Gamma\left(\frac{j}{2}+\frac{3}{2}\right)} \int_{0}^{t}(t-s)^{-\frac{1}{2}} s^{\frac{j}{2}-\frac{1}{2}} d s \\
= & -\frac{\lambda}{\sqrt{2}} \sum_{j=0}^{\infty} \frac{\left(-\frac{\lambda \sqrt{t}}{\sqrt{2}}\right)^{j}}{\Gamma\left(\frac{j}{2}+\frac{1}{2}\right)} \frac{\Gamma\left(\frac{j}{2}+\frac{1}{2}\right)}{\Gamma\left(\frac{j}{2}+1\right)}-\frac{\lambda}{\sqrt{2}} \sum_{j=0}^{\infty} \frac{j\left(-\frac{\lambda \sqrt{t}}{\sqrt{2}}\right)^{j}}{\Gamma\left(\frac{j}{2}+\frac{1}{2}\right)} \frac{\Gamma\left(\frac{j}{2}+\frac{1}{2}\right)}{\Gamma\left(\frac{j}{2}+1\right)} \\
= & -\frac{\lambda}{\sqrt{2}} E_{\frac{1}{2}, 1}^{2}\left(-\frac{\lambda \sqrt{t}}{\sqrt{2}}\right),
\end{aligned}
$$

which yields (2.33).
Remark 2.4 We evaluate now the probability generating function, by using the expressions of the probabilities given in (2.26) and (2.21):

$$
\begin{align*}
& \widehat{G}^{e l}(u, t)=\sum_{k=0}^{\infty} u^{k} \widehat{p}_{k}^{e l}(t)=\widehat{p}_{0}^{e l}(t)+\sum_{k=1}^{\infty} u^{k} \widehat{p}_{k}^{e l}(t) \tag{2.34}\\
= & 1-\frac{\lambda \sqrt{t}}{\sqrt{2}} E_{\frac{1}{2}, \frac{3}{2}}^{2}\left(-\frac{\lambda \sqrt{t}}{\sqrt{2}}\right)+\sum_{k=1}^{\infty} u^{k} \frac{(\lambda \sqrt{t})^{k}}{\sqrt{2^{k}}} E_{\frac{1}{2}, \frac{k}{2}+1}^{k+1}\left(-\frac{\lambda \sqrt{t}}{\sqrt{2}}\right)-\frac{1}{u} \sum_{k=1}^{\infty} u^{k+1} \frac{(\lambda \sqrt{t})^{k+1}}{\sqrt{2^{k+1}}} E_{\frac{1}{2}, \frac{k+1}{2}+1}^{k+2}\left(-\frac{\lambda \sqrt{t}}{\sqrt{2}}\right) \\
= & 1+(u-1) \frac{\lambda \sqrt{t}}{\sqrt{2}} E_{\frac{1}{2}, \frac{3}{2}}^{2}\left(-\frac{\lambda \sqrt{t}}{\sqrt{2}}\right)+\sum_{k=2}^{\infty} u^{k} \frac{(\lambda \sqrt{t})^{k}}{\sqrt{2^{k}}} E_{\frac{1}{2}, \frac{k}{2}+1}^{k+1}\left(-\frac{\lambda \sqrt{t}}{\sqrt{2}}\right) \\
& -\frac{1}{u} \sum_{k=1}^{\infty} u^{k+1} \frac{(\lambda \sqrt{t})^{k+1}}{\sqrt{2^{k+1}}} E_{\frac{1}{2}, \frac{k+1}{2}+1}^{k+2}\left(-\frac{\lambda \sqrt{t}}{\sqrt{2}}\right) \\
= & 1+(u-1) \frac{\lambda \sqrt{t}}{\sqrt{2}} E_{\frac{1}{2}, \frac{3}{2}}^{2}\left(-\frac{\lambda \sqrt{t}}{\sqrt{2}}\right)+\frac{u-1}{u} \sum_{k=2}^{\infty} u^{k} \frac{(\lambda \sqrt{t})^{k}}{\sqrt{2^{k}}} E_{\frac{1}{2}, \frac{k}{2}+1}^{k+1}\left(-\frac{\lambda \sqrt{t}}{\sqrt{2}}\right) \\
= & 1+\frac{u-1}{u} \sum_{k=1}^{\infty} u^{k} \frac{(\lambda \sqrt{t})^{k}}{\sqrt{2^{k}}} E_{\frac{1}{2}, \frac{k}{2}+1}^{k+1}\left(-\frac{\lambda \sqrt{t}}{\sqrt{2}}\right) \\
= & 1+\frac{u-1}{u}\left[\sum_{k=0}^{\infty} u^{k} \frac{(\lambda \sqrt{t})^{k}}{\sqrt{2^{k}}} E_{\frac{1}{2}, \frac{k}{2}+1}^{k+1}\left(-\frac{\lambda \sqrt{t}}{\sqrt{2}}\right)-E_{\frac{1}{2}, 1}\left(-\frac{\lambda \sqrt{t}}{\sqrt{2}}\right)\right] \\
= & 1+\frac{u-1}{u}\left[E_{\frac{1}{2}, 1}\left(-\frac{\lambda \sqrt{t}}{\sqrt{2}}(1-u)\right)-E_{\frac{1}{2}, 1}\left(-\frac{\lambda \sqrt{t}}{\sqrt{2}}\right)\right],
\end{align*}
$$

where, in the last step, we have applied formula (2.47) of Beghin and Orsingher [3].
We note that, for $u=1$, formula (2.34) reduces to one, while for $u=0$ it gives $\widehat{p}_{0}^{e l}(t)$,
since it is

$$
\begin{align*}
\lim _{u \rightarrow 0} \widehat{G}^{e l}(u, t) & =1-\lim _{u \rightarrow 0} \frac{E_{\frac{1}{2}, 1}\left(-\frac{\lambda \sqrt{t}}{\sqrt{2}}(1-u)\right)-E_{\frac{1}{2}, 1}\left(-\frac{\lambda \sqrt{t}}{\sqrt{2}}\right)}{u} \tag{2.35}\\
& =1-\frac{d}{d u}\left[E_{\frac{1}{2}, 1}\left(-\frac{\lambda \sqrt{t}}{\sqrt{2}}(1-u)\right)-E_{\frac{1}{2}, 1}\left(-\frac{\lambda \sqrt{t}}{\sqrt{2}}\right)\right]_{u=0} \\
& =1+\left.\sum_{m=1}^{\infty} \frac{m\left(-\frac{\lambda \sqrt{t}}{\sqrt{2}}\right)^{m}(1-u)^{m-1}}{\Gamma\left(\frac{m}{2}+1\right)}\right|_{u=0} \\
& =1+\left.2 \sum_{m=1}^{\infty} \frac{\left(-\frac{\lambda \sqrt{t}}{\sqrt{2}}\right)^{m}(1-u)^{m-1}}{\Gamma\left(\frac{m}{2}\right)}\right|_{u=0}=[j=m-1] \\
& =1-\left.2 \sum_{j=0}^{\infty} \frac{\left(-\frac{\lambda \sqrt{t}}{\sqrt{2}}\right)^{j+1}(1-u)^{j}}{\Gamma\left(\frac{j}{2}+\frac{1}{2}\right)}\right|_{u=0}=1-\sqrt{2} \lambda \sqrt{t} E_{\frac{1}{2}, \frac{1}{2}}\left(-\frac{\lambda \sqrt{t}}{\sqrt{2}}\right) .
\end{align*}
$$

We can check that (2.35) coincides with $\widehat{p}_{0}^{e l}(t)$ by showing that

$$
\begin{aligned}
& \sqrt{2} \lambda \sqrt{t} E_{\frac{1}{2}, \frac{1}{2}}\left(-\frac{\lambda \sqrt{t}}{\sqrt{2}}\right)=\sqrt{2} \lambda \sqrt{t} \sum_{j=0}^{\infty} \frac{\left(-\frac{\lambda \sqrt{t}}{\sqrt{2}}\right)^{j}}{\Gamma\left(\frac{j}{2}+\frac{1}{2}\right)} \\
= & \frac{\lambda \sqrt{t}}{\sqrt{2}} \sum_{j=0}^{\infty} \frac{(j+1)\left(-\frac{\lambda \sqrt{t} t}{\sqrt{2}}\right)^{j}}{\Gamma\left(\frac{j}{2}+\frac{3}{2}\right)}=\frac{\lambda \sqrt{t}}{\sqrt{2}} E_{\frac{1}{2}, \frac{3}{2}}^{2}\left(-\frac{\lambda \sqrt{t}}{\sqrt{2}}\right) .
\end{aligned}
$$

By taking the first derivative of $\widehat{G}^{e l}$ we can evaluate the expected value of $\widehat{N}^{e l}$, in the case $\alpha=\lambda$:

$$
\begin{aligned}
& \mathbb{E} \widehat{N}^{e l}(t)=\left.\frac{d}{d u} \widehat{G}^{e l}(u, t)\right|_{u=1} \\
= & \frac{1}{u^{2}}\left[E_{\frac{1}{2}, 1}\left(-\frac{\lambda \sqrt{t}}{\sqrt{2}}(1-u)\right)-E_{\frac{1}{2}, 1}\left(-\frac{\lambda \sqrt{t}}{\sqrt{2}}\right)\right]+\left.\frac{u-1}{u} \frac{d}{d u} E_{\frac{1}{2}, 1}\left(-\frac{\lambda \sqrt{t}}{\sqrt{2}}(1-u)\right)\right|_{u=1} \\
= & 1-E_{\frac{1}{2}, 1}\left(-\frac{\lambda \sqrt{t}}{\sqrt{2}}\right)
\end{aligned}
$$

which coincides with (2.14) for $\alpha=\lambda$.

3 Poisson processes at Brownian first-passage times

In this section we analyze the Poisson process stopped at the random time $T_{t}=$ $\inf \{s>0: B(s)=t\}$, where B is a standard Brownian motion. Clearly T_{t} is the first passage time of B through level t. The probability density of T_{t} reads

$$
\begin{equation*}
\operatorname{Pr}\left\{T_{t} \in d s\right\} / d s=q(t, s)=\frac{t e^{-\frac{t^{2}}{2 s}}}{\sqrt{2 \pi s^{3}}}, \quad s, t>0 \tag{3.1}
\end{equation*}
$$

and satisfies the partial differential equation

$$
\begin{equation*}
\frac{\partial^{2} q}{\partial t^{2}}=2 \frac{\partial q}{\partial s} \tag{3.2}
\end{equation*}
$$

We consider the process

$$
\widehat{N}(t)=N\left(T_{t}\right),
$$

with state probabilities defined, for $k=0,1, \ldots$, as

$$
\begin{align*}
\widehat{p}_{k}(t) & =\operatorname{Pr}\{\widehat{N}(t)=k\}=\int_{0}^{+\infty} p_{k}(s) q(t, s) d s \tag{3.3}\\
& =\frac{\lambda^{k}}{k!} \int_{0}^{+\infty} s^{k} e^{-\lambda s} \frac{t e^{-\frac{t^{2}}{2 s}}}{\sqrt{2 \pi s^{3}}} d s,
\end{align*}
$$

where $p_{k}(t), t>0$ represents the standard Poisson distribution which solves the equation

$$
\begin{equation*}
\frac{d}{d t} p_{k}(t)=\lambda\left[p_{k}(t)-p_{k-1}(t)\right] \tag{3.4}
\end{equation*}
$$

Theorem 3.1 The state probabilities $\widehat{p}_{k}(t), k \geq 0, t>0$, given in (3.3) satisfy the following difference-differential equation

$$
\begin{equation*}
\frac{d^{2}}{d t^{2}} p_{k}(t)=2 \lambda\left[p_{k}(t)-p_{k-1}(t)\right] . \tag{3.5}
\end{equation*}
$$

Proof By taking the derivatives of (3.3) and considering (3.2), we get that

$$
\begin{align*}
& \frac{d^{2}}{d t^{2}} \widehat{p}_{k}(t)=\int_{0}^{+\infty} p_{k}(s) \frac{\partial^{2} q}{\partial t^{2}}(t, s) d s \\
= & 2 \int_{0}^{+\infty} p_{k}(s) \frac{\partial q}{\partial s} d s \\
= & \left.2 p_{k}(s) q(t, s)\right|_{0} ^{\infty}-2 \int_{0}^{+\infty} \frac{d p_{k}(s)}{d s} q(t, s) d s \\
= & {[\mathrm{by}(3.4)] } \\
= & 2 \lambda\left[\widehat{p}_{k}(s)-\widehat{p}_{k-1}(s)\right] .
\end{align*}
$$

The first term in the third line of (3.6) is zero for $k=0$, because $\lim _{s \rightarrow 0^{+}} q(t, s)=0$, while, for $k \geq 1$, this is implied by the form of the Poisson distribution

The explicit distribution of $\widehat{N}(t), t>0$, is given in the next theorem.
Theorem 3.2 The state probabilities $\widehat{p}_{k}(t), k \geq 0, t>0$, given in (3.3) are given by

$$
\widehat{p}_{k}(t)=\frac{2^{\frac{3}{4}-\frac{k}{2}} \lambda^{\frac{k}{2}+\frac{1}{4}} t^{k+\frac{1}{2}}}{k!\sqrt{\pi}} K_{k-\frac{1}{2}}(t \sqrt{2 \lambda}),
$$

where

$$
\begin{equation*}
K_{\nu}(z)=\frac{1}{2}\left(\frac{z}{2}\right)^{\nu} \int_{0}^{+\infty} \frac{e^{-t-\frac{z^{2}}{4 t}}}{t^{\nu+1}} d t \tag{3.7}
\end{equation*}
$$

is the modified Bessel function of index ν.
Proof We rewrite (3.3) as follows:

$$
\begin{align*}
\widehat{p}_{k}(t) & =\frac{\lambda^{k} t}{k!\sqrt{2 \pi}} \int_{0}^{+\infty} s^{k-\frac{3}{2}} e^{-\lambda s} e^{-\frac{t^{2}}{2 s}} d s \tag{3.8}\\
& =\frac{2 \lambda^{k} t}{k!\sqrt{2 \pi}}\left(\frac{t^{2}}{2 \lambda}\right)^{\frac{k}{2}-\frac{1}{4}} K_{k-\frac{1}{2}}(t \sqrt{2 \lambda}) \\
& =\frac{2^{\frac{3}{4}-\frac{k}{2}} \lambda^{\frac{k}{2}+\frac{1}{4}} t^{k+\frac{1}{2}}}{k!\sqrt{\pi}} K_{k-\frac{1}{2}}(t \sqrt{2 \lambda}),
\end{align*}
$$

by applying formula 3.471.9, p.340 of Gradshteyn and Ryzhik [5] for $\nu=k-\frac{1}{2}, \beta=\frac{t^{2}}{2}$ and $\gamma=\lambda$.

Remark 3.1 We evaluate $\widehat{p}_{k}(t)$ for some values of k, directly from (3.3). First of all, we note that

$$
\widehat{p}_{0}(t)=\int_{0}^{+\infty} e^{-\lambda s} \frac{t e^{-\frac{t^{2}}{2 s}}}{\sqrt{2 \pi s^{3}}} d s=e^{-t \sqrt{2 \lambda}}
$$

by a well-known result on the Laplace transform of T_{t}. This result can be checked by considering that

$$
K_{-\frac{1}{2}}(x)=K_{\frac{1}{2}}(x)=\sqrt{\frac{\pi}{2 x}} e^{-x}
$$

(see formula 8.469.3, p. 967 of Gradshteyn and Ryzhik [5]), so that we get, from (3.8),

$$
\begin{align*}
\widehat{p}_{0}(t) & =\frac{2^{\frac{3}{4}} \lambda^{\frac{1}{4}} t^{\frac{1}{2}}}{\sqrt{\pi}} K_{-\frac{1}{2}}(t \sqrt{2 \lambda}) \tag{3.9}\\
& =\frac{2^{\frac{3}{4}} \lambda^{\frac{1}{4}} t^{\frac{1}{2}}}{\sqrt{\pi}} \sqrt{\frac{\pi}{2 t \sqrt{2 \lambda}}} e^{-t \sqrt{2 \lambda}}=e^{-t \sqrt{2 \lambda}}
\end{align*}
$$

The probability (3.9) coincides with the density of the waiting-time of the first event of the process $\widehat{N}(t), t>0$.

Analogously, we obtain, for $k=1,2$, that

$$
\begin{equation*}
\widehat{p}_{1}(t)=\lambda t \int_{0}^{+\infty} \frac{1}{\sqrt{2 \pi s}} e^{-\lambda s} e^{-\frac{t^{2}}{2 s}} d s=\lambda t \frac{e^{-t \sqrt{2 \lambda}}}{\sqrt{2 \lambda}} \tag{3.10}
\end{equation*}
$$

and

$$
\begin{align*}
\widehat{p}_{2}(t)= & \int_{0}^{+\infty} \frac{(\lambda s)^{2}}{2 \sqrt{2 \pi s^{3}}} t e^{-\lambda s} e^{-\frac{t^{2}}{2 s}} d s \tag{3.11}\\
= & \frac{\lambda^{2} t}{2 \sqrt{2 \pi}} \int_{0}^{+\infty} \sqrt{s} e^{-\lambda s} e^{-\frac{t^{2}}{2 s}} d s \\
= & \frac{\lambda^{2} t}{2 \sqrt{2 \pi}}\left(-\left.\frac{e^{-\lambda s}}{\lambda} \sqrt{s} e^{-\frac{t^{2}}{2 s}}\right|_{0} ^{\infty}\right)+\frac{\lambda t}{2 \sqrt{2 \pi}} \int_{0}^{+\infty} \frac{e^{-\lambda s}}{2 \sqrt{s}} e^{-\frac{t^{2}}{2 s}} d s+ \\
& +\frac{\lambda t^{3}}{4 \sqrt{2 \pi}} \int_{0}^{+\infty} e^{-\lambda s} \sqrt{s} \frac{e^{-\frac{t^{2}}{2 s}}}{s^{2}} d s \\
= & \frac{\lambda t}{4} \frac{e^{-t \sqrt{2 \lambda}}}{\sqrt{2 \lambda}}+\frac{\lambda t^{2} e^{-t \sqrt{2 \lambda}}}{4}
\end{align*}
$$

Theorem 3.3 The probability generating function of \hat{N} is given by

$$
\begin{equation*}
\widehat{G}(u, t)=\sum_{k=0}^{\infty} u^{k} \widehat{p}_{k}(t)=e^{-t \sqrt{2 \lambda(1-u)}}, \quad|u| \leq 1 \tag{3.12}
\end{equation*}
$$

which gives the following alternative expression for the state probabilities

$$
\begin{equation*}
\widehat{p}_{k}(t)=\sum_{m=0}^{\infty} \frac{(-1)^{k+m}(t \sqrt{2 \lambda})^{m}}{m!}\binom{\frac{m}{2}}{k} \tag{3.13}
\end{equation*}
$$

Proof From (3.3) we get

$$
\begin{align*}
\widehat{G}(u, t) & =t \int_{0}^{+\infty} e^{-\lambda s} \frac{e^{-\frac{t^{2}}{2 s}}}{\sqrt{2 \pi s^{3}}} \sum_{k=0}^{\infty} \frac{(\lambda s u)^{k}}{k!} d s \tag{3.14}\\
& =t \int_{0}^{+\infty} e^{-\lambda(1-u) s} \frac{e^{-\frac{t^{2}}{2 s}}}{\sqrt{2 \pi s^{3}}} d s=e^{-t \sqrt{2 \lambda(1-u)}}
\end{align*}
$$

which coincides with (3.12). If we now consider its series expansion we get

$$
\begin{aligned}
\widehat{G}(u, t) & =\sum_{m=0}^{\infty} \frac{(-t)^{m}}{m!}(2 \lambda(1-u))^{m / 2} \\
& =\sum_{m=0}^{\infty} \frac{(-t \sqrt{2 \lambda})^{m}}{m!} \sum_{k=0}^{\infty}\binom{\frac{m}{2}}{k}(-u)^{k} \\
& =\sum_{k=0}^{\infty} u^{k} \sum_{m=0}^{\infty} \frac{(-1)^{k+m}(t \sqrt{2 \lambda})^{m}}{m!}\binom{\frac{m}{2}}{k},
\end{aligned}
$$

from which (3.13) follows. Moreover, simple calculation suffices to check that the probabilities (3.13) yield (3.9), (3.10) and (3.11) for $k=0,1,2$, respectively, by rewriting

$$
\binom{\frac{m}{2}}{k}=\frac{\frac{m}{2}\left(\frac{m}{2}-1\right) \ldots\left(\frac{m}{2}-k+1\right)}{k!}
$$

Remark 3.2 By taking the first derivative of (3.12), for $u=1$, it is easy to check that the first moment of $N\left(T_{t}\right)$ is infinite:

$$
\begin{aligned}
\mathbb{E} N\left(T_{t}\right) & =\left.\frac{\partial}{\partial u} \widehat{G}(u, t)\right|_{u=1}=\left.\frac{\partial}{\partial u} e^{-\lambda t \sqrt{2 \lambda(1-u)}}\right|_{u=1} \\
& =\left.\frac{\lambda t \sqrt{2 \lambda}}{2 \sqrt{(1-u)}}\right|_{u=1}=\infty
\end{aligned}
$$

For this reason we consider a different time-argument instead of T_{t} : we define $T_{t}^{\mu}=$ $\inf \left\{s>0: B^{\mu}(s)=t\right\}$, where $B^{\mu}=B^{\mu}(t), t>0$ denotes a Brownian motion with drift μ. Therefore the composition of a standard Poisson process with the first passagetime of a Brownian motion with drift T_{t}^{μ} corresponds to considering the following process

$$
\widehat{N}^{\mu}(t)=N\left(T_{t}^{\mu}\right), \quad t>0,
$$

with probability distribution given by

$$
\begin{align*}
\widehat{p}_{k}^{\mu}(t) & =\int_{0}^{+\infty} p_{k}(s) q^{\mu}(t, s) d s \tag{3.15}\\
& =\frac{\lambda^{k} t}{k!} \int_{0}^{+\infty} s^{k} e^{-\lambda s} \frac{e^{-\frac{(t-\mu s)^{2}}{2 s}}}{\sqrt{2 \pi s^{3}}} d s
\end{align*}
$$

where

$$
\begin{equation*}
q^{\mu}(t, s)=\frac{t e^{-\frac{(t-\mu s)^{2}}{2 s}}}{\sqrt{2 \pi s^{3}}}, \quad s, t>0, \mu \in \mathbb{R} \tag{3.16}
\end{equation*}
$$

denotes the density of the first-passage time of B^{μ} through the level t. We note that, for $\mu<0$, density (3.16) does not integrate to unity; indeed it is, in this case,

$$
\operatorname{Pr}\left\{T_{t}^{\mu}<\infty\right\}=e^{-2|\mu| t}
$$

and thus $\operatorname{Pr}\left\{T_{t}^{\mu}=\infty\right\}=1-e^{-2|\mu| t}$. This result is intuitively justified because the negative drift drives the sample paths away from the threshold t.

Theorem 3.4 The state probabilities $\widehat{p}_{k}^{\mu}(t), k \geq 0, t>0$, given in (3.15) are solutions to the difference-differential equations

$$
\begin{equation*}
\frac{d^{2}}{d t^{2}} p_{k}-2 \mu \frac{d}{d t} p_{k}=2 \lambda\left[p_{k}-p_{k-1}\right] \tag{3.17}
\end{equation*}
$$

with initial conditions

$$
\widehat{p}_{k}^{\mu}(0)= \begin{cases}1, & k=0 \\ 0, & k \geq 1\end{cases}
$$

Proof We first show that the density q^{μ}, defined in (3.16) satisfies the partial diffrential equation

$$
\begin{equation*}
\frac{\partial^{2}}{\partial t^{2}} q(t, s)-2 \mu \frac{\partial}{\partial t} q(t, s)=2 \frac{\partial}{\partial s} q(t, s) \tag{3.18}
\end{equation*}
$$

Indeed, by taking the derivative of (3.16) with respect to s we get

$$
\begin{aligned}
\frac{\partial}{\partial s} q^{\mu}(t, s) & =e^{\mu t} \frac{\partial}{\partial s}\left\{t \frac{e^{-\frac{t^{2}}{2 s}} e^{-\frac{\mu^{2} s}{2}}}{\sqrt{2 \pi s^{3}}}\right\} \\
& =e^{\mu t}\left\{\frac{e^{-\frac{\mu^{2} s}{2}}}{2} \frac{\partial^{2}}{\partial t^{2}}\left(t \frac{e^{-\frac{t^{2}}{2 s}}}{\sqrt{2 \pi s^{3}}}\right)+t \frac{e^{-\frac{t^{2}}{2 s}}}{\sqrt{2 \pi s^{3}}}\left(-\frac{\mu^{2}}{2}\right) e^{-\frac{\mu^{2} s}{2}}\right\}
\end{aligned}
$$

Taking the derivatives with respect to t we get

$$
\begin{aligned}
\frac{\partial^{2}}{\partial t^{2}} q^{\mu}(t, s)= & \frac{\partial}{\partial t}\left\{\mu e^{\mu t} t \frac{e^{-\frac{t^{2}}{2 s}} e^{-\frac{\mu^{2} s}{2}}}{\sqrt{2 \pi s^{3}}}+e^{\mu t} \frac{\partial}{\partial t}\left(t \frac{e^{-\frac{t^{2}}{2 s}} e^{-\frac{\mu^{2} s}{2}}}{\sqrt{2 \pi s^{3}}}\right)\right\} \\
= & \mu^{2} e^{\mu t} t \frac{e^{-\frac{t^{2}}{2 s}}}{\sqrt{2 \pi s^{3}}}+2 e^{-\frac{\mu^{2} s}{2}} \frac{\partial}{\partial t}\left(t \frac{e^{-\frac{t^{2}}{2 s}} e^{-\frac{\mu^{2} s}{2}}}{\sqrt{2 \pi s^{3}}}\right)+ \\
& +e^{\mu t} \frac{\partial^{2}}{\partial t^{2}}\left(t \frac{e^{-\frac{t^{2}}{2 s}} e^{-\frac{\mu^{2} s}{2}}}{\sqrt{2 \pi s^{3}}}\right) \\
= & 2 \frac{\partial q^{\mu}}{\partial s}+2 \mu^{2} e^{\mu t} t \frac{e^{-\frac{t^{2}}{2 s}} e^{-\frac{\mu^{2} s}{2}}}{\sqrt{2 \pi s^{3}}}+2 \mu e^{\mu t} \frac{\partial}{\partial t}\left(t \frac{e^{-\frac{t^{2}}{2 s}} e^{-\frac{\mu^{2} s}{2}}}{\sqrt{2 \pi s^{3}}}\right) \\
= & 2 \frac{\partial q^{\mu}}{\partial s}+2 \mu \frac{\partial q^{\mu}}{\partial t},
\end{aligned}
$$

which gives equation (3.18). As a consequence we can derive the equation solved by
(3.15):

$$
\begin{aligned}
\frac{d^{2}}{d t^{2}} \widehat{p}_{k}^{\mu}(t) & =\int_{0}^{+\infty} p_{k}(s) \frac{d^{2}}{d t^{2}} q^{\mu}(t, s) d s \\
& =[\operatorname{by}(3.18)] \\
& =2 \int_{0}^{+\infty} p_{k}(s)\left(\frac{\partial q^{\mu}}{\partial s}+\mu \frac{\partial q^{\mu}}{\partial t}\right) d s \\
& =\left.2 p_{k}(s) q^{\mu}(t, s)\right|_{s=0} ^{s=+\infty}-2 \int_{0}^{+\infty} \frac{d}{d s} p_{k}(s) q^{\mu}(t, s) d s+2 \mu \frac{d}{d t} \widehat{p}_{k}(t) \\
& =[\operatorname{by}(3.4] \\
& =2 \lambda \int_{0}^{+\infty}\left[p_{k}(s)-p_{k-1}(s)\right] d s+2 \mu \frac{d}{d t} \widehat{p}_{k}(t) \\
& =2 \lambda\left[\widehat{p}_{k}^{\mu}(t)-\widehat{p}_{k-1}^{\mu}(t)\right]+2 \mu \frac{d}{d t} \widehat{p}_{k}^{\mu}(t)
\end{aligned}
$$

Remark 3.3 As a consequence of the previous result the probability generating function $\widehat{G}^{\mu}(u, t)$ solves the following equation:

$$
\begin{equation*}
\frac{\partial^{2}}{\partial t^{2}} G-2 \mu \frac{\partial}{\partial t} G=2 \lambda(1-u) G \tag{3.19}
\end{equation*}
$$

subject to $\widehat{G}^{\mu}(u, 0)=1$. From (3.15) the solution to (3.19) can be evaluated as follows:

$$
\begin{align*}
\widehat{G}^{\mu}(u, t) & =\sum_{k=0}^{\infty} u^{k} \widehat{p}_{k}^{\mu}(t)=t \int_{0}^{+\infty} e^{-\lambda s} \frac{e^{-\frac{(t-\mu s)^{2}}{2 s}}}{\sqrt{2 \pi s^{3}}} \sum_{k=0}^{\infty} \frac{(\lambda s u)^{k}}{k!} d s \tag{3.20}\\
& =e^{\mu t} \int_{0}^{+\infty} e^{\lambda s(u-1)-\frac{\mu^{2} s}{2}} \frac{t e^{-\frac{t^{2}}{2 s}}}{\sqrt{2 \pi s^{3}}} d s \\
& =e^{\mu t-t \sqrt{\mu^{2}+2 \lambda(1-u)}} .
\end{align*}
$$

For $\mu=0,(3.20)$ reduces to (3.12). By taking the first derivative of (3.20), for $u=1$, we derive the first moment of $N\left(T_{t}^{\mu}\right)$ and show that it is finite in this case

$$
\begin{aligned}
\mathbb{E} N\left(T_{t}^{\mu}\right) & =\left.\frac{\partial}{\partial u} \widehat{G}^{\mu}(u, t)\right|_{u=1}=\left.\frac{\partial}{\partial u} e^{\mu t-t \sqrt{\mu^{2}+2 \lambda(1-u)}}\right|_{u=1} \\
& =\left.\frac{\lambda t e^{\mu t-t \sqrt{\mu^{2}+2 \lambda(1-u)}}}{\sqrt{\mu^{2}+2 \lambda(1-u)}}\right|_{u=1}=\frac{\lambda t e^{-t(|\mu|-\mu)}}{|\mu|}
\end{aligned}
$$

Therefore we get

$$
\mathbb{E} N\left(T_{t}^{\mu}\right)= \begin{cases}\frac{\lambda t e^{-2 t|\mu|}}{|\mu|}, \quad \mu<0 \\ \infty, & \mu=0 \\ \frac{\lambda t}{\mu}, & \mu>0\end{cases}
$$

The variance can be obtained analogously, as follows:

$$
\begin{aligned}
& \mathbb{E}\left\{N\left(T_{t}^{\mu}\right)\left[N\left(T_{t}^{\mu}\right)-1\right]\right\} \\
= & \left.\frac{\partial^{2}}{\partial u^{2}} \widehat{G}^{\mu}(u, t)\right|_{u=1} \\
= & \left.\frac{(\lambda t)^{2} e^{\mu t-t} \sqrt{\mu^{2}+2 \lambda(1-u)}}{\mu^{2}+2 \lambda(1-u)}\right|_{u=1}+\left.\frac{\lambda^{2} t e^{\mu t-t} \sqrt{\mu^{2}+2 \lambda(1-u)}}{\sqrt{\left[\mu^{2}+2 \lambda(1-u)\right]^{3}}}\right|_{u=1} \\
= & {\left[\frac{(\lambda t)^{2}}{\mu^{2}}+\frac{\lambda^{2} t}{|\mu|^{3}}\right] e^{-(|\mu|-\mu) t}, }
\end{aligned}
$$

so that

$$
\operatorname{Var}\left(N\left(T_{t}^{\mu}\right)\right)=\frac{\lambda t}{|\mu|}\left(1+\frac{\lambda}{\mu^{2}}\right) e^{-(|\mu|-\mu) t}=\mathbb{E} N\left(T_{t}^{\mu}\right)\left(1+\frac{\lambda}{\mu^{2}}\right) .
$$

For the process $N\left(T_{t}^{\mu}\right)$ the variance is proportional to the mean value and this distinguishes this model from the classical one.

Remark 3.4 We derive now the probability distribution of $N\left(T_{t}^{\mu}\right), t>0$:

$$
\begin{align*}
\widehat{p}_{k}^{\mu}(t) & =\frac{\lambda^{k} t e^{\mu t}}{k!\sqrt{2 \pi}} \int_{0}^{+\infty} s^{k-\frac{3}{2}} e^{-\left(\lambda+\frac{\mu^{2}}{2}\right) s} e^{-\frac{t^{2}}{2 s}} d s \tag{3.21}\\
& =\frac{2 \lambda^{k} t e^{\mu t}}{k!\sqrt{2 \pi}}\left(\frac{t^{2}}{2 \lambda+\mu^{2}}\right)^{\frac{k}{2}-\frac{1}{4}} K_{k-\frac{1}{2}}\left(t \sqrt{2 \lambda+\mu^{2}}\right)
\end{align*}
$$

For $k=0$ we obtain the probability density of the waiting time of the first event of $N\left(T_{t}^{\mu}\right)$:

$$
\begin{aligned}
\widehat{p}_{0}^{\mu}(t) & =\frac{2 t e^{\mu t}}{\sqrt{2 \pi}}\left(\frac{t^{2}}{2 \lambda+\mu^{2}}\right)^{-\frac{1}{4}} K_{-\frac{1}{2}}\left(t \sqrt{2 \lambda+\mu^{2}}\right) \\
& =\frac{\sqrt{2} t^{\frac{1}{2}} e^{\mu t} \sqrt[4]{2 \lambda+\mu^{2}}}{\sqrt{\pi}} \sqrt{\frac{\pi}{t \sqrt{2 \lambda+\mu^{2}}}} e^{-t \sqrt{2 \lambda+\mu^{2}}}=e^{\mu t-t \sqrt{2 \lambda+\mu^{2}}}
\end{aligned}
$$

which coincides with (3.20) for $u=0$.

We generalize the results obtained so far to the case of n successive iterations: let us denote by

$$
T_{j}(t)=\inf \left\{s>0: B_{j}(s)=t\right\}
$$

the first-passage time through the level t of a Brownian motion $B_{j}(t)$, for $j=1, \ldots, n$, and let us assume that B_{j} is independent from any other $B_{i}, i \neq j$ and from N. The process defined as

$$
\begin{equation*}
\widehat{N}^{n}(t)=N\left(T_{1}\left(T_{2} \ldots\left(T_{n-1}\left(T_{n}(t)\right)\right) \ldots\right)\right), \quad t>0 \tag{3.22}
\end{equation*}
$$

possesses distribution given by

$$
\begin{align*}
& \hat{p}_{k}^{n}(t) \tag{3.23}\\
= & \int_{0}^{+\infty} \int_{0}^{+\infty} \ldots \int_{0}^{+\infty} \int_{0}^{+\infty} p_{k}\left(w_{1}\right) q\left(w_{2}, w_{1}\right) \ldots q\left(w_{n}, w_{n-1}\right) q\left(t, w_{n}\right) d w_{1} d w_{2} \ldots d w_{n-1} d w_{n} \\
= & \frac{\lambda^{k}}{k!} \int_{0}^{+\infty} \int_{0}^{+\infty} \ldots \int_{0}^{+\infty} \int_{0}^{+\infty} w_{1}^{k} e^{-\lambda w_{1}} w_{2} \frac{e^{-\frac{w_{2}^{2}}{2 w_{1}}}}{\sqrt{2 \pi w_{1}^{3}}} \ldots w_{n} \frac{e^{-\frac{w_{n}^{2}}{2 w_{n-1}}}}{\sqrt{2 \pi w_{n-1}^{3}}} t \frac{e^{-\frac{t^{2}}{2 w_{n}}}}{\sqrt{2 \pi w_{n}^{3}}} d w_{1} d w_{2} \ldots d w_{n-1} d w_{n} .
\end{align*}
$$

We state the following result.

Theorem 3.5 The state distributions \widehat{p}_{k}^{n} of the n-times iterated Poisson process $\widehat{N}^{n}(t), t>0$, given in (3.23), are solutions to the following equations

$$
\begin{equation*}
\frac{d^{2^{n}}}{d t^{2^{n}}} p_{k}(t)=2^{2^{n}-1} \lambda\left[p_{k}(t)-p_{k-1}(t)\right], \quad t>0, k \geq 0 \tag{3.24}
\end{equation*}
$$

with initial conditions

$$
\widehat{p}_{k}^{n}(0)= \begin{cases}1, & k=0 \\ 0, & k \geq 1\end{cases}
$$

Proof For $n=1$ equations (3.24) reduce to (3.5). We prove this result in the special case $n=2$:

$$
\begin{align*}
& \frac{d^{4}}{d t^{4}} \widehat{p}_{k}^{2}(t)=\int_{0}^{+\infty} \int_{0}^{+\infty} p_{k}\left(w_{1}\right) q\left(w_{2}, w_{1}\right) \frac{\partial^{4}}{\partial t^{4}} q\left(t, w_{2}\right) d w_{1} d w_{2} \tag{3.25}\\
= & {[\operatorname{by}(3.2)] } \\
= & 2 \int_{0}^{+\infty} \int_{0}^{+\infty} p_{k}\left(w_{1}\right) q\left(w_{2}, w_{1}\right) \frac{\partial^{2}}{\partial w_{2}^{2}} q\left(t, w_{2}\right) d w_{1} d w_{2} \\
= & 2 \int_{0}^{+\infty} \int_{0}^{+\infty} p_{k}\left(w_{1}\right) \frac{\partial^{2}}{\partial w_{2}^{2}} q\left(w_{2}, w_{1}\right) q\left(t, w_{2}\right) d w_{1} d w_{2} \\
= & 2^{2} \int_{0}^{+\infty} \int_{0}^{+\infty} p_{k}\left(w_{1}\right) \frac{\partial}{\partial w_{1}} q\left(w_{2}, w_{1}\right) q\left(t, w_{2}\right) d w_{1} d w_{2} \\
= & -2^{2} \int_{0}^{+\infty} \int_{0}^{+\infty} \frac{d}{d w_{1}} p_{k}\left(w_{1}\right) q\left(w_{2}, w_{1}\right) q\left(t, w_{2}\right) d w_{1} d w_{2} \\
= & 2^{2} \lambda\left[\widehat{p}_{k}^{2}(t)-\widehat{p}_{k-1}^{2}(t)\right] .
\end{align*}
$$

By induction it can be checked that (3.24) holds for any $n \geq 1$.
Remark 3.5 We derive the probability generating function that, in this case, is equal to

$$
\begin{equation*}
\widehat{G}^{n}(u, t)=\sum_{k=0}^{\infty} u^{k} \widehat{p}_{k}^{n}(t)=e^{-2^{\left(1-\frac{1}{2^{n}}\right)} \lambda^{\frac{1}{2^{n}}}(1-u)^{\frac{1}{2^{n}}} t} \tag{3.26}
\end{equation*}
$$

By taking the first derivative of (3.26) it is easy to see that the expected value of the process is infinite:

$$
\begin{aligned}
\mathbb{E} \widehat{N}^{n}(t) & =\left.\frac{d}{d u} \widehat{G}^{n}(u, t)\right|_{u=1} \\
& =\left.2^{\left(1-\frac{1}{2^{n}}\right)} \frac{\lambda^{\frac{1}{2^{n}}}}{2^{n}}(1-u)^{\frac{1}{2^{n}}-1} t e^{-2^{\left(1-\frac{1}{2^{n}}\right)} \lambda^{\frac{1}{2^{n}}}(1-u)^{\frac{1}{2^{n}}} t}\right|_{u=1}=\infty
\end{aligned}
$$

Remark 3.6 In the case where each Brownian motion is endowed by a drift μ, the process is defined as

$$
\widehat{N}_{\mu}^{n}(t)=N\left(T_{1}^{\mu}\left(T_{2}^{\mu} \ldots\left(T_{n-1}^{\mu}\left(T_{n}^{\mu}(t)\right)\right) \ldots\right)\right), \quad t>0
$$

For the sake of simplicity we will assume hereafter that $\mu>0$. We start again by
considering the case where $n=2$: the probability distribution is, in this case,

$$
\begin{align*}
& \widehat{p}_{k}^{n}(t) \tag{3.27}\\
= & \int_{0}^{+\infty} \int_{0}^{+\infty} p_{k}\left(w_{1}\right) q^{\mu}\left(w_{2}, w_{1}\right) q^{\mu}\left(t, w_{2}\right) d w_{1} d w_{2} \\
= & \frac{\lambda^{k}}{k!} \int_{0}^{+\infty} \int_{0}^{+\infty} w_{1}^{k} e^{-\lambda w_{1}} w_{2} \frac{e^{-\frac{\left(w_{2}-\mu w_{1}\right)^{2}}{2 w_{1}}}}{\sqrt{2 \pi w_{1}^{3}}} t \frac{e^{-\frac{\left(t-\mu w_{2}\right)^{2}}{2 w_{2}}}}{\sqrt{2 \pi w_{2}^{3}}} d w_{1} d w_{2},
\end{align*}
$$

for $k \geq 0$. We start by taking the second-order derivative with respect to t of (3.18):

$$
\begin{aligned}
& \frac{\partial^{4}}{\partial t^{4}} q^{\mu}(t, w) \\
= & \frac{\partial^{2}}{\partial t^{2}}\left[2 \frac{\partial}{\partial w} q^{\mu}(t, w)+2 \mu \frac{\partial}{\partial t} q^{\mu}(t, w)\right] \\
= & 2\left[2 \frac{\partial^{2}}{\partial w^{2}} q^{\mu}(t, w)+2 \mu \frac{\partial^{2}}{\partial t \partial w} q^{\mu}(t, w)\right]+2 \mu \frac{\partial^{3}}{\partial t^{3}} q^{\mu}(t, w) .
\end{aligned}
$$

Therefore, by taking the fourth-order derivative of (3.27) we get

$$
\begin{align*}
& \frac{d^{4}}{d t^{4}} \widehat{p}_{k}^{n}(t)=\int_{0}^{+\infty} \int_{0}^{+\infty} p_{k}\left(w_{1}\right) q^{\mu}\left(w_{2}, w_{1}\right) \frac{\partial^{4}}{\partial t^{4}} q^{\mu}\left(t, w_{2}\right) d w_{1} d w_{2} \tag{3.28}\\
= & 2^{2} \int_{0}^{+\infty} \int_{0}^{+\infty} p_{k}\left(w_{1}\right) q^{\mu}\left(w_{2}, w_{1}\right) \frac{\partial^{2}}{\partial w_{2}^{2}} q^{\mu}\left(t, w_{2}\right) d w_{1} d w_{2}+ \\
& +2^{2} \mu \frac{\partial}{\partial t} \int_{0}^{+\infty} \int_{0}^{+\infty} p_{k}\left(w_{1}\right) q^{\mu}\left(w_{2}, w_{1}\right) \frac{\partial}{\partial w_{2}} q^{\mu}\left(t, w_{2}\right) d w_{1} d w_{2}+ \\
& +2 \mu \frac{\partial^{3}}{\partial t^{3}} \int_{0}^{+\infty} \int_{0}^{+\infty} p_{k}\left(w_{1}\right) q^{\mu}\left(w_{2}, w_{1}\right) q^{\mu}\left(t, w_{2}\right) d w_{1} d w_{2} \\
= & -2^{2} \int_{0}^{+\infty} \int_{0}^{+\infty} p_{k}\left(w_{1}\right) \frac{\partial}{\partial w_{2}} q^{\mu}\left(w_{2}, w_{1}\right) \frac{\partial}{\partial w_{2}} q^{\mu}\left(t, w_{2}\right) d w_{1} d w_{2}+ \\
& -2^{2} \mu \frac{\partial}{\partial t} \int_{0}^{+\infty} \int_{0}^{+\infty} p_{k}\left(w_{1}\right) \frac{\partial}{\partial w_{2}} q^{\mu}\left(w_{2}, w_{1}\right) q^{\mu}\left(t, w_{2}\right) d w_{1} d w_{2}+ \\
& +2 \mu \frac{d^{3}}{\frac{d t^{3}}{} \widehat{p}_{k}^{n}(t)} \\
= & 2^{2} \int_{0}^{+\infty} \int_{0}^{+\infty} p_{k}\left(w_{1}\right) \frac{\partial^{2}}{\partial^{2} w_{2}^{2}} q^{\mu}\left(w_{2}, w_{1}\right) q^{\mu}\left(t, w_{2}\right) d w_{1} d w_{2} \\
& -2^{2} \mu \frac{\partial}{\partial t} \int_{0}^{+\infty} \int_{0}^{+\infty} p_{k}\left(w_{1}\right) \frac{\partial}{\partial w_{2}} q^{\mu}\left(w_{2}, w_{1}\right) q^{\mu}\left(t, w_{2}\right) d w_{1} d w_{2}+ \\
& +2 \mu \frac{d^{3}}{d t^{3}} \widehat{p}_{k}^{n}(t) .
\end{align*}
$$

By considering that for the second-order derivative of (3.27) the following result holds

$$
\begin{align*}
\frac{d^{2}}{d t^{2}} \widehat{p}_{k}^{n}(t)= & \int_{0}^{+\infty} \int_{0}^{+\infty} p_{k}\left(w_{1}\right) q^{\mu}\left(w_{2}, w_{1}\right) \frac{\partial^{2}}{\partial t^{2}} q^{\mu}\left(t, w_{2}\right) d w_{1} d w_{2} \tag{3.29}\\
= & 2 \int_{0}^{+\infty} \int_{0}^{+\infty} p_{k}\left(w_{1}\right) q^{\mu}\left(w_{2}, w_{1}\right)\left[\frac{\partial}{\partial w_{2}} q^{\mu}\left(t, w_{2}\right)+\mu \frac{\partial}{\partial t} q^{\mu}\left(t, w_{2}\right)\right] d w_{1} d w_{2} \\
= & -2 \int_{0}^{+\infty} \int_{0}^{+\infty} p_{k}\left(w_{1}\right) \frac{\partial}{\partial w_{2}} q^{\mu}\left(w_{2}, w_{1}\right) q^{\mu}\left(t, w_{2}\right) d w_{1} d w_{2}+ \\
& +2 \mu \frac{d}{d t} \widehat{p}_{k}^{n}(t)
\end{align*}
$$

we get, from (3.29),

$$
\begin{aligned}
& \int_{0}^{+\infty} \int_{0}^{+\infty} p_{k}\left(w_{1}\right) \frac{\partial}{\partial w_{2}} q^{\mu}\left(w_{2}, w_{1}\right) q^{\mu}\left(t, w_{2}\right) d w_{1} d w_{2} \\
= & -\frac{1}{2} \frac{d^{2}}{d t^{2}} \widehat{p}_{k}^{n}(t)+\mu \frac{d}{d t} \widehat{p}_{k}^{n}(t) .
\end{aligned}
$$

Therefore formula (3.28) can be rewritten as

$$
\begin{aligned}
& \frac{d^{4}}{d t^{4}} \widehat{p}_{k}^{n}(t) \\
= & 2^{2} \int_{0}^{+\infty} \int_{0}^{+\infty} p_{k}\left(w_{1}\right) \frac{\partial^{2}}{\partial^{2} w_{2}^{2}} q^{\mu}\left(w_{2}, w_{1}\right) q^{\mu}\left(t, w_{2}\right) d w_{1} d w_{2}+ \\
& -2^{2} \mu \frac{d}{d t}\left[-\frac{1}{2} \frac{d^{2}}{d t^{2}} \widehat{p}_{k}^{n}(t)+\mu \frac{d}{d t} \widehat{p}_{k}^{n}(t)\right]+2 \mu \frac{d^{3}}{d t^{3}} \widehat{p}_{k}^{n}(t) \\
= & 2^{3} \int_{0}^{+\infty} \int_{0}^{+\infty} p_{k}\left(w_{1}\right) \frac{\partial}{\partial w_{1}} q^{\mu}\left(w_{2}, w_{1}\right) q^{\mu}\left(t, w_{2}\right) d w_{1} d w_{2}+ \\
& +2^{3} \mu\left[-\frac{1}{2} \frac{d^{2}}{d t^{2}} \widehat{p}_{k}^{n}(t)+\mu \frac{d}{d t} \widehat{p}_{k}^{n}(t)\right]+ \\
& +2 \mu \frac{d^{3}}{d t^{3}} \widehat{p}_{k}^{n}(t)-2^{2} \mu^{2} \frac{d^{2}}{d t^{2}} \widehat{p}_{k}^{n}(t)+2 \mu \frac{d^{3}}{d t^{3}} \widehat{p}_{k}^{n}(t) \\
= & -2^{3} \int_{0}^{+\infty} \int_{0}^{+\infty} \frac{d}{d w_{1}} p_{k}\left(w_{1}\right) q^{\mu}\left(w_{2}, w_{1}\right) q^{\mu}\left(t, w_{2}\right) d w_{1} d w_{2}+ \\
& -2^{2} \mu \frac{d^{2}}{d t^{2}} \widehat{p}_{k}^{n}(t)+2^{3} \mu^{2} \frac{d}{d t} \widehat{p}_{k}^{n}(t)+2^{2} \mu \frac{d^{3}}{d t^{3}} \widehat{p}_{k}^{n}(t)-2^{2} \mu^{2} \frac{d^{2}}{d t^{2}} \widehat{p}_{k}^{n}(t) \\
= & -2^{3} \lambda\left[\widehat{p}_{k-1}^{n}(t)-\widehat{p}_{k}^{n}(t)\right]+2^{3} \mu^{2} \frac{d}{d t} \widehat{p}_{k}^{n}(t)+2^{2} \mu \frac{d^{3}}{d t^{3}} \widehat{p}_{k}^{n}(t)+ \\
& -2^{2} \mu(1+\mu) \frac{d^{2}}{d t^{2}} \widehat{p}_{k}^{n}(t) .
\end{aligned}
$$

Finally we get that, for $n=2$, the state probabilities (3.27) satisfy

$$
\frac{d^{4}}{d t^{4}} p_{k}(t)-2^{2} \mu \frac{d^{3}}{d t^{3}} p_{k}(t)+2^{2} \mu(1+\mu) \frac{d^{2}}{d t^{2}} p_{k}(t)-2^{3} \mu^{2} \frac{d}{d t} p_{k}(t)=2^{3} \lambda\left[p_{k}(t)-p_{k-1}(t)\right] .
$$

The expression of the probability generating function is much more complicated in this case, due to the presence of the drift.

Theorem 3.6 The probability generating function of the process $\widehat{N}_{\mu}^{n}(t), t>0$ is given, for any $n \geq 1$, by
and the expected value is equal to

$$
\begin{equation*}
\mathbb{E} \widehat{N}_{\mu}^{n}(t)=\frac{\lambda t}{\mu^{n}}, \quad n \geq 1 \tag{3.31}
\end{equation*}
$$

Proof We give the details of the calculations in the case where $n=2$:

$$
\begin{align*}
& \widehat{G}_{\mu}^{n}(u, t)=\sum_{k=0}^{\infty} u^{k} \widehat{p}_{k}^{n}(t) \tag{3.32}\\
= & \sum_{k=0}^{\infty} u^{k} \frac{\lambda^{k} t}{k!} \int_{0}^{+\infty} \int_{0}^{+\infty} w_{1}^{k} e^{-\lambda w_{1}} w_{2} \frac{e^{-\frac{\left(w_{2}-\mu w_{1}\right)^{2}}{2 w_{1}}}}{\sqrt{2 \pi w_{1}^{3}}} \frac{e^{-\frac{\left(t-\mu w_{2}\right)^{2}}{2 w_{2}}}}{\sqrt{2 \pi w_{2}^{3}}} d w_{1} d w_{2} \\
= & t e^{\mu t} \int_{0}^{+\infty} \frac{1}{\sqrt{2 \pi w_{2}^{3}}} e^{-\frac{t^{2}}{2 w_{2}}-\frac{\mu^{2} w_{2}}{2}+\mu w_{2}} \int_{0}^{+\infty} e^{-\lambda(1-u) w_{1}-\frac{\mu^{2} w_{1}}{2}} \frac{w_{2} e^{-\frac{w_{2}^{2}}{2 w_{1}}}}{\sqrt{2 \pi w_{1}^{3}}} d w_{1} d w_{2} \\
= & t e^{\mu t} \int_{0}^{+\infty} \frac{1}{\sqrt{2 \pi w_{2}^{3}}} e^{-\frac{t^{2}}{2 w_{2}}-\frac{\mu^{2} w_{2}}{2}+\mu w_{2}} e^{-w_{2} \sqrt{2 \lambda(1-u)+\mu^{2}}} d w_{2} \\
= & e^{\mu t} \int_{0}^{+\infty} \frac{t}{\sqrt{2 \pi w_{2}^{3}}} e^{-\frac{t^{2}}{2 w_{2}}-w_{2}\left(\frac{\mu^{2}}{2}\right.}-\mu+\sqrt{\left.2 \lambda(1-u)+\mu^{2}\right)}
\end{align*} w_{2} .
$$

By taking the first derivative of (3.32), it is easy to see that the expected value of the process is finite:

$$
\begin{aligned}
\mathbb{E} \widehat{N}_{\mu}^{n}(t) & =\left.\frac{d}{d u} \widehat{G}_{\mu}^{n}(u, t)\right|_{u=1} \\
& =\frac{2^{\frac{1}{2}-2+\frac{1}{2}} \lambda t e^{\mu t-t 2^{\frac{1}{2}} \sqrt{\frac{\mu^{2}}{2}-\mu+2^{\frac{1}{2}} \sqrt{\frac{\mu^{2}}{2}+\lambda(1-u)}}}}{\left.\sqrt{\frac{\mu^{2}}{2}+\lambda(1-u)} \sqrt{\frac{\mu^{2}}{2}-\mu+2^{\frac{1}{2}} \sqrt{\frac{\mu^{2}}{2}+\lambda(1-u)}}\right|_{u=1}=\frac{\lambda t}{\mu^{2}}} .
\end{aligned}
$$

For $n=3$ the probability generating function can be obtained in an analogous way:

$$
\begin{align*}
& \widehat{G}_{\mu}^{n}(u, t) \tag{3.33}\\
= & \sum_{k=0}^{\infty} u^{k} \frac{\lambda^{k} t}{k!} \int_{0}^{+\infty} \int_{0}^{+\infty} \int_{0}^{+\infty} w_{1}^{k} e^{-\lambda w_{1}} \frac{w_{2} e^{-\frac{\left(w_{2}-\mu w_{1}\right)^{2}}{2 w_{1}}}}{\sqrt{2 \pi w_{1}^{3}}} \frac{w_{3} e^{-\frac{\left(w_{3}-\mu w_{2}\right)^{2}}{2 w_{2}}}}{\sqrt{2 \pi w_{2}^{3}}} \frac{e^{-\frac{\left(t-\mu w_{3}\right)^{2}}{2 w_{3}}}}{\sqrt{2 \pi w_{3}^{3}}} d w_{1} d w_{2} d w_{3} \\
= & t \int_{0}^{+\infty} \int_{0}^{+\infty} e^{-\frac{\mu^{2} w_{2}}{2}+\mu w_{2}+\mu w_{3}} \frac{w_{3} e^{-\frac{\left(w_{3}-\mu w_{2}\right)^{2}}{2 w_{2}}}}{\sqrt{2 \pi w_{2}^{3}}} \frac{e^{-\frac{\left(t-\mu w_{3}\right)^{2}}{2 w_{3}}}}{\sqrt{2 \pi w_{3}^{3}}} e^{-w_{2} \sqrt{2\left[\frac{\mu^{2}}{2}+\lambda(1-u)\right]}} d w_{2} d w_{3} \\
= & t e^{\mu t} \int_{0}^{+\infty} e^{-\frac{\mu^{2} w_{3}}{2}+\mu w_{3}} \frac{e^{-\frac{t^{2}}{2 w_{3}}}}{\sqrt{2 \pi w_{3}^{3}}} e^{-w_{3} \sqrt{2\left[\frac{\mu^{2}}{2}-\mu+\sqrt{2\left[\frac{\mu^{2}}{2}+\lambda(1-u)\right]}\right]}} d w_{3} \\
= & e^{\mu t-t 2^{\frac{1}{2}}} \sqrt{\frac{\mu^{2}}{2}-\mu+2^{\frac{1}{2}} \sqrt{\frac{\mu^{2}}{2}-\mu+2^{\frac{1}{2}} \sqrt{\frac{\mu^{2}}{2}+\lambda(1-u)}}}
\end{align*}
$$

and then the expected value reads, for $n=3$,

$$
\begin{aligned}
& \mathbb{E} \hat{N}_{\mu}^{n}(t) \\
& \frac{2^{\frac{3}{2}-3} \lambda t e^{\mu t-t 2^{\frac{1}{2}}} \sqrt{\frac{\mu^{2}}{2}-\mu+2^{\frac{1}{2}} \sqrt{\frac{\mu^{2}}{2}-\mu+2^{\frac{1}{2}} \sqrt{\frac{\mu^{2}}{2}+\lambda(1-u)}}}}{\sqrt{\frac{\mu^{2}}{2}-\mu+2^{\frac{1}{2}} \sqrt{\frac{\mu^{2}}{2}-\mu+2^{\frac{1}{2}} \sqrt{\frac{\mu^{2}}{2}+\lambda(1-u)}}}} . \\
& \left.\frac{1}{\sqrt{\frac{\mu^{2}}{2}-\mu+2^{\frac{1}{2}} \sqrt{\frac{\mu^{2}}{2}+\lambda(1-u)}}}\right|_{u=1} ^{\frac{\mu^{2}}{2}+\lambda(1-u)}
\end{aligned}=\frac{\lambda t}{\mu^{3}} .
$$

By the same reasoning we arrive at formulas (3.30) and (3.31) for any $n \geq 1$. For $\mu=0$ formula (3.30) coincides with (3.26).

Remark 3.7 By considering (3.24) it is easy to check that (3.30) satisfies the following recursive differential equation

$$
\begin{aligned}
\frac{d^{2^{n}}}{d t^{2^{n}}} \widehat{G}^{n}(u, t) & =2^{2^{n}-1} \lambda \sum_{k=0}^{\infty} u^{k}\left[\widehat{p}_{k}^{n}(t)-\widehat{p}_{k-1}^{n}(t)\right] \\
& =2^{2^{n}-1} \lambda(u-1) \widehat{G}^{n}(u, t)
\end{aligned}
$$

Indeed by taking the derivatives of (3.30) we get

$$
\begin{aligned}
\frac{d^{2^{n}}}{d t^{2^{n}}} \widehat{G}_{\mu}^{n}(u, t) & =\left(2^{1-\frac{1}{2^{n}}}(\lambda(u-1))^{\frac{1}{2^{n}}}\right)^{2^{n}} e^{\mu t-2^{1-\frac{1}{2^{n}}} t(\lambda(1-u))^{\frac{1}{2^{n}}}} \\
& =2^{2^{n}-1} \lambda(u-1) \widehat{G}^{n}(u, t)
\end{aligned}
$$

4 Poisson processes at Brownian sojourn times

We consider the composition of a homogeneous Poisson process with a random process, distributed as the sojourn time on the positive half-line of a standard Brownian motion $\Gamma_{t}^{+}=$meas $\{s<t: B(s)>0\}$, i.e.

$$
\begin{equation*}
\bar{N}(t)=N\left(\Gamma_{t}^{+}\right), \quad t>0 \tag{4.1}
\end{equation*}
$$

Since the density function of Γ_{t}^{+}is equal to

$$
\begin{equation*}
\operatorname{Pr}\left\{\Gamma_{t}^{+} \in d s\right\}=\frac{d s}{\pi \sqrt{s(t-s)}}, \quad 0<s<t \tag{4.2}
\end{equation*}
$$

the probability distribution of $\bar{N}(t), t>0$ is given by

$$
\begin{equation*}
\bar{p}_{k}(t)=\operatorname{Pr}\{\bar{N}(t)=k\}=\frac{1}{\pi k!} \int_{0}^{t} \frac{(\lambda s)^{k} e^{-\lambda s}}{\sqrt{s(t-s)}} d s, \quad k \geq 0, t>0 \tag{4.3}
\end{equation*}
$$

An explicit expression for (4.3) is obtained in the following result.
Theorem 4.1 The state probabilities of the process \bar{N} can be expressed as follows:

$$
\begin{equation*}
\bar{p}_{k}(t)=p_{k}(t)\binom{2 k-1}{k} 2^{1-2 k}{ }_{1} F_{1}\left(\frac{1}{2}, k+1 ; \lambda t\right) \tag{4.4}
\end{equation*}
$$

where $p_{k}, k=0,1, \ldots$ is the probability distribution of the homogeneous Poisson process and ${ }_{1} F_{1}(\alpha, \beta ; x)$ denotes the confluent hypergeometric function defined as

$$
\begin{aligned}
{ }_{1} F_{1}(\alpha ; \beta ; x) & =1+\sum_{j=1}^{\infty} \frac{\alpha(\alpha+1) \ldots(\alpha+j-1)}{\gamma(\gamma+1) \ldots(\gamma+j-1)} \frac{z^{j}}{j!} \\
& =\sum_{j=0}^{\infty} \frac{(\alpha)_{j}}{(\gamma)_{j}} \frac{z^{j}}{j!}
\end{aligned}
$$

where $(\gamma)_{r}=\gamma(\gamma+1) \ldots(\gamma+r-1)($ for $r=1,2, \ldots$, and $\gamma \neq 0)$ and $(\gamma)_{0}=1$. (see Gradshteyn and Ryzhik [5], p.1085).
Proof We can recognize in the integral (4.3) formula 3.383.1, p. 365 of Gradshteyn and Ryzhik [5],i.e.

$$
\begin{equation*}
\int_{0}^{u} x^{\mu-1}(u-x)^{\nu-1} e^{\beta x} d x=B(\mu, \nu) u^{\mu+\nu-1}{ }_{1} F_{1}(\mu, \mu+\nu ; \beta u), \tag{4.5}
\end{equation*}
$$

so that we get

$$
\begin{aligned}
\bar{p}_{k}(t) & =\frac{(\lambda t)^{k}}{\pi k!} B\left(k+\frac{1}{2}, \frac{1}{2}\right){ }_{1} F_{1}\left(\frac{1}{2}, k+1 ;-\lambda t\right) \\
& =[\mathrm{by} 9.212 .1, \text { p. } 1086 \text { of Gradshteyn and Ryzhik [5]] } \\
& =\frac{(\lambda t)^{k} e^{-\lambda t}}{\pi k!} B\left(k+\frac{1}{2}, \frac{1}{2}\right){ }_{1} F_{1}\left(\frac{1}{2}, k+1 ; \lambda t\right) \\
& =[\text { by the duplication formula of Gamma function }] \\
& =p_{k}(t)\binom{2 k-1}{k} 2^{1-2 k}{ }_{1} F_{1}\left(\frac{1}{2}, k+1 ; \lambda t\right) .
\end{aligned}
$$

Remark 4.1 We can interpret the process (4.1) in some distributionally equivalent forms. Since it is well-known that

$$
\mathcal{T}_{0}(t)=\sup \{s<t: B(s)=0\}
$$

and

$$
\Theta(t)=\inf \left\{s<t: B(s)=\max _{0 \leq z \leq t} B(z)\right\}
$$

possess the same distribution (4.2) as Γ_{t}^{+}, we can interpret the results of this section as pertaining to the following compositions

$$
N\left(\mathcal{T}_{0}(t)\right) \quad \text { and } \quad N(\Theta(t)), \quad t>0 .
$$

Theorem 4.2 The state probabilities \bar{p}_{k} given in (4.4) solve the following recursive differential equations:

$$
\begin{equation*}
\frac{d}{d t} p_{k}(t)=\frac{k}{t} p_{k}(t)-\frac{k+1}{t} p_{k+1}(t), \quad k \geq 0, t>0 \tag{4.6}
\end{equation*}
$$

with initial conditions

$$
\bar{p}_{k}(0)= \begin{cases}1 & k=0 \\ 0 & k \geq 1\end{cases}
$$

Proof We rewrite (4.3) as follows

$$
\begin{equation*}
\bar{p}_{k}(t)=\frac{(\lambda t)^{k}}{\pi k!} \int_{0}^{1} e^{-\lambda t z} z^{k-\frac{1}{2}}(1-z)^{-\frac{1}{2}} d z \tag{4.7}
\end{equation*}
$$

and take the first order derivative with respect to t, so that we get

$$
\begin{aligned}
& \frac{d}{d t} \bar{p}_{k}(t)=\frac{\lambda^{k}}{\pi k!} \int_{0}^{1} z^{k-\frac{1}{2}}(1-z)^{-\frac{1}{2}} \frac{d}{d t}\left(t^{k} e^{-\lambda t z}\right) d z \\
= & \frac{\lambda^{k}}{\pi k!}\left[k t^{k-1} \int_{0}^{1} z^{k-\frac{1}{2}}(1-z)^{-\frac{1}{2}} e^{-\lambda t z} d z-\lambda t^{k} \int_{0}^{1} z^{k+\frac{1}{2}}(1-z)^{-\frac{1}{2}} e^{-\lambda t z} d z\right] \\
= & \frac{k}{t} \bar{p}_{k}(t)-\frac{k+1}{t} \bar{p}_{k+1}(t) .
\end{aligned}
$$

Remark 4.2 We evaluate the Laplace transform of (4.7) which reads

$$
\begin{align*}
\mathcal{L}\left\{\bar{p}_{k}(t), \eta\right\} & =\int_{0}^{\infty} e^{-\eta t} \bar{p}_{k}(t) d t \tag{4.8}\\
& =\int_{0}^{\infty} e^{-\eta t} \frac{\lambda^{k} t^{k}}{\pi k!} \int_{0}^{1} z^{k-\frac{1}{2}}(1-z)^{-\frac{1}{2}} e^{-(\lambda z) t} d z d t \\
& =\frac{1}{\pi} \int_{0}^{1} z^{k-\frac{1}{2}}(1-z)^{-\frac{1}{2}} \int_{0}^{\infty} \frac{\lambda^{k} t^{k}}{k!} e^{-(\eta+\lambda z) t} d t d z \\
& =\frac{1}{\pi} \int_{0}^{1} z^{k-\frac{1}{2}}(1-z)^{-\frac{1}{2}} \frac{\lambda^{k} \Gamma(k+1)}{k!(\eta+\lambda z)^{k+1}} d z \\
& =\frac{1}{\pi} \int_{0}^{1} z^{-\frac{1}{2}}(1-z)^{-\frac{1}{2}} \frac{(\lambda z)^{k}}{(\eta+\lambda z)^{k+1}} d z
\end{align*}
$$

The last expression in (4.8) permits us to interpret the process $\bar{N}(t), t>0$ as the standard homogeneous Poisson process with random rate Λ distributed as a Beta random variable of parameters $\frac{1}{2}, \frac{1}{2}$. Indeed the Laplace transform of a standard Poisson process is given by

$$
\mathcal{L}\left\{p_{k}(t), \eta\right\}=\frac{(\lambda z)^{k}}{(\eta+\lambda z)^{k+1}} .
$$

The same conclusion can be drawn directly from (4.7).

Remark 4.3 The probability generating function can be evaluated as follows:

$$
\begin{align*}
\bar{G}(u, t) & =\sum_{k=0}^{\infty} u^{k} \bar{p}_{k}(t)=\int_{0}^{t} \frac{e^{-\lambda s}}{\pi \sqrt{s(t-s)}} \sum_{k=0}^{\infty} \frac{(\lambda s u)^{k}}{k!} d s \tag{4.9}\\
& =\int_{0}^{t} \frac{e^{-\lambda s(1-u)}}{\pi \sqrt{s(t-s)}} d s \\
& =[\operatorname{by}(4.5)] \\
& ={ }_{1} F_{1}\left(\frac{1}{2}, 1 ; \lambda t(u-1)\right)
\end{align*}
$$

$$
\begin{aligned}
& =[\text { by } 9.215 .2, \text { p. } 1086 \text { of Gradshteyn and Ryzhik [5]] } \\
& =e^{-\frac{\lambda t(1-u)}{2}} J_{0}\left(-\frac{\lambda t}{2}(1-u) e^{\frac{i \pi}{2}}\right) \\
& =e^{-\frac{\lambda t(1-u)}{2}} \sum_{k=0}^{\infty} \frac{\left(-e^{i \pi}\right)^{k}}{(k!)^{2}} \frac{(-\lambda t(1-u))^{2 k}}{2^{4 k}} \\
& =e^{-\frac{\lambda t(1-u)}{2}} \sum_{k=0}^{\infty} \frac{1}{(k!)^{2}} \frac{(\lambda t(1-u))^{2 k}}{2^{4 k}} \\
& =G(u, t) I_{0}\left(\frac{\lambda t(1-u)}{2}\right),
\end{aligned}
$$

where $G(u, t)$ denotes the probability generating function of the homogeneous Poisson process with rate $\lambda / 2$.

We can derive the same result by evaluating the integral in (4.9) directly, as follows,

$$
\begin{aligned}
& \int_{0}^{t} \frac{e^{-\lambda s(1-u)} s^{-\frac{1}{2}}}{\pi \sqrt{t-s}} d s \\
= & {\left[\text { by putting } s=t \sin ^{2} \phi\right] } \\
= & \frac{2 \sqrt{t}}{\pi} \int_{0}^{\frac{\pi}{2}} e^{-\lambda(1-u) t \sin ^{2} \phi} \frac{\left(t \sin ^{2} \phi\right)^{-\frac{1}{2}}}{\cos \phi} \sin \phi \cos \phi d \phi \\
= & \frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} e^{-\lambda(1-u) t \sin ^{2} \phi} d \phi \\
= & {\left[\sin ^{2} \phi=\frac{1-\cos 2 \phi}{2}\right] } \\
= & \frac{2 e^{-\frac{\lambda(1-u) t}{2}}}{\pi} \int_{0}^{\frac{\pi}{2}} e^{\frac{\lambda(1-u) t \cos 2 \phi}{2}} d \phi \\
= & \frac{e^{-\frac{\lambda(1-u) t}{2}}}{\pi} \int_{0}^{\pi} e^{\frac{\lambda(1-u) t \cos \theta}{2}} d \theta \\
= & e^{-\frac{\lambda(1-u) t}{2}} I_{0}\left(\frac{\lambda t(1-u)}{2}\right) .
\end{aligned}
$$

For the factorial moments, we get from (4.9)

$$
\begin{align*}
& \mathbb{E}[\bar{N}(t)(\bar{N}(t)-1) \ldots(\bar{N}(t)-r+1)] \tag{4.10}\\
= & \left.\frac{d^{r}}{d u^{r}} \bar{G}(u, t)\right|_{u=1} \\
= & \left.\lambda^{r} \int_{0}^{t} \frac{s^{r} e^{-\lambda s(1-u)}}{\pi \sqrt{s(t-s)}} d s\right|_{u=1}=\frac{(\lambda t)^{r}}{\pi} B\left(r+\frac{1}{2}, \frac{1}{2}\right) \\
= & \frac{(\lambda t)^{r}}{r!\sqrt{\pi}} \Gamma\left(r+\frac{1}{2}\right)=p_{r}(t) e^{\lambda t} \frac{\Gamma\left(r+\frac{1}{2}\right)}{\sqrt{\pi}} .
\end{align*}
$$

From (4.10) it is easy to derive

$$
\mathbb{E} \bar{N}(t)=\frac{\lambda t}{2}
$$

and

$$
\operatorname{Var}(\bar{N}(t))=\frac{\lambda^{2} t^{2}}{8}+\frac{\lambda t}{2}
$$

Remark 4.4 We can give an alternative representation to the distribution (4.4) and the factorial moments (4.10), in terms of the time T^{0} of the first return in zero of a coin tossing random walk, whose distribution is given by

$$
\begin{equation*}
\operatorname{Pr}\left\{T^{0}=2 k+2\right\}=\binom{2 k}{k} \frac{1}{k+1} \frac{1}{2^{2 k+1}}, \quad k=0,1, \ldots \tag{4.11}
\end{equation*}
$$

Indeed the distribution (4.4) can be written as

$$
\bar{p}_{k}(t)=2(k+1) p_{k}(t) \operatorname{Pr}\left\{T^{0}=2 k+2\right\}_{1} F_{1}\left(\frac{1}{2}, k+1 ; \lambda t\right) .
$$

The factorial moments, instead, read

$$
\mathbb{E}[\bar{N}(t)(\bar{N}(t)-1) \ldots(\bar{N}(t)-r+1)]=2(r+1) p_{r}(t) \operatorname{Pr}\left\{T^{0}=2 r+2\right\}
$$

5 Poisson processes at Bessel times

Let us denote by $R_{\gamma}(t), t>0$ the γ-Bessel process, starting at zero, with transition function given by

$$
\begin{equation*}
p_{\gamma}(s, t)=\frac{2 s^{\gamma-1} e^{-\frac{s^{2}}{2 t}}}{(2 t)^{\frac{\gamma}{2}} \Gamma\left(\frac{\gamma}{2}\right)} \tag{5.1}
\end{equation*}
$$

for $s, t, \gamma>0$, and with generator

$$
\begin{equation*}
\mathcal{A}=\frac{1}{2}\left\{\frac{\partial^{2}}{\partial s^{2}}+\frac{\gamma-1}{s} \frac{\partial}{\partial s}\right\} \tag{5.2}
\end{equation*}
$$

We study now the composition of a homogeneous Poisson process with a process defined as the square of $R_{\gamma}(t), t>0$, which will be denoted by $R_{\gamma}^{2}=\left(R_{\gamma}(t)\right)^{2}, t>0$. We derive the transition density of this second process, as follows:

$$
\begin{aligned}
p_{\gamma}^{2}(s, t) & =\frac{d}{d s} \operatorname{Pr}\left\{R_{\gamma}^{2}(t)<s\right\}=\frac{d}{d s} \int_{0}^{\sqrt{s}} \frac{2 w^{\gamma-1} e^{-\frac{w^{2}}{2 t}}}{(2 t)^{\frac{\gamma}{2}} \Gamma\left(\frac{\gamma}{2}\right)} d w \\
& =\frac{s^{\frac{\gamma}{2}-1} e^{-\frac{s}{2 t}}}{(2 t)^{\frac{\gamma}{2}} \Gamma\left(\frac{\gamma}{2}\right)}, \quad s, t>0
\end{aligned}
$$

Therefore are interested in deriving the probability distribution of the following process

$$
\tilde{N}_{\gamma}(t)=N\left(R_{\gamma}^{2}(t)\right), \quad t>0
$$

and its governing equation.
Theorem 5.1 The state probabilities ${ }_{\gamma} \widetilde{p}_{k}$ of the process $\widetilde{N}_{\gamma}(t), t>0$ are given, for any $k \geq 0$, by

$$
\begin{equation*}
{ }_{\gamma} \widetilde{p}_{k}(t)=\operatorname{Pr}\left\{\widetilde{N}_{\gamma}(t)=k\right\}=\frac{(2 \lambda t)^{k}}{(2 \lambda t+1)^{k+\frac{\gamma}{2}}} \frac{\Gamma\left(k+\frac{\gamma}{2}\right)}{k!\Gamma\left(\frac{\gamma}{2}\right)} \tag{5.3}
\end{equation*}
$$

The probability generating function of the distribution (5.3) has the following form

$$
\begin{equation*}
\widetilde{G}_{\gamma}(u, t)=\frac{1}{(2 \lambda t(1-u)+1)^{\gamma / 2}}, \quad|u| \leq 1 \tag{5.4}
\end{equation*}
$$

Proof The distribution is obtained directly as follows

$$
\begin{aligned}
{ }_{\gamma} \widetilde{p}_{k}(t) & =\int_{0}^{+\infty} \frac{\lambda^{k}}{k!} s^{k} e^{-\lambda s} p(s, t) d s \\
& =\frac{\lambda^{k}}{k!(2 t)^{\frac{\gamma}{2}} \Gamma\left(\frac{\gamma}{2}\right)} \int_{0}^{+\infty} e^{-\lambda s} s^{k+\frac{\gamma}{2}-1} e^{-\frac{s}{2 t}} d s \\
& =\frac{\lambda^{k}}{k!(2 t)^{\frac{\gamma}{2}} \Gamma\left(\frac{\gamma}{2}\right)}\left(\frac{2 t}{2 \lambda t+1}\right)^{k+\frac{\gamma}{2}} \Gamma\left(k+\frac{\gamma}{2}\right),
\end{aligned}
$$

which coincides with (5.3). We derive the probability generating function as follows:

$$
\begin{aligned}
\widetilde{G}_{\gamma}(u, t) & =\sum_{k=0}^{\infty} u^{k}{ }_{\gamma} \widetilde{p}_{k}(t)=\frac{1}{\Gamma\left(\frac{\gamma}{2}\right)(2 \lambda t+1)^{\gamma / 2}} \int_{0}^{+\infty} e^{-z} z^{\frac{\gamma}{2}-1} e^{\frac{2 \lambda t u z}{2 \lambda t+1}} d z \\
& =\frac{1}{(2 \lambda t+1)^{\gamma / 2}} \frac{1}{\left(1-\frac{2 \lambda t u}{2 \lambda t+1}\right)^{\frac{\gamma}{2}}} \\
& =\frac{1}{(2 \lambda t(1-u)+1)^{\gamma / 2}} .
\end{aligned}
$$

Remark 5.1 An alternative expression for the probabilities (5.3) can be obtained by rewriting it as follows:

$$
\begin{align*}
{ }_{\gamma} \widetilde{p}_{k}(t) & =\frac{(2 \lambda t)^{k}}{(2 \lambda t+1)^{k+\frac{\gamma}{2}}} \frac{1}{k!\Gamma\left(\frac{\gamma}{2}\right)} \int_{0}^{+\infty} e^{-w} w^{k+\frac{\gamma}{2}-1} d w \tag{5.5}\\
& =\frac{(2 \lambda t)^{k}}{(2 \lambda t+1)^{k+\frac{\gamma}{2}}} \frac{1}{\Gamma\left(\frac{\gamma}{2}\right)} \int_{0}^{+\infty} \operatorname{Pr}\{N(w)=k\} w^{\frac{\gamma}{2}-1} d w .
\end{align*}
$$

Formula (5.5) possesses an interesting interpretation for $k \geq 1$, since, in this case, we can recognize the probability distribution of a birth-death linear process $M(t), t>0$ with birth and death rates equal to 2λ, which reads

$$
\operatorname{Pr}\{M(t)=k\}=\frac{(2 \lambda t)^{k-1}}{(2 \lambda t+1)^{k+1}} \quad k \geq 1
$$

and

$$
\operatorname{Pr}\{M(t)=0\}=\frac{2 \lambda t}{2 \lambda t+1}
$$

(see, for example, Bailey [1]). Therefore we get

$$
\begin{equation*}
{ }_{\gamma} \widetilde{p}_{k}(t)=\frac{2 \lambda t}{(2 \lambda t+1)^{\frac{\gamma}{2}-1}} \frac{\operatorname{Pr}\{M(t)=k\}}{\Gamma\left(\frac{\gamma}{2}\right)} \int_{0}^{+\infty} \operatorname{Pr}\{N(w)=k\} w^{\frac{\gamma}{2}-1} d w \tag{5.6}
\end{equation*}
$$

In the special case where $\gamma=2$, formula (5.6) reduces to

$$
\begin{equation*}
{ }_{2} \widetilde{p}_{k}(t)=2 \lambda t \frac{(2 \lambda t)^{k-1}}{(2 \lambda t+1)^{k+1}}=2 \lambda t \operatorname{Pr}\{M(t)=k\} \tag{5.7}
\end{equation*}
$$

The presence of the factor $2 \lambda t$ can be explained by considering that, for the Poisson process, the extinction probability must be equal to zero.

Remark 5.2 It is easy to check that (5.7) represents, for $k \geq 0$, a genuine probability distribution:

$$
\sum_{k=0}^{\infty}{ }_{2} \widetilde{p}_{k}(t)=\sum_{k=0}^{\infty} \frac{(2 \lambda t)^{k}}{(2 \lambda t+1)^{k+1}}=1 .
$$

In the general case $\gamma>0$, this check is a bit more complicated:

$$
\begin{align*}
& \sum_{k=0}^{\infty}{ }_{\gamma} \widetilde{p}_{k}(t)=\sum_{k=0}^{\infty} \frac{(2 \lambda t)^{k}}{(2 \lambda t+1)^{k}} \frac{\Gamma\left(k+\frac{\gamma}{2}\right)}{k!\Gamma\left(\frac{\gamma}{2}\right)(2 \lambda t+1)^{\gamma / 2}} \tag{5.8}\\
= & \frac{1}{\Gamma\left(\frac{\gamma}{2}\right)(2 \lambda t+1)^{\gamma / 2}} \sum_{k=0}^{\infty} \frac{(2 \lambda t)^{k}}{k!(2 \lambda t+1)^{k}} \int_{0}^{+\infty} e^{-z} z^{k+\frac{\gamma}{2}-1} d z \\
= & \frac{1}{\Gamma\left(\frac{\gamma}{2}\right)(2 \lambda t+1)^{\gamma / 2}} \int_{0}^{+\infty} e^{-z} z^{\frac{\gamma}{2}-1} \sum_{k=0}^{\infty} \frac{(2 \lambda t z)^{k}}{k!(2 \lambda t+1)^{k}} d z \\
= & \frac{1}{\Gamma\left(\frac{\gamma}{2}\right)(2 \lambda t+1)^{\gamma / 2}} \int_{0}^{+\infty} e^{-z} z^{\frac{\gamma}{2}-1} e^{\frac{2 \lambda t z}{2 \lambda t+1}} d z \\
= & \frac{1}{\Gamma\left(\frac{\gamma}{2}\right)(2 \lambda t+1)^{\gamma / 2}} \frac{1}{\left(1-\frac{2 \lambda t}{2 \lambda t+1}\right)^{\frac{\gamma}{2}}} \Gamma\left(\frac{\gamma}{2}\right)=1 .
\end{align*}
$$

Remark 5.3 By taking the first derivative of (5.4) we get that the first moment is equal to

$$
\begin{equation*}
\mathbb{E} \widetilde{N}_{\gamma}(t)=\left.\frac{2 \lambda t \gamma(2 \lambda t(1-u)+1)^{\frac{\gamma}{2}-1}}{(2 \lambda t(1-u)+1)^{\gamma}}\right|_{u=1}=\lambda t \gamma \tag{5.9}
\end{equation*}
$$

while its variance can be obtained as follows

$$
\begin{aligned}
& \mathbb{E}\left[\tilde{N}_{\gamma}(t)\left(\tilde{N}_{\gamma}(t)-1\right)\right] \\
= & \left.\frac{(2 \lambda t)^{2} \gamma\left(\frac{\gamma}{2}+1\right)}{2(2 \lambda t(1-u)+1)^{\frac{\gamma}{2}+2}}\right|_{u=1}=(\lambda t)^{2} \gamma(\gamma+2),
\end{aligned}
$$

so that we get

$$
\begin{equation*}
\operatorname{Var}\left(\tilde{N}_{\gamma}(t)\right)=\lambda t \gamma[2 \lambda t+1] \tag{5.10}
\end{equation*}
$$

Results (5.9) and (5.10) can be checked, in the case $\gamma=2$, by using (5.7) and considering that

$$
\mathbb{E} M(t)=1, \quad \mathbb{V} \text { ar } M(t)=2 \lambda t
$$

Finally we derive the differential equations satisfied by (5.3) and (5.4).
Theorem 5.2 The state probabilities \widetilde{p}_{k}, given in (5.3), are solutions to the following difference-differential equations

$$
\begin{equation*}
\frac{d}{d t} p_{k}(t)=\frac{k}{t} p_{k}(t)-\frac{k+1}{t} p_{k+1}(t), \quad t>0, k \geq 0 \tag{5.11}
\end{equation*}
$$

subject to the initial conditions

$$
\widetilde{p}_{k}(0)= \begin{cases}1, & k=0 \\ 0, & k \geq 1\end{cases}
$$

while the probability generating function $\widetilde{G}_{\gamma}(u, t)$ is solution to

$$
\begin{equation*}
\frac{\partial G}{\partial t}(u, t)=-\frac{1-u}{t} \frac{\partial G}{\partial u}(u, t), \quad t>0,|u| \leq 1 \tag{5.12}
\end{equation*}
$$

with $\widetilde{G}_{\gamma}(u, 0)=1$.
Proof We can check (5.11), directly, by taking the derivatives of (5.3)

$$
\begin{aligned}
\frac{d}{d t}{ }_{\gamma} \widetilde{p}_{k}(t) & =\frac{\Gamma\left(k+\frac{\gamma}{2}\right)}{k!\Gamma\left(\frac{\gamma}{2}\right)} \frac{d}{d t} \frac{(2 \lambda t)^{k}}{(2 \lambda t+1)^{\frac{\gamma}{2}+k}} \\
& =2 \lambda \frac{\Gamma\left(k+\frac{\gamma}{2}\right)}{k!\Gamma\left(\frac{\gamma}{2}\right)} \frac{k(2 \lambda t)^{k-1}(2 \lambda t+1)^{\frac{\gamma}{2}+k}-\left(\frac{\gamma}{2}+k\right)(2 \lambda t)^{k}(2 \lambda t+1)^{\frac{\gamma}{2}+k-1}}{(2 \lambda t+1)^{\gamma+2 k}} \\
& =2 \lambda(2 \lambda t)^{k-1} \frac{\Gamma\left(k+\frac{\gamma}{2}\right)}{k!\Gamma\left(\frac{\gamma}{2}\right)}\left[\frac{k}{(2 \lambda t+1)^{\frac{\gamma}{2}+k}}-\frac{\left(\frac{\gamma}{2}+k\right) 2 \lambda t}{(2 \lambda t+1)^{\frac{\gamma}{2}+k+1}}\right] \\
& =\frac{k}{t}{ }_{\gamma} \widetilde{p}_{k}(t)-\frac{k+1}{t}{ }_{\gamma} \widetilde{p}_{k+1}(t) .
\end{aligned}
$$

Since the partial derivatives of \widetilde{G}_{γ} are equal to

$$
\begin{equation*}
\frac{\partial \widetilde{G}_{\gamma}}{\partial t}(u, t)=\sum_{k=0}^{\infty} u^{k} \frac{d}{d t} \gamma \widetilde{p}_{k}(t) \tag{5.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial \widetilde{G}_{\gamma}}{\partial u}(u, t)=\sum_{k=0}^{\infty} k u^{k-1}{ }_{\gamma} \widetilde{p}_{k}(t), \tag{5.14}
\end{equation*}
$$

we get

$$
\begin{align*}
& \sum_{k=0}^{\infty} u^{k} \frac{d}{d t}{ }_{\gamma} \widetilde{p}_{k}(t) \tag{5.15}\\
= & -\frac{1-u}{t} \sum_{k=0}^{\infty} k u^{k-1}{ }_{\gamma} \widetilde{p}_{k}(t) \\
= & -\frac{1}{t} \sum_{k=0}^{\infty} k u^{k-1}{ }_{\gamma} \widetilde{p}_{k}(t)+\frac{1}{t} \sum_{k=0}^{\infty} k u^{k}{ }_{\gamma} \widetilde{p}_{k}(t) \\
= & -\frac{1}{t} \sum_{k=1}^{\infty} k u^{k-1}{ }_{\gamma} \widetilde{p}_{k}(t)+\frac{1}{t} \sum_{k=0}^{\infty} k u^{k}{ }_{\gamma} \widetilde{p}_{k}(t) \\
= & {[\text { for } k-1=l \text { in the first sum] }} \\
= & -\frac{1}{t} \sum_{l=0}^{\infty}(l+1) u^{l}{ }_{\gamma} \widetilde{p}_{l+1}(t)+\frac{1}{t} \sum_{k=0}^{\infty} k u^{k}{ }_{\gamma} \widetilde{p}_{k}(t),
\end{align*}
$$

which coincides with (5.12).

References

[1] Bailey, N. (1964), The Elements of Stochastic Processes with Applications to the Natural Sciences, John Wiley \& Sons, New York.
[2] Beghin, L., Orsingher E. (2009), Fractional Poisson processes and related planar random motions. Electronic Journal of Probability, 14, n.61, p. 1790-1826.
[3] Beghin, L., Orsingher E. (2009), Poisson-type processes governed by fractional and higher-order recursive differential equations, Technical Report DSPSA "Sapienza" University of Rome, n.26. ArXiv:0910.5855v1 [math.PR]. Submitted.
[4] Cahoy, D.O. (2007), Fractional Poisson process in terms of α-stable densities, Ph.D. Thesis, Case Western University.
[5] Gradshteyn, I. S., Ryzhik, I. M. (2000), Table of integrals, series, and products. Translated from the Russian. Sixth edition. Translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger. Academic Press, Inc., San Diego, CA.
[6] Ito K., McKean, H.J. (1996), Diffusion Processes and their Sample Paths. Classics in Mathematics. Springer, NY.
[7] Jumarie, G. (2001), Fractional master equation: non-standard analysis and Liouville-Riemann derivative, Chaos, Solitons and Fractals, 12, 2577-2587.
[8] Laskin, N. (2003), Fractional Poisson process, Communications in Nonlinear Science and Numerical Simulation, 8, 201-213.
[9] Mainardi F., Raberto M., Gorenflo R., Scalas E. (2000), Fractional calculus and continuous-time finance II: the waiting-time distribution, Physica A, 287, 468-481.
[10] Prabhakar T.R. (1971), A singular integral equation with a generalized Mittag Leffler function in the kernel, Yokohama Math. J. 19, 7-15.
[11] Saji Kumar, V.R., Pillai, R.N. (2006), Single server queue with batch arrivals and α-Poisson distribution, Calcutta Stat. Assoc. Bull., 58, n.229-230, 93103.
[12] Saxena, R.K., Mathai, A.M., Haubold, H.J. (2006), Solutions of fractional reaction-diffusion equations in terms of Mittag-Leffler functions, Intern. Journ. Scient. Research, 15, 1-17. ArXiv:0708.2265 (August 2007).

[^0]: *Sapienza University of Rome
 †Sapienza University of Rome. Corresponding author: enzo.orsingher@uniroma1.it

