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Abstract

In this paper different types of Poisson processes N subordinated to random
time processes X, depending on Brownian motion, are analyzed. In particular
the processes X considered here are the elastic Brownian motion Bel, the Brow-
nian sojourn time on the positive half-line Γ+

t , the first-passage time Tt (through
the level t) of a Brownian motion, with or witout drift, and the γ-Bessel process

γR, for γ > 0.
In all these cases we obtain the explicit state probability distributions pk(t) =

Pr {N(X(t)) = k} , k ≥ 0, t > 0, their governing difference-differential equations
and some moments. The connections among different models and, in particular,
of N(γR(t)) with birth and death processes are obtained and discussed.
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1 Introduction

In a series of previous papers fractional extensions of the Poisson process have been
analyzed by different authors (Jumarie [7], Laskin [8], Beghin and Orsingher [2]-[3]).
The idea underlying these papers is to construct the fractional Poisson process by in-
troducing a fractional time-derivative in the difference-differential equation governing
the state probabilities pνk(t), t > 0, that is, for 0 < ν < 1,

dνpk
dtν

= −λ [pk(t)− pk−1(t)] , k ≥ 0, t > 0, λ > 0 (1.1)

with initial conditions

pk(0) =
{

1 k = 0
0 k ≥ 1 . (1.2)

The derivative appearing in (1.1) is intended in the following sense:

dν

dtν
u(t) =

{
1

Γ(m−ν)

∫ t
0

1
(t−s)1+ν−m

dm

dsmu(s)ds, for m < ν < m− 1
dm

dtmu(t), for ν = m
, (1.3)

where m = bνc+ 1.
Cahoy [4] has shown that the fractional Poisson process exhibits a long-memory

behavior with intermittency (which means clustering of events). This feature makes
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the process more suitable for several applications, for example, in queueing systems
(Saji and Pillai [11]) and in financial analysis (Mainardi et al. [9]).

In Beghin and Orsingher [2] it is proved that the fractional Poisson processNν(t), t >
0, with state probabilities pνk can be represented as

Nν(t) i.d.= N(T2ν(t)), t > 0, (1.4)

where N is the homogeneous Poisson process with rate λ (which is obtained in the
particular case ν = 1). The time process T2ν(t), t > 0 appearing in (1.4) is independent
from N and possesses a probability density obtained by folding the solution to the
following fractional diffusion equation:{

∂2νu
∂t2ν = ∂2u

∂x2 , t > 0, x ∈ R
u(x, 0) = δ(x)

, (1.5)

for 0 < ν < 1, with the additional condition vt(y, 0) = 0, for 1/2 < ν < 1. In
particular, for ν = 1/2, the process (1.4) becomes

N1/2(t) = N(|B(t)|), t > 0, (1.6)

where B is a standard Brownian motion with volatility parameter equal to 2 (whose
density is governed by (1.5) for ν = 1/2).

In the next section we treat a process of the form (1.6), where B is replaced by
the elastic Brownian motion Belα (t), t > 0, with absorbing rate α > 0 (see Ito and
McKean [6]), defined as

Belα (t) =
{
|B(t)|, t < Tα

0, t ≥ Tα
, (1.7)

where Tα is a random time with distribution

Pr {Tα > t|Bt} = e−αL(0,t), α > 0, (1.8)

Bt = σ {B(s), s ≤ t} is the natural filtration and L(0, t) = lim ε↓0
1
2εmeas {s ≤ t : |B(t)| < ε}

is the local time in the origin of B. We show that the process

N̂el(t) = N(Belα (t)), t > 0, α > 0

has state probabilities p̂elk , k ≥ 0, which can be expressed by generalized Mittag-Leffler
functions (see Saxena and Mathai [12]) or in terms of the survival probabilities of Bel.
This distribution coincides with that of process (1.6) for α = 0. Finally we prove that
the state probabilities of N̂el are solutions to difference-differential equations of the
form (1.1) for ν = 1/2.

The remaining part of the paper concerns different compositions of the Poisson
process with randomly varying times, leading to higher-order governing equations,
instead of fractional ones.

In section 3 we analyze the process obtained by composing the standard Poisson
process with the first-passage time of a Brownian motion through the level t. It is
defined as N̂(t) = N(Tt), t > 0, where

Tt = inf {s > 0 : B(s) = t}

and B is a standard Brownian motion independent from N.

We obtain the explicit distribution of N̂ , i.e. p̂k(t) = Pr
{
N̂(t) = k

}
, k ≥ 0, as

follows

p̂k(t) =
2

3
4−

k
2 λ

k
2 + 1

4 tk+ 1
2

k!
√
π

Kk− 1
2
(t
√

2λ), (1.9)
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where Kν(z) is the modified Bessel function of order ν (see definition (3.7) below).
We show that the probability generating function has the following simple structure

Ĝ(u, t) =
∞∑
k=0

ukp̂k(t) = e−t
√

2λ(1−u), |u| ≤ 1, t > 0. (1.10)

Since the expected number of events turns out to be infinite, we consider also the
Poisson process with clock Tµt = inf {s > 0 : Bµ(s) = t}, where Bµ is a Brownian
motion with drift µ. For its distribution p̂µk(t) = Pr {N(Tµt ) = k} , k ≥ 0, we obtain
the second-order governing equation

d2

dt2
pk − 2µ

d

dt
pk = 2λ[pk − pk−1], k ≥ 0. (1.11)

The corresponding probability generating function Ĝµ takes the form

Ĝµ(u, t) = eµt−t
√
µ2+2λ(1−u), |u| ≤ 1

and solves the following equation:

∂2

∂t2
G− 2µ

∂

∂t
G = 2λ(1− u)G. (1.12)

For the Poisson process stopped at the n-times iterated first-passage instant

N̂n(t) = N(T1(T2...(Tn−1(Tn(t)))...)), t > 0, (1.13)

where
Tj(t) = inf {s > 0 : Bj(s) = t} (1.14)

and Bj(t), for j = 1, ..., n, are Brownian motions independent among themselves and
from N , we obtain the 2n-th order equation

d2n

dt2n
pk(t) = 22n−1λ[pk(t)− pk−1(t)], t > 0, k ≥ 0, (1.15)

governing the state probabilities p̂nk (t), t > 0. For the version of the process (1.13)
where the Brownian motion figuring in (1.14) is endowed with drift µ > 0, we have
derived the probability generating function, which reads

Ĝnµ(u, t) = e
µt−2

1
2 t

√√√√µ2
2 −µ+2

1
2

√
µ2
2 −µ+2

1
2

√
.....2

1
2

√
µ2
2 +λ(1−u)

, |u| ≤ 1 (1.16)

and from which we extract

EN̂n
µ (t) =

λt

µn
, n ≥ 1. (1.17)

In section 4 we examine the Poisson process with subordinator represented by the
Brownian sojourn time on the positive half-line, i.e. Γ+

t = meas {s < t : B(s) > 0} .
This process is defined as

N(t) = N(Γ+
t ), t > 0 (1.18)

and displays a slowing down behavior of the time flow (with respect to the natural
time t). This fact is reflected by the relation

EN(t) =
λt

2
=

1
2

EN(t).
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The state probabilities of N can be expressed in terms of confluent hypergeometric
functions 1F1(α, β;x) and are related to the distribution pk, k ≥ 0 of the homogeneous
Poisson process by means of the following formula

pk(t) = pk(t)
(

2k − 1
k

)
21−2k

1F1

(
1
2
, k + 1;λt

)
. (1.19)

We show that the distribution (1.19) satisfies the equations

d

dt
pk(t) =

k

t
pk(t)− k + 1

t
pk+1(t), k ≥ 0, (1.20)

with time-depending coefficients.
In the last section we derive a surprising connection between the process

Ñγ(t) = N(R2
γ(t)), t > 0,

where Rγ(t), t > 0 is a γ-Bessel process starting at zero (defined in (5.1) and (5.2)
below) and the birth and death process M(t), t > 0 (with equal birth and death rates).

We show that the distribution γ p̃k = Pr
{
Ñγ(t) = k

}
, k ≥ 0 can be written as

γ p̃k(t) =
(2λt)k

(2λt+ 1)k+ γ
2

Γ
(
k + γ

2

)
k!Γ

(
γ
2

) (1.21)

and simplifies substantially, when γ = 2, and in this case takes the form

2 p̃k(t) = 2λt
(2λt)k−1

(2λt+ 1)k+1
= 2λtPr {M(t) = k} . (1.22)

The equation governing the distribution (1.22) coincides with (1.20), which is related
to the previous process N(t) = N(Γ+

t ).

2 Poisson processes at elastic Brownian times

We consider now the process N̂el(t) = N(Belα (t)), t > 0 obtained by means of the
composition of the Poisson process with the elastic Brownian motion Belα = Belα (t), t >
0, with absorbing rate α > 0. See Ito and McKean [6], p. 45, for details on elastic
Brownian motion. It is defined in (1.7) -(1.8) and possesses transition function given
by

qel(s, t) = 2eαs
∫ +∞

s

we−αw
e−

w2
2t

√
2πt3

dw + qα(t)δ(s), (2.1)

where δ(s) is the Dirac’s Delta function with pole in the origin and

qα(t) = 1− Pr
{
Belα (t) > 0

}
= 1− 2e

α2t
2

∫ +∞

α
√
t

e−
w2
2

√
2π

dw

is the probability that the process is absorbed by the barrier in zero up to time t.
Then the probability distribution of N̂el is defined, for any k ≥ 0, by

p̂elk (t) = Pr
{
N(Belα (t)) = k

}
=
∫ +∞

0

pk(s)qel(s, t)ds (2.2)

= 2
∫ +∞

0

(λs)k

k!
e−λseαs

∫ +∞

s

we−αw
e−

w2
2t

√
2πt3

dwds+ qα(t)
∫ +∞

0

(λs)k

k!
e−λsδ(s)ds
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and is explicitly evaluated in the next theorem.

Theorem 2.1 For k ≥ 1 and for any λ 6= α the state probabilities of N̂el are given
by

p̂elk (t) = Pr
{
N(Belα (t)) = k

}
(2.3)

=
λk

(λ− α)k+1
Pr
{
Belα (t) > 0

}
− λk

(λ− α)k+1

k∑
j=0

(α− λ)j

j!
dj

dλj
Pr
{
Belλ (t) > 0

}
,

while, for k = 0, we have instead

p̂el0 (t) = Pr
{
N(Bel(t)) = 0

}
(2.4)

= 1− λ− α− 1
λ− α

Pr
{
Belα (t) > 0

}
− 1
λ− α

Pr
{
Belλ (t) > 0

}
.

Proof From (2.2), we have that

p̂elk (t) (2.5)

= 2
∫ +∞

0

(λs)k

k!
e−λseαs

∫ +∞

s

we−αw
e−

w2
2t

√
2πt3

dwds

=
2λk

k!

∫ +∞

0

we−αw
e−

w2
2t

√
2πt3

dw

∫ w

0

ske−s(λ−α)ds

= [by successive integrations by parts]

= 2λk
∫ +∞

0

we−αw
e−

w2
2t

√
2πt3

[
−w

ke−w(λ−α)

(λ− α)k!
− wk−1e−w(λ−α)

(λ− α)2(k − 1)!
− ...− e−w(λ−α) − 1

(λ− α)k+1

]
dw

= − 2λk

(λ− α)k+1

∫ +∞

0

we−αwe−w(λ−α)
k∑
j=0

wj(λ− α)j

j!
e−

w2
2t

√
2πt3

dw +
2λk

(λ− α)k+1

∫ +∞

0

we−αw
e−

w2
2t

√
2πt3

dw

=
λk

(λ− α)k+1
Pr
{
Belα (t) > 0

}
− 2λk

(λ− α)k+1

k∑
j=0

(λ− α)j

j!

∫ +∞

0

wj+1e−wλ
e−

w2
2t

√
2πt3

dw

=
λk

(λ− α)k+1
Pr
{
Belα (t) > 0

}
− 2λk

(λ− α)k+1

k∑
j=0

(λ− α)j

j!
(−1)j

dj

dλj

(∫ +∞

0

we−wλ
e−

w2
2t

√
2πt3

dw

)
,

which coincides with (2.3). For k = 0, formula (2.2) becomes instead

p̂el0 (t) = Pr
{
N(Bel(t)) = 0

}
= 2

∫ +∞

0

e−λseαs
∫ +∞

s

we−αw
e−

w2
2t

√
2πt3

dwds+ qα(t)

= 1− Pr
{
Belα (t) > 0

}
+ 2

∫ +∞

0

we−αw
e−

w2
2t

√
2πt3

dw

∫ w

0

e−s(λ−α)ds (2.6)

= 1− Pr
{
Belα (t) > 0

}
+

2
λ− α

∫ +∞

0

we−αw
e−

w2
2t

√
2πt3

dw
[
1− e−w(λ−α)

]
= 1− Pr

{
Belα (t) > 0

}
+

1
λ− α

[
Pr
{
Belα (t) > 0

}
− Pr

{
Belλ (t) > 0

}]
.

�

An alternative way of studying the probability distribution of this process is by
evaluating the Laplace transform of (2.2). The implied results, which are valid for
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any α, λ > 0, are expressed in terms of generalized Mittag-Leffler functions, defined
as

Eγα,β(z) =
∞∑
r=0

(γ)r z
r

r!Γ(αr + β)
, α, β, γ ∈ C, Re(α),Re(β),Re(γ) > 0, (2.7)

where (γ)r = γ(γ + 1)...(γ + r − 1) (for r = 1, 2, ..., and γ 6= 0) and (γ)0 = 1.

Theorem 2.2 The state probabilities of N̂(t) = N(Bel(t)), t > 0 are given by

p̂elk (t) =
(λ
√
t)k√

2k

∞∑
l=0

(
−α
√
t√

2

)l
Ek+1

1
2 ,
l+k
2 +1

(
−λ
√
t√

2

)
, (2.8)

for k ≥ 1, while, for k = 0, we get

p̂el0 (t) = 1− E 1
2 ,1

(
−α
√
t√

2

)
+
∞∑
j=0

(
−α
√
t√

2

)j
E 1

2 ,
j
2 +1

(
−λ
√
t√

2

)
. (2.9)

Proof For any α, λ > 0 and k ≥ 1, we evaluate the Laplace transform of the first
line of (2.5):

L
{
p̂elk ; η

}
= 2

∫ +∞

0

(λs)k

k!
e−λseαs

∫ +∞

s

e−αw−w
√

2ηdwds (2.10)

= 2
∫ +∞

0

(λs)k

k!
e−λseαs

[
e−αw−w

√
2η

α+
√

2η

]w=+∞

w=s

ds

= 2
∫ +∞

0

(λs)k

k!
e−s(λ+

√
2η)

α+
√

2η
ds

=
2

α+
√

2η
λk(

λ+
√

2η
)k+1

=
1√
2k

1
α√
2

+
√
η

λk(
λ√
2

+
√
η
)k+1

.

In order to invert (2.10) we recall the following formula (see Prabhakar [10]):

L
{
tγ−1Eδβ,γ(ωtβ); η

}
=

ηβδ−γ

(ηβ − ω)δ
. (2.11)

Therefore we invert the first term in (2.10) by taking in (2.7) δ = 1, β = 1
2 , ω = − α√

2

and γ = 1
2 , while, for the second term we put δ = k + 1, β = 1

2 , ω = − λ√
2

and
γ = k+1

2 , so that we get

p̂elk (t) (2.12)

=
λk√
2k

∫ t

0

Ek+1
1
2 ,
k+1
2

(− λ√
2

√
s)s

k−1
2 E 1

2 ,
1
2
(− α√

2

√
t− s)(t− s)− 1

2 ds

=
λk√
2kk!

∞∑
j=0

(k + j)!(− λ√
2
)j

j!Γ( j2 + k+1
2 )

∞∑
l=0

(− α√
2
)l

Γ( l2 + 1
2 )

∫ t

0

s
k−1
2 + j

2 (t− s) l2− 1
2 ds

=
(λ
√
t)k√

2kk!

∞∑
j=0

∞∑
l=0

(
−λ
√
t√

2

)j (
−α
√
t√

2

)l
1

Γ( j+l+k2 + 1)
(k + j)!
j!

,
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which coincides with (2.8). Analogously, for k = 0, the Laplace transform of the first
expression in (2.6) reads

L
{
p̂el0 ; η

}
(2.13)

= 2
∫ +∞

0

e−λs+αs
∫ +∞

s

e−αw−w
√

2ηdwds+
∫ +∞

0

e−ηtqα(t)dt

= 2
∫ +∞

0

e−λs−s
√

2η

α+
√

2η
ds+

∫ +∞

0

e−ηt

(
1− 2e

α2t
2

∫ +∞

α
√
t

e−
w2
2

√
2π

dw

)
dt

=
2

α+
√

2η
1

λ+
√

2η
+

1
η
− 2

∫ +∞

0

e−ηt+
α2t
2

∫ +∞

α
√
t

e−
w2
2

√
2π

dwdt

=
2

α+
√

2η
1

λ+
√

2η
+

1
η
− 2

∫ +∞

0

e−
w2
2

√
2π

∫ w2/α2

0

e−ηt+
α2t
2 dtdw

=
2

α+
√

2η
1

λ+
√

2η
+

1
η
− 2

∫ +∞

0

1√
2πα2

2η

e−η
w2

α2

α2

2 − η
α√
2η
dw +

2
α2 − 2η

=
2

α+
√

2η
1

λ+
√

2η
+

1
η
− 2
α2 − 2η

α√
2η

+
2

α2 − 2η

=
2

α+
√

2η
1

λ+
√

2η
+

1
η
− 2
α2 − 2η

α−
√

2η√
2η

=
1

α√
2

+
√
η

1
λ√
2

+
√
η

+
1
η
− 1

α√
2

+
√
η

1
√
η
,

so that, by inverting (2.13), we get

p̂el0 (t)

= 1− 1√
π

∫ t

0

E 1
2 ,

1
2
(− α√

2

√
s)s−

1
2 (t− s)− 1

2 ds+

+
∫ t

0

E 1
2 ,

1
2
(− α√

2

√
s)s−

1
2E 1

2 ,
1
2
(− λ√

2

√
t− s)(t− s)− 1

2 ds

= 1− 1√
π

∞∑
j=0

1
Γ
(
j
2 + 1

2

) (− α√
2

)j ∫ t

0

s
j
2−

1
2 (t− s)− 1

2 ds+

+
∞∑
j=0

1
Γ
(
j
2 + 1

2

) (− α√
2

)j ∞∑
l=0

1
Γ
(
l
2 + 1

2

) (− λ√
2

)l ∫ t

0

s
j
2−

1
2 (t− s) l2− 1

2 ds

= 1−
∞∑
j=0

1
Γ
(
j
2 + 1

) (−α√t√
2

)j
+
∞∑
j=0

(
−α
√
t√

2

)j ∞∑
l=0

1

Γ
(
j+l
2 + 1

) (−λ√t√
2

)l
.

�
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Remark 2.1 By means of (2.10) we can evaluate the mean value of N̂el, as follows

L
{

EN̂el; η
}

=
∞∑
k=0

k√
2k

1
α√
2

+
√
η

λk(
λ√
2

+
√
η
)k+1

=
λ√
2

1
α√
2

+
√
η

1(
λ√
2

+
√
η
)2

∞∑
k=0

k

(
λ√
2

λ√
2

+
√
η

)k−1

=
λ√
2

η−1

α√
2

+
√
η
.

Therefore we get that

EN̂el(t) =
λ
√
t√

2
E 1

2 ,
3
2

(
− α√

2

√
t

)
=
λ

α

{
1− E 1

2 ,1

(
− α√

2

√
t

)}
, (2.14)

where, in the last step, we have used the following relation

E 1
2 ,

3
2

(x) = x−1
[
E 1

2 ,1
(x)− 1

]
.

The structure of the elastic Brownian motion is the reason of the fading behavior of
EN̂el. This is intuitively explained by the fact that the elastic barrier at the origin
makes the time length shorter and shorter as t increases and thus the mean number of
Poisson events is constrained to decrease. Moreover we establish an interesting relation
between the expected number of events for the process N̂el and the corresponding
quantity for the process N(|B(t)|), t > 0, which reads

EN(|B(t)|) =
∫ +∞

0

λsPr {|B(t)| ∈ ds} =
λ
√

2t√
π
. (2.15)

Indeed by comparing (2.14) with (2.15) we can write that

EN̂el(t) = E(N(Bel(t))) =
√
π

2
E 1

2 ,
3
2

(
− α√

2

√
t

)
EN(|B(t)|). (2.16)

We note that the elastic Brownian motion with absorbing rate α reduces to the re-
flected Brownian motion for α = 0 and then, in this particular case, the constant in
(2.16) becomes equal to one, as it should be.

By analogous steps we can evaluate the variance of the process: the Laplace trans-
form of the second-order factorial moment is equal to

∞∑
k=0

k(k − 1)
1

α√
2

+
√
η

(
λ√
2

)k
(
λ√
2

+
√
η
)k+1

(2.17)

=
1

α√
2

+
√
η

(
λ√
2

)2

(
λ√
2

+
√
η
)3

∞∑
k=0

k(k − 1)

(
λ√
2

λ√
2

+
√
η

)k−2

=
1

α√
2

+
√
η

(
λ√
2

)2

(
λ√
2

+
√
η
)3

2(
1−

λ√
2

λ√
2

+
√
η

)3

=
1

α√
2

+
√
η

λ2

√
η3 .
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The Laplace transform (2.17) can be inverted by applying formula (2.11), for γ = 2,
thus giving

E
[
N̂el(t)

(
N̂el(t)− 1

)]
= λ2tE 1

2 ,2

(
−α
√
t√

2

)
. (2.18)

Therefore the variance is obtained as follows

Var
(
N̂el(t)

)
= λ2tE 1

2 ,2

(
− α√

2

√
t

)
+
λ
√
t√

2
E 1

2 ,
3
2

(
− α√

2

√
t

)
−λ

2t

2

(
E 1

2 ,
3
2

(
− α√

2

√
t

))2

.

(2.19)
It can be checked that (2.18) and (2.19) for α = 0 coincide with E [N(|B(t)|) (N(|B(t)|)(t)− 1)]
and Var(N(|B(t)|)), respectively.

We analyze now the particular case where α = λ, since the previous results are
considerably simplified and thus it is possible to evaluate the equation governing the
distribution of N̂el, as we did for the other processes in the previous sections.

Theorem 2.3 For α = λ the state probabilities of N̂el read

p̂elk (t) =
(λ
√
t)k√

2k
Ek+2

1
2 ,
k
2 +1

(
−λ
√
t√

2

)
, k ≥ 1 (2.20)

and, for k = 0,

p̂el0 (t) = E2
1
2 ,1

(
−λ
√
t√

2

)
+
λ
√
t√

2
E 1

2 ,
3
2

(
−λ
√
t√

2

)
(2.21)

= 1− λ√
2

√
tE2

1
2 ,

3
2

(
− λ√

2

√
t

)
.

Proof The Laplace transform (2.10) can be immediately inverted, for α = λ, as
follows

p̂elk (t) =
λk√
2k
L−1

{(
λ√
2

+
√
η

)−k−2

; t

}
(2.22)

=
(λ
√
t)k√

2k
Ek+2

1
2 ,
k
2 +1

(
−λ
√
t√

2

)
, k ≥ 1,

by applying again (2.11). For k = 0, if we put α = λ the Laplace transform (2.13)
reduces to

L
{
p̂el0 ; η

}
=

1(
λ√
2

+
√
η
)2 +

λ√
2

1
λ√
2

+
√
η

1
η
,

which gives the first expression in (2.21). An alternative expression for p̂el0 can be
obtained by rewriting (2.13), for α = λ, as follows

L
{
p̂el0 ; η

}
=

1
η
− 1√

2
λη−

1
2(

λ√
2

+
√
η
)2 . (2.23)

The Laplace transform (2.23) can be inverted by applying (2.11) for δ = 2, β = 1
2 ,

ω = − λ√
2

and γ = 3
2 , thus obtaining the second form of (2.21). We check that the

two expressions of (2.21) coincide, by applying the relation holding for generalized
Mittag-Leffler functions proved in Beghin and Orsingher [3] (see formula (3.8), for
n = 0, m = 2, z = 1, ν = 1

2 ):

9



E2
1
2 ,1

(
−λ
√
t√

2

)
+
λ
√
t√

2
E 1

2 ,
3
2

(
−λ
√
t√

2

)
− 1 +

λ√
2

√
tE2

1
2 ,

3
2

(
− λ√

2

√
t

)
= E 1

2 ,1

(
−λ
√
t√

2

)
+
λ
√
t√

2
E 1

2 ,
3
2

(
−λ
√
t√

2

)
− 1

=
∞∑
j=0

(
−λ
√
t√

2

)j
Γ
(
j
2 + 1

) +
λ
√
t√

2

∞∑
j=0

(
−λ
√
t√

2

)j
Γ
(
j
2 + 1

2 + 1
) − 1

=
∞∑
j=0

(
−λ
√
t√

2

)j
Γ
(
j
2 + 1

) +
λ
√
t√

2

∞∑
l=1

(
−λ
√
t√

2

)l−1

Γ
(
l
2 + 1

) − 1

=
∞∑
j=0

(
−λ
√
t√

2

)j
Γ
(
j
2 + 1

) − ∞∑
l=1

(
−λ
√
t√

2

)l
Γ
(
l
2 + 1

) − 1 = 0.

�

Remark 2.2 By comparing (2.20) with (2.8) for α = λ, we extract the following
interesting relation holding for generalized Mittag-Leffler functions:

∞∑
l=0

xlEk+1
α,α(l+k)+z (x) = Ek+2

α,αk+z (x) , x ∈ R, z ≥ 0, k ≥ 1, α > 0. (2.24)

Formula (2.24) can be directly verified as follows
∞∑
l=0

xlEk+1
α,α(l+k)+z (x) =

1
k!

∞∑
l=0

xl
∞∑
m=0

xm(m+ k)!
m!Γ (α(m+ k + l) + z)

(2.25)

= [m′ = m+ l]

=
1
k!

∞∑
l=0

xl
∞∑
m′=l

xm
′−l(m′ − l + k)!

(m′ − l)!Γ (α(m′ + k) + z)

=
1
k!

∞∑
m=0

xm

Γ (α(m+ k) + z)

m∑
l=0

(m− l + k)!
(m− l)!

=
1

(k + 1)!

∞∑
m=0

xm(k +m+ 1)!
Γ (α(m+ k) + z)m!

,

which gives (2.24), by noting that the following result holds
m∑
l=0

(
m− l + k

k

)
= 1 +

(
k + 1
k

)
+ ...+

(
m+ k

k

)
= 1 + (k + 1) +

(k + 1)(k + 2)
2

+
(k + 1)(k + 2)(k + 3)

3!
+ ...+

(k + 1)(k + 2)...(k +m)
m!

= (k + 2)
[
1 +

(k + 1)
2

+
(k + 1)(k + 3)

3!
+ ...+

(k + 1)(k + 3)...(k +m)
m!

]
=

(k + 2)(k + 3)
2

[
(k + 1)

3
+ ...+

(k + 1)(k + 4)...(k +m)
3 · 4 · ...m

]
=

(k + 2)(k + 3)...(k +m+ 1)
m!

=
(k +m+ 1)!
m!(k + 1)!

=
(
m+ k + 1

m

)
.
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Remark 2.3 We check that the state probabilities sum up to one. Indeed we can
rewrite the distribution (2.22) as follows, for k ≥ 1, by using again formula (3.8) cited
above,

p̂elk (t) =
(λ
√
t)k√

2k
Ek+1

1
2 ,
k
2 +1

(
−λ
√
t√

2

)
− (λ

√
t)k+1

√
2k+1

Ek+2
1
2 ,
k+1
2 +1

(
−λ
√
t√

2

)
(2.26)

and consider it together with (2.21) so that we get

∞∑
k=0

p̂elk (t) (2.27)

= 1− λ√
2

√
tE2

1
2 ,

3
2

(
− λ√

2

√
t

)
+
∞∑
k=1

(λ
√
t)k√

2k
Ek+1

1
2 ,
k
2 +1

(
−λ
√
t√

2

)
−
∞∑
k=1

(λ
√
t)k+1

√
2k+1

Ek+2
1
2 ,
k+1
2 +1

(
−λ
√
t√

2

)

= 1−
∞∑
k=0

(λ
√
t)k+1

√
2k+1

Ek+2
1
2 ,
k+1
2 +1

(
−λ
√
t√

2

)
+
∞∑
k=1

(λ
√
t)k√

2k
Ek+1

1
2 ,
k
2 +1

(
−λ
√
t√

2

)
= 1.

In order to obtain the recursive differential equation governing the distribution
of the process N̂el(t), t > 0, we note that p̂elk (t) (in the form given in (2.26)) can be
rewritten in terms of the probability distribution p1/2

k , k ≥ 1, of the fractional Poisson
process Nν(t), t > 0, with parameters ν = 1

2 and λ√
2

(see Beghin and Orsingher [3]).
We recall that

p
1/2
k (t) = Pr

{
N 1

2
(t) = k

}
=

(λ
√
t)k√

2k
Ek+1

1
2 ,
k
2 +1

(
−λ
√
t√

2

)
, t > 0

solves the fractional recursive differential equation

d1/2pk
dt1/2

= − λ√
2

[
p

1/2
k (t)− p1/2

k−1(t)
]
, k ≥ 0 (2.28)

with initial conditions

pk(0) =
{

1 k = 0
0 k ≥ 1

and p−1(t) = 0 (see Theorem 2.1 in Beghin and Orsingher [3]). The process N 1
2

analyzed there is equal in distribution to N(|B(t)|), where B is a Brownian motion
with variance equal to 2t (and this is the reason of the appearance here of λ√

2
instead

of λ). Therefore we can write, in view of formula (2.12) of Beghin and Orsingher [3],
that

p̂elk (t) = Pr
{
N1/2(t) = k

}
− Pr

{
N1/2(t) = k + 1

}
(2.29)

= Pr {N(|B(t)|) = k} − Pr {N(|B(t)|) = k + 1}
= p

1/2
k (t)− p1/2

k+1(t), for k ≥ 1.

Analogously, for k = 0, we get, in view of (2.27), that

p̂el0 (t) = 1−
∞∑
k=1

p̂elk (t) = 1− p1/2
1 (t). (2.30)
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Theorem 2.4 For α = λ, the state probabilities p̂elk of N̂el, given in Theorem 2.3,
are solutions to the following recursive differential equation

d1/2

dt1/2
pk(t) = − λ√

2
[pk(t)− pk−1(t)] , k > 1, (2.31)

with initial condition p̂elk (0) = 0; for k = 1, the governing equation is given by

d1/2

dt1/2
p1(t) = − λ√

2

[
p1(t)− p0(t) +

λ
√
t√

2
E 1

2 ,
3
2

(
−λ
√
t√

2

)]
, (2.32)

with p̂el1 (0) = 0, while, for k = 0, it reads

d1/2

dt1/2
p0(t) = − λ√

2

[
p0(t)− λ

√
t√

2
E 1

2 ,
3
2

(
−λ
√
t√

2

)]
, (2.33)

with initial condition p̂el0 (0) = 1.
Proof By (2.28) and (2.29) we can write, for k ≥ 2,

d1/2

dt1/2
p̂elk (t) =

d1/2

dt1/2
p

1/2
k (t)− d1/2

dt1/2
p

1/2
k+1(t)

= − λ√
2

[
p

1/2
k (t)− p1/2

k−1(t)
]

+
λ√
2

[
p

1/2
k+1(t)− p1/2

k (t)
]
,

which gives (2.31). For k = 1, we have instead

d1/2

dt1/2
p̂el1 (t) =

d1/2

dt1/2
p

1/2
1 (t)− d1/2

dt1/2
p

1/2
2 (t)

= − λ√
2

[
p

1/2
1 (t)− p1/2

0 (t)
]

+
λ√
2

[
p

1/2
2 (t)− p1/2

1 (t)
]

= [by (2.30)]

= − λ√
2

{
p̂el1 (t)− p̂el0 (t)− λ√

2

[
1− p1/2

0 (t)
]}

= − λ√
2

{
p̂el1 (t)− p̂el0 (t)− λ√

2

[
1− E 1

2 ,1

(
−λ
√
t√

2

)]}
= − λ√

2

[
p̂el1 (t)− p̂el0 (t) +

λ
√
t√

2
E 1

2 ,
3
2

(
−λ
√
t√

2

)]
.

The presence of the term λ
√
t√

2
E 1

2 ,
3
2

(
−λ
√
t√

2

)
in (2.32) is explained by the fact that

p̂el0 (t) (given in (2.21)) can be obtained from the general formula (2.20) by putting
k = 0 and adding the term produced by the absorbing probability qα. The same is
true for k = 0, so that we get (2.33) by similar steps, as follows:

d1/2

dt1/2
p̂el0 (t) = [by (2.30)]

= − d1/2

dt1/2
p

1/2
1 (t)

=
λ√
2

[
p

1/2
1 (t)− p1/2

0 (t)
]

= − λ√
2

[
p̂el0 (t)− 1 + E 1

2 ,1

(
−λ
√
t√

2

)]
= − λ√

2

[
p̂el0 (t)− λ

√
t√

2
E 1

2 ,
3
2

(
−λ
√
t√

2

)]
.
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Equation (2.33) can be checked directly by taking the fractional derivative of p̂el0 (t)
in the form (2.21):

d1/2

dt1/2
p̂el0 (t) = − λ√

2
d1/2

dt1/2

[√
tE2

1
2 ,

3
2

(
− λ√

2

√
t

)]

= − λ

2
√

2π

∞∑
j=0

(j + 1)
(
− λ√

2

)j
Γ
(
j
2 + 3

2

) ∫ t

0

(t− s)− 1
2 s

j
2−

1
2 ds+

− λ

2
√

2π

∞∑
j=0

j(j + 1)
(
− λ√

2

)j
Γ
(
j
2 + 3

2

) ∫ t

0

(t− s)− 1
2 s

j
2−

1
2 ds

= − λ√
2

∞∑
j=0

(
−λ
√
t√

2

)j
Γ
(
j
2 + 1

2

) Γ
(
j
2 + 1

2

)
Γ
(
j
2 + 1

) − λ√
2

∞∑
j=0

j
(
−λ
√
t√

2

)j
Γ
(
j
2 + 1

2

) Γ
(
j
2 + 1

2

)
Γ
(
j
2 + 1

)
= − λ√

2
E2

1
2 ,1

(
−λ
√
t√

2

)
,

which yields (2.33). �

Remark 2.4 We evaluate now the probability generating function, by using the
expressions of the probabilities given in (2.26) and (2.21):

Ĝel(u, t) =
∞∑
k=0

ukp̂elk (t) = p̂el0 (t) +
∞∑
k=1

ukp̂elk (t) (2.34)

= 1− λ
√
t√

2
E2

1
2 ,

3
2

(
−λ
√
t√

2

)
+
∞∑
k=1

uk
(λ
√
t)k√

2k
Ek+1

1
2 ,
k
2 +1

(
−λ
√
t√

2

)
− 1
u

∞∑
k=1

uk+1 (λ
√
t)k+1

√
2k+1

Ek+2
1
2 ,
k+1
2 +1

(
−λ
√
t√

2

)

= 1 + (u− 1)
λ
√
t√

2
E2

1
2 ,

3
2

(
−λ
√
t√

2

)
+
∞∑
k=2

uk
(λ
√
t)k√

2k
Ek+1

1
2 ,
k
2 +1

(
−λ
√
t√

2

)

− 1
u

∞∑
k=1

uk+1 (λ
√
t)k+1

√
2k+1

Ek+2
1
2 ,
k+1
2 +1

(
−λ
√
t√

2

)

= 1 + (u− 1)
λ
√
t√

2
E2

1
2 ,

3
2

(
−λ
√
t√

2

)
+
u− 1
u

∞∑
k=2

uk
(λ
√
t)k√

2k
Ek+1

1
2 ,
k
2 +1

(
−λ
√
t√

2

)

= 1 +
u− 1
u

∞∑
k=1

uk
(λ
√
t)k√

2k
Ek+1

1
2 ,
k
2 +1

(
−λ
√
t√

2

)

= 1 +
u− 1
u

[ ∞∑
k=0

uk
(λ
√
t)k√

2k
Ek+1

1
2 ,
k
2 +1

(
−λ
√
t√

2

)
− E 1

2 ,1

(
−λ
√
t√

2

)]

= 1 +
u− 1
u

[
E 1

2 ,1

(
−λ
√
t√

2
(1− u)

)
− E 1

2 ,1

(
−λ
√
t√

2

)]
,

where, in the last step, we have applied formula (2.47) of Beghin and Orsingher [3].
We note that, for u = 1, formula (2.34) reduces to one, while for u = 0 it gives p̂el0 (t),
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since it is

lim
u→0

Ĝel(u, t) = 1− lim
u→0

E 1
2 ,1

(
−λ
√
t√

2
(1− u)

)
− E 1

2 ,1

(
−λ
√
t√

2

)
u

(2.35)

= 1− d

du

[
E 1

2 ,1

(
−λ
√
t√

2
(1− u)

)
− E 1

2 ,1

(
−λ
√
t√

2

)]
u=0

= 1 +
∞∑
m=1

m
(
−λ
√
t√

2

)m
(1− u)m−1

Γ
(
m
2 + 1

)
∣∣∣∣∣∣
u=0

= 1 + 2
∞∑
m=1

(
−λ
√
t√

2

)m
(1− u)m−1

Γ
(
m
2

)
∣∣∣∣∣∣
u=0

= [j = m− 1]

= 1− 2
∞∑
j=0

(
−λ
√
t√

2

)j+1

(1− u)j

Γ
(
j
2 + 1

2

)
∣∣∣∣∣∣∣
u=0

= 1−
√

2λ
√
tE 1

2 ,
1
2

(
−λ
√
t√

2

)
.

We can check that (2.35) coincides with p̂el0 (t) by showing that

√
2λ
√
tE 1

2 ,
1
2

(
−λ
√
t√

2

)
=
√

2λ
√
t

∞∑
j=0

(
−λ
√
t√

2

)j
Γ
(
j
2 + 1

2

)
=

λ
√
t√

2

∞∑
j=0

(j + 1)
(
−λ
√
t√

2

)j
Γ
(
j
2 + 3

2

) =
λ
√
t√

2
E2

1
2 ,

3
2

(
−λ
√
t√

2

)
.

By taking the first derivative of Ĝel we can evaluate the expected value of N̂el, in the
case α = λ :

EN̂el(t) =
d

du
Ĝel(u, t)

∣∣∣∣
u=1

=
1
u2

[
E 1

2 ,1

(
−λ
√
t√

2
(1− u)

)
− E 1

2 ,1

(
−λ
√
t√

2

)]
+
u− 1
u

d

du
E 1

2 ,1

(
−λ
√
t√

2
(1− u)

)∣∣∣∣
u=1

= 1− E 1
2 ,1

(
−λ
√
t√

2

)
,

which coincides with (2.14) for α = λ.

3 Poisson processes at Brownian first-passage times

In this section we analyze the Poisson process stopped at the random time Tt =
inf{s > 0 : B(s) = t}, where B is a standard Brownian motion. Clearly Tt is the first
passage time of B through level t. The probability density of Tt reads

Pr {Tt ∈ ds} /ds = q(t, s) =
te−

t2
2s

√
2πs3

, s, t > 0 (3.1)

and satisfies the partial differential equation

∂2q

∂t2
= 2

∂q

∂s
. (3.2)
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We consider the process
N̂(t) = N(Tt),

with state probabilities defined, for k = 0, 1, .., as

p̂k(t) = Pr
{
N̂(t) = k

}
=
∫ +∞

0

pk(s)q(t, s)ds (3.3)

=
λk

k!

∫ +∞

0

ske−λs
te−

t2
2s

√
2πs3

ds,

where pk(t), t > 0 represents the standard Poisson distribution which solves the equa-
tion

d

dt
pk(t) = λ[pk(t)− pk−1(t)]. (3.4)

Theorem 3.1 The state probabilities p̂k(t), k ≥ 0, t > 0, given in (3.3) satisfy the
following difference-differential equation

d2

dt2
pk(t) = 2λ[pk(t)− pk−1(t)]. (3.5)

Proof By taking the derivatives of (3.3) and considering (3.2), we get that

d2

dt2
p̂k(t) =

∫ +∞

0

pk(s)
∂2q

∂t2
(t, s)ds (3.6)

= 2
∫ +∞

0

pk(s)
∂q

∂s
ds

= 2pk(s)q(t, s)|∞0 − 2
∫ +∞

0

dpk(s)
ds

q(t, s)ds

= [by (3.4)]
= 2λ[p̂k(s)− p̂k−1(s)].

The first term in the third line of (3.6) is zero for k = 0, because lims→0+ q(t, s) = 0,
while, for k ≥ 1, this is implied by the form of the Poisson distribution �

The explicit distribution of N̂(t), t > 0, is given in the next theorem.

Theorem 3.2 The state probabilities p̂k(t), k ≥ 0, t > 0, given in (3.3) are given by

p̂k(t) =
2

3
4−

k
2 λ

k
2 + 1

4 tk+ 1
2

k!
√
π

Kk− 1
2
(t
√

2λ),

where

Kν(z) =
1
2

(z
2

)ν ∫ +∞

0

e−t−
z2
4t

tν+1
dt (3.7)

is the modified Bessel function of index ν.
Proof We rewrite (3.3) as follows:

p̂k(t) =
λkt

k!
√

2π

∫ +∞

0

sk−
3
2 e−λse−

t2
2s ds (3.8)

=
2λkt
k!
√

2π

(
t2

2λ

) k
2−

1
4

Kk− 1
2
(t
√

2λ)

=
2

3
4−

k
2 λ

k
2 + 1

4 tk+ 1
2

k!
√
π

Kk− 1
2
(t
√

2λ),
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by applying formula 3.471.9, p.340 of Gradshteyn and Ryzhik [5] for ν = k− 1
2 , β = t2

2
and γ = λ. �

Remark 3.1 We evaluate p̂k(t) for some values of k, directly from (3.3). First of
all, we note that

p̂0(t) =
∫ +∞

0

e−λs
te−

t2
2s

√
2πs3

ds = e−t
√

2λ,

by a well-known result on the Laplace transform of Tt. This result can be checked by
considering that

K− 1
2
(x) = K 1

2
(x) =

√
π

2x
e−x

(see formula 8.469.3, p.967 of Gradshteyn and Ryzhik [5]), so that we get, from (3.8),

p̂0(t) =
2

3
4λ

1
4 t

1
2

√
π

K− 1
2
(t
√

2λ) (3.9)

=
2

3
4λ

1
4 t

1
2

√
π

√
π

2t
√

2λ
e−t
√

2λ = e−t
√

2λ.

The probability (3.9) coincides with the density of the waiting-time of the first event
of the process N̂(t), t > 0.

Analogously, we obtain, for k = 1, 2, that

p̂1(t) = λt

∫ +∞

0

1√
2πs

e−λse−
t2
2s ds = λt

e−t
√

2λ

√
2λ

(3.10)

and

p̂2(t) =
∫ +∞

0

(λs)2

2
√

2πs3
te−λse−

t2
2s ds (3.11)

=
λ2t

2
√

2π

∫ +∞

0

√
se−λse−

t2
2s ds

=
λ2t

2
√

2π

(
−e
−λs

λ

√
se−

t2
2s

∣∣∣∣∞
0

)
+

λt

2
√

2π

∫ +∞

0

e−λs

2
√
s
e−

t2
2s ds+

+
λt3

4
√

2π

∫ +∞

0

e−λs
√
s
e−

t2
2s

s2
ds

=
λt

4
e−t
√

2λ

√
2λ

+
λt2e−t

√
2λ

4
.

Theorem 3.3 The probability generating function of N̂ is given by

Ĝ(u, t) =
∞∑
k=0

ukp̂k(t) = e−t
√

2λ(1−u), |u| ≤ 1, (3.12)

which gives the following alternative expression for the state probabilities

p̂k(t) =
∞∑
m=0

(−1)k+m(t
√

2λ)m

m!

(m
2

k

)
. (3.13)
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Proof From (3.3) we get

Ĝ(u, t) = t

∫ +∞

0

e−λs
e−

t2
2s

√
2πs3

∞∑
k=0

(λsu)k

k!
ds (3.14)

= t

∫ +∞

0

e−λ(1−u)s e−
t2
2s

√
2πs3

ds = e−t
√

2λ(1−u),

which coincides with (3.12). If we now consider its series expansion we get

Ĝ(u, t) =
∞∑
m=0

(−t)m

m!
(2λ(1− u))m/2

=
∞∑
m=0

(−t
√

2λ)m

m!

∞∑
k=0

(m
2

k

)
(−u)k

=
∞∑
k=0

uk
∞∑
m=0

(−1)k+m(t
√

2λ)m

m!

(m
2

k

)
,

from which (3.13) follows. Moreover, simple calculation suffices to check that the prob-
abilities (3.13) yield (3.9), (3.10) and (3.11) for k = 0, 1, 2, respectively, by rewriting(m

2

k

)
=

m
2 (m2 − 1)...(m2 − k + 1)

k!
.

�

Remark 3.2 By taking the first derivative of (3.12), for u = 1, it is easy to check
that the first moment of N(Tt) is infinite:

EN(Tt) =
∂

∂u
Ĝ(u, t)

∣∣∣∣
u=1

=
∂

∂u
e−λt
√

2λ(1−u)

∣∣∣∣
u=1

=
λt
√

2λ
2
√

(1− u)

∣∣∣∣∣
u=1

=∞.

For this reason we consider a different time-argument instead of Tt: we define Tµt =
inf {s > 0 : Bµ(s) = t} , where Bµ = Bµ(t), t > 0 denotes a Brownian motion with
drift µ. Therefore the composition of a standard Poisson process with the first passage-
time of a Brownian motion with drift Tµt corresponds to considering the following
process

N̂µ(t) = N(Tµt ), t > 0,

with probability distribution given by

p̂µk(t) =
∫ +∞

0

pk(s)qµ(t, s)ds (3.15)

=
λkt

k!

∫ +∞

0

ske−λs
e−

(t−µs)2
2s

√
2πs3

ds

where

qµ(t, s) =
te−

(t−µs)2
2s

√
2πs3

, s, t > 0, µ ∈ R, (3.16)

17



denotes the density of the first-passage time of Bµ through the level t. We note that,
for µ < 0, density (3.16) does not integrate to unity; indeed it is, in this case,

Pr {Tµt <∞} = e−2|µ|t

and thus Pr {Tµt =∞} = 1 − e−2|µ|t. This result is intuitively justified because the
negative drift drives the sample paths away from the threshold t.

Theorem 3.4 The state probabilities p̂µk(t), k ≥ 0, t > 0, given in (3.15) are solutions
to the difference-differential equations

d2

dt2
pk − 2µ

d

dt
pk = 2λ[pk − pk−1], (3.17)

with initial conditions

p̂µk(0) =
{

1, k = 0
0, k ≥ 1 .

Proof We first show that the density qµ, defined in (3.16) satisfies the partial diffren-
tial equation

∂2

∂t2
q(t, s)− 2µ

∂

∂t
q(t, s) = 2

∂

∂s
q(t, s). (3.18)

Indeed, by taking the derivative of (3.16) with respect to s we get

∂

∂s
qµ(t, s) = eµt

∂

∂s

{
t
e−

t2
2s e−

µ2s
2

√
2πs3

}

= eµt

{
e−

µ2s
2

2
∂2

∂t2

(
t
e−

t2
2s

√
2πs3

)
+ t

e−
t2
2s

√
2πs3

(
−µ

2

2

)
e−

µ2s
2

}
.

Taking the derivatives with respect to t we get

∂2

∂t2
qµ(t, s) =

∂

∂t

{
µeµtt

e−
t2
2s e−

µ2s
2

√
2πs3

+ eµt
∂

∂t

(
t
e−

t2
2s e−

µ2s
2

√
2πs3

)}

= µ2eµtt
e−

t2
2s e−

µ2s
2

√
2πs3

+ 2eµt
∂

∂t

(
t
e−

t2
2s e−

µ2s
2

√
2πs3

)
+

+eµt
∂2

∂t2

(
t
e−

t2
2s e−

µ2s
2

√
2πs3

)

= 2
∂qµ

∂s
+ 2µ2eµtt

e−
t2
2s e−

µ2s
2

√
2πs3

+ 2µeµt
∂

∂t

(
t
e−

t2
2s e−

µ2s
2

√
2πs3

)

= 2
∂qµ

∂s
+ 2µ

∂qµ

∂t
,

which gives equation (3.18). As a consequence we can derive the equation solved by
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(3.15):

d2

dt2
p̂µk(t) =

∫ +∞

0

pk(s)
d2

dt2
qµ(t, s)ds

= [by (3.18)]

= 2
∫ +∞

0

pk(s)
(
∂qµ

∂s
+ µ

∂qµ

∂t

)
ds

= 2pk(s)qµ(t, s)|s=+∞
s=0 − 2

∫ +∞

0

d

ds
pk(s)qµ(t, s)ds+ 2µ

d

dt
p̂k(t)

= [by (3.4]

= 2λ
∫ +∞

0

[pk(s)− pk−1(s)]ds+ 2µ
d

dt
p̂k(t)

= 2λ[p̂µk(t)− p̂µk−1(t)] + 2µ
d

dt
p̂µk(t).

�

Remark 3.3 As a consequence of the previous result the probability generating
function Ĝµ(u, t) solves the following equation:

∂2

∂t2
G− 2µ

∂

∂t
G = 2λ(1− u)G, (3.19)

subject to Ĝµ(u, 0) = 1. From (3.15) the solution to (3.19) can be evaluated as follows:

Ĝµ(u, t) =
∞∑
k=0

ukp̂µk(t) = t

∫ +∞

0

e−λs
e−

(t−µs)2
2s

√
2πs3

∞∑
k=0

(λsu)k

k!
ds (3.20)

= eµt
∫ +∞

0

eλs(u−1)−µ
2s
2
te−

t2
2s

√
2πs3

ds

= eµt−t
√
µ2+2λ(1−u).

For µ = 0, (3.20) reduces to (3.12). By taking the first derivative of (3.20), for u = 1,
we derive the first moment of N(Tµt ) and show that it is finite in this case

EN(Tµt ) =
∂

∂u
Ĝµ(u, t)

∣∣∣∣
u=1

=
∂

∂u
eµt−t

√
µ2+2λ(1−u)

∣∣∣∣
u=1

=
λteµt−t

√
µ2+2λ(1−u)√

µ2 + 2λ(1− u)

∣∣∣∣∣
u=1

=
λte−t(|µ|−µ)

|µ|
.

Therefore we get

EN(Tµt ) =


λte−2t|µ|

|µ| , µ < 0
∞, µ = 0
λt
µ , µ > 0

.
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The variance can be obtained analogously, as follows:

E {N(Tµt ) [N(Tµt )− 1]}

=
∂2

∂u2
Ĝµ(u, t)

∣∣∣∣
u=1

=
(λt)2

eµt−t
√
µ2+2λ(1−u)

µ2 + 2λ(1− u)

∣∣∣∣∣
u=1

+
λ2teµt−t

√
µ2+2λ(1−u)√

[µ2 + 2λ(1− u)]3

∣∣∣∣∣∣
u=1

=

[
(λt)2

µ2
+
λ2t

|µ|3

]
e−(|µ|−µ)t,

so that

V ar(N(Tµt )) =
λt

|µ|

(
1 +

λ

µ2

)
e−(|µ|−µ)t = EN(Tµt )

(
1 +

λ

µ2

)
.

For the process N(Tµt ) the variance is proportional to the mean value and this distin-
guishes this model from the classical one.

Remark 3.4 We derive now the probability distribution of N(Tµt ), t > 0:

p̂µk(t) =
λkteµt

k!
√

2π

∫ +∞

0

sk−
3
2 e−(λ+µ2

2 )se−
t2
2s ds (3.21)

=
2λkteµt

k!
√

2π

(
t2

2λ+ µ2

) k
2−

1
4

Kk− 1
2
(t
√

2λ+ µ2).

For k = 0 we obtain the probability density of the waiting time of the first event of
N(Tµt ):

p̂µ0 (t) =
2teµt√

2π

(
t2

2λ+ µ2

)− 1
4

K− 1
2
(t
√

2λ+ µ2)

=
√

2t
1
2 eµt 4

√
2λ+ µ2

√
π

√
π

t
√

2λ+ µ2
e−t
√

2λ+µ2
= eµt−t

√
2λ+µ2

,

which coincides with (3.20) for u = 0.

We generalize the results obtained so far to the case of n successive iterations: let
us denote by

Tj(t) = inf {s > 0 : Bj(s) = t}
the first-passage time through the level t of a Brownian motion Bj(t), for j = 1, ..., n,
and let us assume that Bj is independent from any other Bi, i 6= j and from N. The
process defined as

N̂n(t) = N(T1(T2...(Tn−1(Tn(t)))...)), t > 0 (3.22)

possesses distribution given by

p̂nk (t) (3.23)

=
∫ +∞

0

∫ +∞

0

...

∫ +∞

0

∫ +∞

0

pk(w1)q(w2, w1)...q(wn, wn−1)q(t, wn)dw1dw2...dwn−1dwn

=
λk

k!

∫ +∞

0

∫ +∞

0

...

∫ +∞

0

∫ +∞

0

wk1e
−λw1w2

e−
w2

2
2w1√

2πw3
1

...wn
e
− w2

n
2wn−1√

2πw3
n−1

t
e−

t2
2wn√

2πw3
n

dw1dw2...dwn−1dwn.
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We state the following result.

Theorem 3.5 The state distributions p̂nk of the n-times iterated Poisson process
N̂n(t), t > 0, given in (3.23), are solutions to the following equations

d2n

dt2n
pk(t) = 22n−1λ[pk(t)− pk−1(t)], t > 0, k ≥ 0, (3.24)

with initial conditions

p̂nk (0) =
{

1, k = 0
0, k ≥ 1 .

Proof For n = 1 equations (3.24) reduce to (3.5). We prove this result in the special
case n = 2:

d4

dt4
p̂2
k(t) =

∫ +∞

0

∫ +∞

0

pk(w1)q(w2, w1)
∂4

∂t4
q(t, w2)dw1dw2 (3.25)

= [by (3.2)]

= 2
∫ +∞

0

∫ +∞

0

pk(w1)q(w2, w1)
∂2

∂w2
2

q(t, w2)dw1dw2

= 2
∫ +∞

0

∫ +∞

0

pk(w1)
∂2

∂w2
2

q(w2, w1)q(t, w2)dw1dw2

= 22

∫ +∞

0

∫ +∞

0

pk(w1)
∂

∂w1
q(w2, w1)q(t, w2)dw1dw2

= −22

∫ +∞

0

∫ +∞

0

d

dw1
pk(w1)q(w2, w1)q(t, w2)dw1dw2

= 22λ
[
p̂2
k(t)− p̂2

k−1(t)
]
.

By induction it can be checked that (3.24) holds for any n ≥ 1. �

Remark 3.5 We derive the probability generating function that, in this case, is
equal to

Ĝn(u, t) =
∞∑
k=0

ukp̂nk (t) = e−2(1− 1
2n )λ 1

2n (1−u)
1

2n t. (3.26)

By taking the first derivative of (3.26) it is easy to see that the expected value of the
process is infinite:

EN̂n(t) =
d

du
Ĝn(u, t)

∣∣∣∣
u=1

= 2(1− 1
2n )λ

1
2n

2n
(1− u)

1
2n−1t e−2(1− 1

2n )λ 1
2n (1−u)

1
2n t

∣∣∣∣∣
u=1

=∞.

Remark 3.6 In the case where each Brownian motion is endowed by a drift µ, the
process is defined as

N̂n
µ (t) = N(Tµ1 (Tµ2 ...(T

µ
n−1(Tµn (t)))...)), t > 0.

For the sake of simplicity we will assume hereafter that µ > 0. We start again by
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considering the case where n = 2: the probability distribution is, in this case,

p̂nk (t) (3.27)

=
∫ +∞

0

∫ +∞

0

pk(w1)qµ(w2, w1)qµ(t, w2)dw1dw2

=
λk

k!

∫ +∞

0

∫ +∞

0

wk1e
−λw1w2

e−
(w2−µw1)2

2w1√
2πw3

1

t
e−

(t−µw2)2

2w2√
2πw3

2

dw1dw2,

for k ≥ 0. We start by taking the second-order derivative with respect to t of (3.18):

∂4

∂t4
qµ(t, w)

=
∂2

∂t2

[
2
∂

∂w
qµ(t, w) + 2µ

∂

∂t
qµ(t, w)

]
= 2

[
2
∂2

∂w2
qµ(t, w) + 2µ

∂2

∂t∂w
qµ(t, w)

]
+ 2µ

∂3

∂t3
qµ(t, w).

Therefore, by taking the fourth-order derivative of (3.27) we get

d4

dt4
p̂nk (t) =

∫ +∞

0

∫ +∞

0

pk(w1)qµ(w2, w1)
∂4

∂t4
qµ(t, w2)dw1dw2 (3.28)

= 22

∫ +∞

0

∫ +∞

0

pk(w1)qµ(w2, w1)
∂2

∂w2
2

qµ(t, w2)dw1dw2 +

+22µ
∂

∂t

∫ +∞

0

∫ +∞

0

pk(w1)qµ(w2, w1)
∂

∂w2
qµ(t, w2)dw1dw2 +

+2µ
∂3

∂t3

∫ +∞

0

∫ +∞

0

pk(w1)qµ(w2, w1)qµ(t, w2)dw1dw2

= −22

∫ +∞

0

∫ +∞

0

pk(w1)
∂

∂w2
qµ(w2, w1)

∂

∂w2
qµ(t, w2)dw1dw2 +

−22µ
∂

∂t

∫ +∞

0

∫ +∞

0

pk(w1)
∂

∂w2
qµ(w2, w1)qµ(t, w2)dw1dw2 +

+2µ
d3

dt3
p̂nk (t)

= 22

∫ +∞

0

∫ +∞

0

pk(w1)
∂2

∂2w2
2

qµ(w2, w1)qµ(t, w2)dw1dw2

−22µ
∂

∂t

∫ +∞

0

∫ +∞

0

pk(w1)
∂

∂w2
qµ(w2, w1)qµ(t, w2)dw1dw2 +

+2µ
d3

dt3
p̂nk (t).

By considering that for the second-order derivative of (3.27) the following result holds

d2

dt2
p̂nk (t) =

∫ +∞

0

∫ +∞

0

pk(w1)qµ(w2, w1)
∂2

∂t2
qµ(t, w2)dw1dw2 (3.29)

= 2
∫ +∞

0

∫ +∞

0

pk(w1)qµ(w2, w1)
[
∂

∂w2
qµ(t, w2) + µ

∂

∂t
qµ(t, w2)

]
dw1dw2

= −2
∫ +∞

0

∫ +∞

0

pk(w1)
∂

∂w2
qµ(w2, w1)qµ(t, w2)dw1dw2 +

+2µ
d

dt
p̂nk (t),
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we get, from (3.29), ∫ +∞

0

∫ +∞

0

pk(w1)
∂

∂w2
qµ(w2, w1)qµ(t, w2)dw1dw2

= −1
2
d2

dt2
p̂nk (t) + µ

d

dt
p̂nk (t).

Therefore formula (3.28) can be rewritten as

d4

dt4
p̂nk (t)

= 22

∫ +∞

0

∫ +∞

0

pk(w1)
∂2

∂2w2
2

qµ(w2, w1)qµ(t, w2)dw1dw2 +

−22µ
d

dt

[
−1

2
d2

dt2
p̂nk (t) + µ

d

dt
p̂nk (t)

]
+ 2µ

d3

dt3
p̂nk (t)

= 23

∫ +∞

0

∫ +∞

0

pk(w1)
∂

∂w1
qµ(w2, w1)qµ(t, w2)dw1dw2 +

+23µ

[
−1

2
d2

dt2
p̂nk (t) + µ

d

dt
p̂nk (t)

]
+

+2µ
d3

dt3
p̂nk (t)− 22µ2 d

2

dt2
p̂nk (t) + 2µ

d3

dt3
p̂nk (t)

= −23

∫ +∞

0

∫ +∞

0

d

dw1
pk(w1)qµ(w2, w1)qµ(t, w2)dw1dw2 +

−22µ
d2

dt2
p̂nk (t) + 23µ2 d

dt
p̂nk (t) + 22µ

d3

dt3
p̂nk (t)− 22µ2 d

2

dt2
p̂nk (t)

= −23λ
[
p̂nk−1(t)− p̂nk (t)

]
+ 23µ2 d

dt
p̂nk (t) + 22µ

d3

dt3
p̂nk (t) +

−22µ(1 + µ)
d2

dt2
p̂nk (t).

Finally we get that, for n = 2, the state probabilities (3.27) satisfy

d4

dt4
pk(t)− 22µ

d3

dt3
pk(t) + 22µ(1 + µ)

d2

dt2
pk(t)− 23µ2 d

dt
pk(t) = 23λ [pk(t)− pk−1(t)] .

The expression of the probability generating function is much more complicated
in this case, due to the presence of the drift.

Theorem 3.6 The probability generating function of the process N̂n
µ (t), t > 0 is given,

for any n ≥ 1, by

Ĝnµ(u, t) = e
µt−2

1
2 t

√√√√µ2
2 −µ+2

1
2

√
µ2
2 −µ+2

1
2

√
.....2

1
2

√
µ2
2 +λ(1−u)

, |u| ≤ 1 (3.30)

and the expected value is equal to

EN̂n
µ (t) =

λt

µn
, n ≥ 1. (3.31)
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Proof We give the details of the calculations in the case where n = 2:

Ĝnµ(u, t) =
∞∑
k=0

ukp̂nk (t) (3.32)

=
∞∑
k=0

uk
λkt

k!

∫ +∞

0

∫ +∞

0

wk1e
−λw1w2

e−
(w2−µw1)2

2w1√
2πw3

1

e−
(t−µw2)2

2w2√
2πw3

2

dw1dw2

= teµt
∫ +∞

0

1√
2πw3

2

e−
t2

2w2
−µ

2w2
2 +µw2

∫ +∞

0

e−λ(1−u)w1−µ
2w1
2

w2e
− w2

2
2w1√

2πw3
1

dw1dw2

= teµt
∫ +∞

0

1√
2πw3

2

e−
t2

2w2
−µ

2w2
2 +µw2e−w2

√
2λ(1−u)+µ2

dw2

= eµt
∫ +∞

0

t√
2πw3

2

e−
t2

2w2
−w2(µ

2

2 −µ+
√

2λ(1−u)+µ2)dw2

= e
µt−t2

1
2

√
µ2
2 −µ+2

1
2

√
µ2
2 +λ(1−u)

.

By taking the first derivative of (3.32), it is easy to see that the expected value of the
process is finite:

EN̂n
µ (t) =

d

du
Ĝnµ(u, t)

∣∣∣∣
u=1

=
2

1
2−2+ 1

2λte
µt−t2

1
2

√
µ2
2 −µ+2

1
2

√
µ2
2 +λ(1−u)√

µ2

2 + λ(1− u)

√
µ2

2 − µ+ 2
1
2

√
µ2

2 + λ(1− u)

∣∣∣∣∣∣∣∣
u=1

=
λt

µ2
.

For n = 3 the probability generating function can be obtained in an analogous way:

Ĝnµ(u, t) (3.33)

=
∞∑
k=0

uk
λkt

k!

∫ +∞

0

∫ +∞

0

∫ +∞

0

wk1e
−λw1

w2e
− (w2−µw1)2

2w1√
2πw3

1

w3e
− (w3−µw2)2

2w2√
2πw3

2

e−
(t−µw3)2

2w3√
2πw3

3

dw1dw2dw3

= t

∫ +∞

0

∫ +∞

0

e−
µ2w2

2 +µw2+µw3
w3e

− (w3−µw2)2

2w2√
2πw3

2

e−
(t−µw3)2

2w3√
2πw3

3

e
−w2

√
2
[
µ2
2 +λ(1−u)

]
dw2dw3

= teµt
∫ +∞

0

e−
µ2w3

2 +µw3
e−

t2
2w3√

2πw3
3

e
−w3

√
2

[
µ2
2 −µ+

√
2
[
µ2
2 +λ(1−u)

]]
dw3

= e
µt−t2

1
2

√
µ2
2 −µ+2

1
2

√
µ2
2 −µ+2

1
2

√
µ2
2 +λ(1−u)
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and then the expected value reads, for n = 3,

EN̂n
µ (t)

=
2

3
2−3λte

µt−t2
1
2

√
µ2
2 −µ+2

1
2

√
µ2
2 −µ+2

1
2

√
µ2
2 +λ(1−u)√

µ2

2 − µ+ 2
1
2

√
µ2

2 − µ+ 2
1
2

√
µ2

2 + λ(1− u)

·

· 1√
µ2

2 − µ+ 2
1
2

√
µ2

2 + λ(1− u)

1√
µ2

2 + λ(1− u)

∣∣∣∣∣∣∣∣
u=1

=
λt

µ3
.

By the same reasoning we arrive at formulas (3.30) and (3.31) for any n ≥ 1. For
µ = 0 formula (3.30) coincides with (3.26). �

Remark 3.7 By considering (3.24) it is easy to check that (3.30) satisfies the following
recursive differential equation

d2n

dt2n
Ĝn(u, t) = 22n−1λ

∞∑
k=0

uk[p̂nk (t)− p̂nk−1(t)]

= 22n−1λ(u− 1)Ĝn(u, t).

Indeed by taking the derivatives of (3.30) we get

d2n

dt2n
Ĝnµ(u, t) =

(
21− 1

2n (λ(u− 1))
1

2n
)2n

eµt−21− 1
2n t(λ(1−u))

1
2n

= 22n−1λ(u− 1)Ĝn(u, t).

4 Poisson processes at Brownian sojourn times

We consider the composition of a homogeneous Poisson process with a random process,
distributed as the sojourn time on the positive half-line of a standard Brownian motion
Γ+
t = meas {s < t : B(s) > 0} , i.e.

N(t) = N(Γ+
t ), t > 0. (4.1)

Since the density function of Γ+
t is equal to

Pr
{

Γ+
t ∈ ds

}
=

ds

π
√
s(t− s)

, 0 < s < t, (4.2)

the probability distribution of N(t), t > 0 is given by

pk(t) = Pr
{
N(t) = k

}
=

1
πk!

∫ t

0

(λs)ke−λs√
s(t− s)

ds, k ≥ 0, t > 0. (4.3)

An explicit expression for (4.3) is obtained in the following result.

Theorem 4.1 The state probabilities of the process N can be expressed as follows:

pk(t) = pk(t)
(

2k − 1
k

)
21−2k

1F1

(
1
2
, k + 1;λt

)
, (4.4)
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where pk, k = 0, 1, ... is the probability distribution of the homogeneous Poisson process
and 1F1 (α, β;x) denotes the confluent hypergeometric function defined as

1F1 (α;β;x) = 1 +
∞∑
j=1

α(α+ 1)...(α+ j − 1)
γ(γ + 1)...(γ + j − 1)

zj

j!

=
∞∑
j=0

(α)j
(γ)j

zj

j!

where (γ)r = γ(γ + 1)...(γ + r − 1) (for r = 1, 2, ..., and γ 6= 0) and (γ)0 = 1.(see
Gradshteyn and Ryzhik [5], p.1085).
Proof We can recognize in the integral (4.3) formula 3.383.1, p.365 of Gradshteyn
and Ryzhik [5],i.e.∫ u

0

xµ−1(u− x)ν−1eβxdx = B (µ, ν)uµ+ν−1
1F1(µ, µ+ ν;βu), (4.5)

so that we get

pk(t) =
(λt)k

πk!
B

(
k +

1
2
,

1
2

)
1F1

(
1
2
, k + 1;−λt

)
= [by 9.212.1, p.1086 of Gradshteyn and Ryzhik [5]]

=
(λt)ke−λt

πk!
B

(
k +

1
2
,

1
2

)
1F1

(
1
2
, k + 1;λt

)
= [by the duplication formula of Gamma function]

= pk(t)
(

2k − 1
k

)
21−2k

1F1

(
1
2
, k + 1;λt

)
.

�

Remark 4.1 We can interpret the process (4.1) in some distributionally equivalent
forms. Since it is well-known that

T0(t) = sup {s < t : B(s) = 0}

and

Θ(t) = inf
{
s < t : B(s) = max

0≤z≤t
B(z)

}
possess the same distribution (4.2) as Γ+

t , we can interpret the results of this section
as pertaining to the following compositions

N(T0(t)) and N(Θ(t)), t > 0.

Theorem 4.2 The state probabilities pk given in (4.4) solve the following recursive
differential equations:

d

dt
pk(t) =

k

t
pk(t)− k + 1

t
pk+1(t), k ≥ 0, t > 0 (4.6)

with initial conditions

pk(0) =
{

1 k = 0
0 k ≥ 1 .
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Proof We rewrite (4.3) as follows

pk(t) =
(λt)k

πk!

∫ 1

0

e−λtzzk−
1
2 (1− z)− 1

2 dz (4.7)

and take the first order derivative with respect to t, so that we get

d

dt
pk(t) =

λk

πk!

∫ 1

0

zk−
1
2 (1− z)− 1

2
d

dt

(
tke−λtz

)
dz

=
λk

πk!

[
ktk−1

∫ 1

0

zk−
1
2 (1− z)− 1

2 e−λtzdz − λtk
∫ 1

0

zk+ 1
2 (1− z)− 1

2 e−λtzdz

]
=

k

t
pk(t)− k + 1

t
pk+1(t).

�

Remark 4.2 We evaluate the Laplace transform of (4.7) which reads

L{pk(t), η} =
∫ ∞

0

e−ηtpk(t)dt (4.8)

=
∫ ∞

0

e−ηt
λktk

πk!

∫ 1

0

zk−
1
2 (1− z)− 1

2 e−(λz)tdzdt

=
1
π

∫ 1

0

zk−
1
2 (1− z)− 1

2

∫ ∞
0

λktk

k!
e−(η+λz)tdtdz

=
1
π

∫ 1

0

zk−
1
2 (1− z)− 1

2
λkΓ(k + 1)
k!(η + λz)k+1

dz

=
1
π

∫ 1

0

z−
1
2 (1− z)− 1

2
(λz)k

(η + λz)k+1
dz.

The last expression in (4.8) permits us to interpret the process N(t), t > 0 as the
standard homogeneous Poisson process with random rate Λ distributed as a Beta
random variable of parameters 1

2 , 1
2 . Indeed the Laplace transform of a standard

Poisson process is given by

L{pk(t), η} =
(λz)k

(η + λz)k+1
.

The same conclusion can be drawn directly from (4.7).

Remark 4.3 The probability generating function can be evaluated as follows:

G(u, t) =
∞∑
k=0

ukpk(t) =
∫ t

0

e−λs

π
√
s(t− s)

∞∑
k=0

(λsu)k

k!
ds (4.9)

=
∫ t

0

e−λs(1−u)

π
√
s(t− s)

ds

= [by (4.5)]

= 1F1

(
1
2
, 1;λt(u− 1)

)
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= [by 9.215.2, p.1086 of Gradshteyn and Ryzhik [5]]

= e−
λt(1−u)

2 J0(−λt
2

(1− u)e
iπ
2 )

= e−
λt(1−u)

2

∞∑
k=0

(−eiπ)k

(k!)2

(−λt(1− u))2k

24k

= e−
λt(1−u)

2

∞∑
k=0

1
(k!)2

(λt(1− u))2k

24k

= G(u, t)I0(
λt(1− u)

2
),

where G(u, t) denotes the probability generating function of the homogeneous Poisson
process with rate λ/2.

We can derive the same result by evaluating the integral in (4.9) directly, as follows,∫ t

0

e−λs(1−u)s−
1
2

π
√
t− s

ds

= [by putting s = t sin2 φ]

=
2
√
t

π

∫ π
2

0

e−λ(1−u)t sin2 φ (t sin2 φ)−
1
2

cosφ
sinφ cosφdφ

=
2
π

∫ π
2

0

e−λ(1−u)t sin2 φdφ

= [sin2 φ =
1− cos 2φ

2
]

=
2e−

λ(1−u)t
2

π

∫ π
2

0

e
λ(1−u)t cos 2φ

2 dφ

=
e−

λ(1−u)t
2

π

∫ π

0

e
λ(1−u)t cos θ

2 dθ

= e−
λ(1−u)t

2 I0

(
λt(1− u)

2

)
.

For the factorial moments, we get from (4.9)

E
[
N(t)(N(t)− 1)...(N(t)− r + 1)

]
(4.10)

=
dr

dur
G(u, t)

∣∣∣∣
u=1

= λr
∫ t

0

sre−λs(1−u)

π
√
s(t− s)

ds

∣∣∣∣∣
u=1

=
(λt)r

π
B

(
r +

1
2
,

1
2

)

=
(λt)r

r!
√
π

Γ
(
r +

1
2

)
= pr(t)eλt

Γ
(
r + 1

2

)
√
π

.

From (4.10) it is easy to derive

EN(t) =
λt

2
and

V ar(N(t)) =
λ2t2

8
+
λt

2
.
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Remark 4.4 We can give an alternative representation to the distribution (4.4) and
the factorial moments (4.10), in terms of the time T 0 of the first return in zero of a
coin tossing random walk, whose distribution is given by

Pr
{
T 0 = 2k + 2

}
=
(

2k
k

)
1

k + 1
1

22k+1
, k = 0, 1, ... (4.11)

Indeed the distribution (4.4) can be written as

pk(t) = 2(k + 1)pk(t) Pr
{
T 0 = 2k + 2

}
1F1

(
1
2
, k + 1;λt

)
.

The factorial moments, instead, read

E
[
N(t)(N(t)− 1)...(N(t)− r + 1)

]
= 2(r + 1)pr(t) Pr

{
T 0 = 2r + 2

}
.

5 Poisson processes at Bessel times

Let us denote by Rγ(t), t > 0 the γ-Bessel process, starting at zero, with transition
function given by

pγ(s, t) =
2sγ−1e−

s2
2t

(2t)
γ
2 Γ
(
γ
2

) (5.1)

for s, t, γ > 0, and with generator

A =
1
2

{
∂2

∂s2
+
γ − 1
s

∂

∂s

}
. (5.2)

We study now the composition of a homogeneous Poisson process with a process
defined as the square of Rγ(t), t > 0, which will be denoted by R2

γ = (Rγ(t))2
, t > 0.

We derive the transition density of this second process, as follows:

p2
γ(s, t) =

d

ds
Pr
{
R2
γ(t) < s

}
=

d

ds

∫ √s
0

2wγ−1e−
w2
2t

(2t)
γ
2 Γ
(
γ
2

) dw
=

s
γ
2−1e−

s
2t

(2t)
γ
2 Γ
(
γ
2

) , s, t > 0.

Therefore are interested in deriving the probability distribution of the following pro-
cess

Ñγ(t) = N(R2
γ(t)), t > 0,

and its governing equation.

Theorem 5.1 The state probabilities γ p̃k of the process Ñγ(t), t > 0 are given, for
any k ≥ 0, by

γ p̃k(t) = Pr
{
Ñγ(t) = k

}
=

(2λt)k

(2λt+ 1)k+ γ
2

Γ
(
k + γ

2

)
k!Γ

(
γ
2

) . (5.3)

The probability generating function of the distribution (5.3) has the following form

G̃γ(u, t) =
1

(2λt(1− u) + 1)γ/2
, |u| ≤ 1. (5.4)
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Proof The distribution is obtained directly as follows

γ p̃k(t) =
∫ +∞

0

λk

k!
ske−λsp(s, t)ds

=
λk

k!(2t)
γ
2 Γ
(
γ
2

) ∫ +∞

0

e−λssk+ γ
2−1e−

s
2t ds

=
λk

k!(2t)
γ
2 Γ
(
γ
2

) ( 2t
2λt+ 1

)k+ γ
2

Γ
(
k +

γ

2

)
,

which coincides with (5.3). We derive the probability generating function as follows:

G̃γ(u, t) =
∞∑
k=0

uk γ p̃k(t) =
1

Γ
(
γ
2

)
(2λt+ 1)γ/2

∫ +∞

0

e−zz
γ
2−1e

2λtuz
2λt+1 dz

=
1

(2λt+ 1)γ/2
1(

1− 2λtu
2λt+1

) γ
2

=
1

(2λt(1− u) + 1)γ/2
.

�
Remark 5.1 An alternative expression for the probabilities (5.3) can be obtained
by rewriting it as follows:

γ p̃k(t) =
(2λt)k

(2λt+ 1)k+ γ
2

1
k!Γ

(
γ
2

) ∫ +∞

0

e−wwk+ γ
2−1dw (5.5)

=
(2λt)k

(2λt+ 1)k+ γ
2

1
Γ
(
γ
2

) ∫ +∞

0

Pr {N(w) = k}w
γ
2−1dw.

Formula (5.5) possesses an interesting interpretation for k ≥ 1, since, in this case, we
can recognize the probability distribution of a birth-death linear process M(t), t > 0
with birth and death rates equal to 2λ, which reads

Pr {M(t) = k} =
(2λt)k−1

(2λt+ 1)k+1
k ≥ 1

and
Pr {M(t) = 0} =

2λt
2λt+ 1

.

(see, for example, Bailey [1]). Therefore we get

γ p̃k(t) =
2λt

(2λt+ 1)
γ
2−1

Pr {M(t) = k}
Γ
(
γ
2

) ∫ +∞

0

Pr {N(w) = k}w
γ
2−1dw. (5.6)

In the special case where γ = 2, formula (5.6) reduces to

2 p̃k(t) = 2λt
(2λt)k−1

(2λt+ 1)k+1
= 2λtPr {M(t) = k} . (5.7)

The presence of the factor 2λt can be explained by considering that, for the Poisson
process, the extinction probability must be equal to zero.
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Remark 5.2 It is easy to check that (5.7) represents, for k ≥ 0, a genuine probability
distribution:

∞∑
k=0

2 p̃k(t) =
∞∑
k=0

(2λt)k

(2λt+ 1)k+1
= 1.

In the general case γ > 0, this check is a bit more complicated:
∞∑
k=0

γ p̃k(t) =
∞∑
k=0

(2λt)k

(2λt+ 1)k
Γ
(
k + γ

2

)
k!Γ

(
γ
2

)
(2λt+ 1)γ/2

(5.8)

=
1

Γ
(
γ
2

)
(2λt+ 1)γ/2

∞∑
k=0

(2λt)k

k! (2λt+ 1)k

∫ +∞

0

e−zzk+ γ
2−1dz

=
1

Γ
(
γ
2

)
(2λt+ 1)γ/2

∫ +∞

0

e−zz
γ
2−1

∞∑
k=0

(2λtz)k

k! (2λt+ 1)k
dz

=
1

Γ
(
γ
2

)
(2λt+ 1)γ/2

∫ +∞

0

e−zz
γ
2−1e

2λtz
2λt+1 dz

=
1

Γ
(
γ
2

)
(2λt+ 1)γ/2

1(
1− 2λt

2λt+1

) γ
2

Γ
(γ

2

)
= 1.

Remark 5.3 By taking the first derivative of (5.4) we get that the first moment is
equal to

EÑγ(t) =
2λtγ (2λt(1− u) + 1)

γ
2−1

(2λt(1− u) + 1)γ

∣∣∣∣∣
u=1

= λtγ, (5.9)

while its variance can be obtained as follows

E
[
Ñγ(t)

(
Ñγ(t)− 1

)]
=

(2λt)2
γ
(
γ
2 + 1

)
2 (2λt(1− u) + 1)

γ
2 +2

∣∣∣∣∣
u=1

= (λt)2
γ (γ + 2) ,

so that we get
Var

(
Ñγ(t)

)
= λtγ [2λt+ 1] . (5.10)

Results (5.9) and (5.10) can be checked, in the case γ = 2, by using (5.7) and consid-
ering that

EM(t) = 1, VarM(t) = 2λt.

Finally we derive the differential equations satisfied by (5.3) and (5.4).

Theorem 5.2 The state probabilities p̃k, given in (5.3), are solutions to the following
difference-differential equations

d

dt
pk(t) =

k

t
pk(t)− k + 1

t
pk+1(t), t > 0, k ≥ 0 (5.11)

subject to the initial conditions

p̃k(0) =
{

1, k = 0
0, k ≥ 1 ,

while the probability generating function G̃γ(u, t) is solution to

∂G

∂t
(u, t) = −1− u

t

∂G

∂u
(u, t), t > 0, |u| ≤ 1, (5.12)
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with G̃γ(u, 0) = 1.
Proof We can check (5.11), directly, by taking the derivatives of (5.3)

d

dt
γ p̃k(t) =

Γ
(
k + γ

2

)
k!Γ

(
γ
2

) d

dt

(2λt)k

(2λt+ 1)
γ
2 +k

= 2λ
Γ
(
k + γ

2

)
k!Γ

(
γ
2

) k(2λt)k−1 (2λt+ 1)
γ
2 +k −

( γ
2 +k

)
(2λt)k (2λt+ 1)

γ
2 +k−1

(2λt+ 1)γ+2k

= 2λ(2λt)k−1 Γ
(
k + γ

2

)
k!Γ

(
γ
2

) [
k

(2λt+ 1)
γ
2 +k
−

( γ
2 +k

)
2λt

(2λt+ 1)
γ
2 +k+1

]

=
k

t
γ p̃k(t)− k + 1

t
γ p̃k+1(t).

Since the partial derivatives of G̃γ are equal to

∂G̃γ
∂t

(u, t) =
∞∑
k=0

uk
d

dt
γ p̃k(t) (5.13)

and
∂G̃γ
∂u

(u, t) =
∞∑
k=0

kuk−1
γ p̃k(t), (5.14)

we get

∞∑
k=0

uk
d

dt
γ p̃k(t) (5.15)

= −1− u
t

∞∑
k=0

kuk−1
γ p̃k(t)

= −1
t

∞∑
k=0

kuk−1
γ p̃k(t) +

1
t

∞∑
k=0

kuk γ p̃k(t)

= −1
t

∞∑
k=1

kuk−1
γ p̃k(t) +

1
t

∞∑
k=0

kuk γ p̃k(t)

= [ for k − 1 = l in the first sum]

= −1
t

∞∑
l=0

(l + 1)ul γ p̃l+1(t) +
1
t

∞∑
k=0

kuk γ p̃k(t),

which coincides with (5.12). �
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