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Abstract

In this paper different types of Poisson processes N subordinated to random
time processes X, depending on Brownian motion, are analyzed. In particular
the processes X considered here are the elastic Brownian motion B¢, the Brow-
nian sojourn time on the positive half-line I}, the first-passage time T} (through
the level t) of a Brownian motion, with or witout drift, and the ~-Bessel process
+R, for v > 0.

In all these cases we obtain the explicit state probability distributions p(t) =
Pr{N(X(t)) =k}, k>0, t > 0, their governing difference-differential equations
and some moments. The connections among different models and, in particular,
of N(yR(t)) with birth and death processes are obtained and discussed.
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1 Introduction

In a series of previous papers fractional extensions of the Poisson process have been
analyzed by different authors (Jumarie [7], Laskin [8], Beghin and Orsingher [2]-[3]).
The idea underlying these papers is to construct the fractional Poisson process by in-
troducing a fractional time-derivative in the difference-differential equation governing
the state probabilities pj/(t),t > 0, that is, for 0 < v < 1,

dV
dtl')/k = Ape(®) —pea(®)],  k>0,t>0, A>0 (1.1)
with initial conditions
1 k=0
The derivative appearing in (1.1) is intended in the following sense:
dv 1 t 1 am _
&) = 592”"’) fo T da u(s)ds, form<v<m-—1 ’ (13)
dtv aru(t), forv=m

where m = |v] + 1.
Cahoy [4] has shown that the fractional Poisson process exhibits a long-memory
behavior with intermittency (which means clustering of events). This feature makes
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the process more suitable for several applications, for example, in queueing systems
(Saji and Pillai [11]) and in financial analysis (Mainardi et al. [9]).

In Beghin and Orsingher [2] it is proved that the fractional Poisson process N, (t),t >
0, with state probabilities pj, can be represented as

N(t) 2 N(To (1)),  t>0, (1.4)

where N is the homogeneous Poisson process with rate A (which is obtained in the
particular case v = 1). The time process 7o, (t),t > 0 appearing in (1.4) is independent
from N and possesses a probability density obtained by folding the solution to the
following fractional diffusion equation:

9w 3*u
D2 — 922 t>07 z e€R (15)
u(z,0) = 6(z) ’

for 0 < v < 1, with the additional condition v¢(y,0) = 0, for 1/2 < v < 1. In
particular, for v = 1/2, the process (1.4) becomes

Nipo(t) = N(IB@)]),  t>0, (1.6)

where B is a standard Brownian motion with volatility parameter equal to 2 (whose
density is governed by (1.5) for v = 1/2).

In the next section we treat a process of the form (1.6), where B is replaced by
the elastic Brownian motion BS(t),t > 0, with absorbing rate a > 0 (see Ito and
McKean [6]), defined as

. Bt)|, t<T,
Bal(t)z{ | é’” (T (1.7)

where T, is a random time with distribution
Pr{T, > t|B;} = e LD >0, (1.8)

B, = o {B(s),s < t} is the natural filtration and L(0,t) = lim . o 5-meas {s < t : |B(t)| < &}
is the local time in the origin of B. We show that the process

Nel(t) = N(BE(t), t>0,a>0

has state probabilities f)ﬁl, k > 0, which can be expressed by generalized Mittag-Leffler
functions (see Saxena and Mathai [12]) or in terms of the survival probabilities of B.
This distribution coincides with that of process (1.6) for a = 0. Finally we prove that
the state probabilities of Ne¢l are solutions to difference-differential equations of the
form (1.1) for v =1/2.

The remaining part of the paper concerns different compositions of the Poisson
process with randomly varying times, leading to higher-order governing equations,
instead of fractional ones.

In section 3 we analyze the process obtained by composing the standard Poisson
process with the first-passage time of a Brownian motion through the level ¢. It is
defined as N(t) = N(T}), t > 0, where

T, =inf {s > 0: B(s) =t}

and B is a standard Brownian motion independent from V.
We obtain the explicit distribution of N | i.e. py(t) = Pr {J\Af(t) = k} , k>0, as
follows

() = LR (V2N (L9)



where K, (z) is the modified Bessel function of order v (see definition (3.7) below).
We show that the probability generating function has the following simple structure

Glu,t) =Y uFpi(t) = e VP ] <1t > 0. (1.10)
k=0

Since the expected number of events turns out to be infinite, we consider also the
Poisson process with clock T}* = inf {s > 0: B*(s) = t}, where B* is a Brownian
motion with drift p. For its distribution pf(t) = Pr{N(T}') = k}, k > 0, we obtain
the second-order governing equation

d? d

—pr — 2U—pr = 2\[pr — Pr— k>0. 1.11
P~ 21 [Pk — Pr—1], > (1.11)
The corresponding probability generating function G* takes the form

é“(u,t) _ eutft,/#2+2)\(17u)’ |u| <1

and solves the following equation:

a—2G -2 2G =2\(1—u)G (1.12)
o~ Mo ' '
For the Poisson process stopped at the n-times iterated first-passage instant
N™(t) = N(T\(Ts..(Ta1(To()))...)),  t>0, (1.13)
where
T;(t) =inf {s > 0: Bj(s) =t} (1.14)

and B,(t), for j = 1,...,n, are Brownian motions independent among themselves and
from N, we obtain the 2"-th order equation

&> 2" 1

2 Pe() =27 TApR(t) —pe-1 (V)] >0,k 20, (1.15)
governing the state probabilities pj(¢),t > 0. For the version of the process (1.13)
where the Brownian motion figuring in (1.14) is endowed with drift > 0, we have
derived the probability generating function, which reads

1 2 1 2 1 1 2
Y ,ut—22t\j B —pu+22 \/”——p+22 ..... 224/ E-+X(1—u)
Ghu,t) =e ’ ’ ¢ Ve . ul<1 o (1.16)

and from which we extract

=~ At
EN;(t) = —, n > 1. (1.17)
n
"
In section 4 we examine the Poisson process with subordinator represented by the
Brownian sojourn time on the positive half-line, i.e. T} = meas{s <t: B(s) > 0}.
This process is defined as

N(t) = NT}), t>0 (1.18)

and displays a slowing down behavior of the time flow (with respect to the natural
time t). This fact is reflected by the relation
At 1

EN(t) = 5 = EN(1).



The state probabilities of N can be expressed in terms of confluent hypergeometric
functions 1 Fi (o, B; ) and are related to the distribution pg, & > 0 of the homogeneous
Poisson process by means of the following formula

PL(t) = pr(t) (2’“]; 1)21%11?1 <;,k+1;)\t>. (1.19)

We show that the distribution (1.19) satisfies the equations

d k k+1

%pk(t) = —pi(t) — ;

i1 (t), k>0, (1.20)

with time-depending coefficients.
In the last section we derive a surprising connection between the process

N, (t) = N(R2(t)), t>0,

where R, (t),t > 0 is a y-Bessel process starting at zero (defined in (5.1) and (5.2)
below) and the birth and death process M (t),t > 0 (with equal birth and death rates).

We show that the distribution ,py = Pr {Nv(t) = k} , k>0 can be written as

@x)F T (k+2)

pr(t) = (1.21)
! (2xt +1)7 KT (3)
and simplifies substantially, when v = 2, and in this case takes the form
2)t)F1
LDk(t) = 2Xt (2X%) =2XtPr{M(t) = k}. (1.22)

(2At + 1)

The equation governing the distribution (1.22) coincides with (1.20), which is related
to the previous process N(t) = N(T'}).

2 Poisson processes at elastic Brownian times

We consider now the process N°(t) = N(B¢(t)),t > 0 obtained by means of the
composition of the Poisson process with the elastic Brownian motion BS! = B¢ (t),t >
0, with absorbing rate o > 0. See Ito and McKean [6], p. 45, for details on elastic
Brownian motion. It is defined in (1.7) -(1.8) and possesses transition function given
by

el as oo —aw 6_% d S
q“(s,t) = 2e /S we Nores W+ qo (t)0(s), (2.1)

where 0(s) is the Dirac’s Delta function with pole in the origin and

_w?
2

o2 [T¥e

Go(t) =1 =Pr{B&(t) >0} =1—2¢"
(t) {B:(t) > 0} i V2r

is the probability that the process is absorbed by the barrier in zero up to time ¢.
Then the probability distribution of N¢ is defined, for any k > 0, by

dw

“+o0
Bt = Pr{N(B(®) =k} = / pi(5)g (5, £)ds (2.2)
0
+o0 ()\S)k +o00 e—% +o0 ()\S)k
= 2 e_)‘seo‘s/ we” Y dwds + ¢, (t / e *5(s)ds
/0 k! s V2rts %) 0 k! )

4



and is explicitly evaluated in the next theorem.

Theorem 2.1 For k > 1 and for any X # « the state probabilities of Nl are given

by
pR(t) = Pr{N(BI(t) =k} (2.3)
A o N =N A
- mPr{Ba(t) >0} — o ];J i WPr{BA (t) >0},
while, for k=0, we have instead
pe(t) = Pr{N(B(t)) =0} (2.4)
A—a—1 . 1 .
Proof From (2.2), we have that
Py (t) (2.5)
+o0 A k +o0 —w—f
= 2/ (As) e_)‘seas/ we—ow ’ dwds
0 k! s V2rt3
2)\k +oo 6_% w X 0 )
= — we” ¥ dw/ ste S\ Y s
k! /0 V2rt3 0
= [by successive integrations by parts]
X +oo 6715—? wkefw()\fa) wkflefw()\fa) efw()\fa) -1
= 2)\ / we” Y — — — dw
0 Vort3 (A — a)k! A=—a)?(k-1)! (A — a)kt+1

2

NP Foo k I\ — ) e 5t 2)\F +o0 —a
- _7“1/ we—awe—w(,\_a)z WA o) e - dw + k1 / we=v £y
0 — 0
3=0

(A—a) J! V27t3 (A—a)
AR A I (A—a)y e o4
(A — a)Ft! r{ a()>0} ()\_a)kﬂj;o ;1 /0 wee 9mg3 w

M

w

V23

AF oA Eh—a), [T =%
= — - Pr{B%t) >0} - E i 1) =2 / —wA dw |,
Grayt PR =0 o T Y U e

which coincides with (2.3). For k = 0, formula (2.2) becomes instead

2

+oo +oo 6_2’7
i) = Pr {N(BCl(t)) =0} = 2/ e_Aseo‘S/ we” ¥ dwds + ¢, (t)
0 s 2mt3
“+o0o 6_% w
= 1-Pr{Bd(t)>0}+ 2/ we” Y dw/ e 3= s (2.6)
0 23 0
2 oo e’%
= 1-Pr{B(t) >0} + / we ™ dw [1 - e*w@*ﬂ
>0} 35 ), Vot

= 1-Pr{Bd(t)>0}+ ﬁ [Pr{B(t) >0} — Pr{B5(t) > 0}].
|

An alternative way of studying the probability distribution of this process is by
evaluating the Laplace transform of (2.2). The implied results, which are valid for



any a, A > 0, are expressed in terms of generalized Mittag-Leffler functions, defined

(2.7)

as
— (), 7 o
;7 € C, Re(a),Re(B),Re(y) >

Fas) = 2 ihar <y

where (7), =y(y+1)..(y +r—1) (for r = 1,2,
N(t) = N(B9(t)),t > 0 are given by

Theorem 2.2 The state probabilities of N(t)
At
EI N

_L\/E EFtL _Ove
2 1 l+k+1 \/i

,and v # 0) and (v), = 1.

=el
Pg

for k > 1, while, for k=0, we get
00 J
el aﬁ) < aﬂ) ( )\\/f)
t)y=1—FE:1 —— )+ —— | Ei e 2.9
wo=1-5 (-5)+ 2 (-95) B (5) @9

Proof For any o, A > 0 and k£ > 1, we evaluate the Laplace transform of the first

line of (2.5):
(2.10)

—+o0
E / e—(xw—w\/2ndwd8
s

L {pk ) 77}
6fo¢wfw\/%

o+ /27 B

+o0 (/\s)k: 75(A+\/7)

= 2
/0 k! a++/2n
B 2 AF
a+\/%()\+\/%)k+l
1 1 A¥
- \/Q*ki+\/ﬁ N k+1°
VTV (G4 vi)

In order to invert (2.10) we recall the following formula (see Prabhakar [10])
B—~
1 (2.11)

w=-+0o0
] ds

o0 k
/ (/\5) ef)\seas
0

E {t’Y*lEgv’y(wtﬁ); 77} = m

Therefore we invert the first term in (2.10) by taking in (2.7) § =1, 8 =1, w = — 7
and ’y = , while, for the second term we put 6 = k+ 1, § = % w = f% and
v = , so that we get
by (t) (2.12)
AVt k+1 A ko1 &
El k+l(_72\/§>8 2 E%’%(_ﬁ t—S)(t—S) 2ds

T V2R

L &Y
N \ﬁk'z(:) J'F(%+L21) 1=0

WS (_M/i)j(_a\/i : 1 (k + 5)!
VRSS2 V2 ) TR L1y !



which coincides with (2.8). Analogously, for k = 0, the Laplace transform of the first
expression in (2.6) reads

so that,

L{pg;n} (2.13)

+00 +oo oo
2/ 67A5+°‘S/ efawfwmdwds—k/ e " qq (t)dt

0 s 0

’Ulz

+oo ,—As—sv/2n +oo W20 [T e
= 2/ ds—|— 1—2e" 7 / dw | dt
0 o+ \/ avt V 2

2 1 1 ’wT
= - =2 e 77H*/ dwdt
a+/2n A+ 4/2n 77 /0
1 +oo —L
= 2 - / / e Mt dtdw
a++/2n )\+\/ 77 V2or
2 L1 oo ez 2
B a+\ﬁ)\+\ﬁ n / \/ﬁf_n\ﬁ a2 —2n
B 2 11
a2 A+ V2 77 oz—2n\/77 a—2n
_ 2 1 1 2 a—+2ny
a4+ )\—i—\/ 77 S a2-2p 2y
1 1 1 1

ﬁwﬁﬁw?‘z 1 GV

by inverting (2.13), we get

P65 (t)
1 ¢ « 1
1_ﬁ/o By y (= sv)s b =) Hds+
t « _1 A
+/0 E%%(fﬁ\/g)s E%’%(fﬁ t—s)(t—s) 2ds

= 1=0 +1
S (38) S () Sy (38



Remark 2.1 By means of (2.10) we can evaluate the mean value of Ne, as follows

<, Lk 1 A
E{ENZ;U} = Z\/QT%+\/5

k+1
_ A
k=0 (95 + V)
0o A k—1
A 1 1 2
- 72&_'_\/’ QZk L_A'_
2 "(%hﬁ) im0 \vs TV
_ A !
25+

Therefore we get that

_ )D/;E%,g (—\%x/%) = g {1 ~E;, (—\%xﬁ) } (2.14)

where, in the last step, we have used the following relation

(x) =a! [E%)l (x) — 1} .

The structure of the elastic Brownian motion is the reason of the fading behavior of
EN€. This is intuitively explained by the fact that the elastic barrier at the origin
makes the time length shorter and shorter as ¢ increases and thus the mean number of
Poisson events is constrained to decrease. Moreover we establish an interesting relation
between the expected number of events for the process N¢ and the corresponding
quantity for the process N(|B(¢)|),t > 0, which reads

EN€(t)

&

[N

1
2

oo
EN(|B(1))) :/O AsPr{|B(t)| € ds} — A\\g (2.15)

Indeed by comparing (2.14) with (2.15) we can write that

EN(t) = E(N(B(t))) = gE

Nlw

«a
( ﬁ\@ EN(|B(t)]). (2.16)
We note that the elastic Brownian motion with absorbing rate a reduces to the re-
flected Brownian motion for @ = 0 and then, in this particular case, the constant in
(2.16) becomes equal to one, as it should be.

By analogous steps we can evaluate the variance of the process: the Laplace trans-
form of the second-order factorial moment is equal to

k
T
,;)k(kl)ji+\/ﬁ(\}\§+i/ﬁ)kﬂ

- (%) ik(k—l) <

(2.17)

V3
o &) )
- o 3 3
BV () (1o 52
1 A2



The Laplace transform (2.17) can be inverted by applying formula (2.11), for v = 2,

thus giving
a/t )

5 (2.18)

B[N (N (1) —1)] = X0y <_

Therefore the variance is obtained as follows

Var (N¥(1)) = XtE) (—\%ﬁ)ﬂ\\/gE;,g (—\%ﬁ)—it (E (—\%ﬁ))z.
(2.19)

It can be checked that (2.18) and (2.19) for o = 0 coincide with E [N (|B(¢)]) (N(|B(¢)])(t) — 1)]
and Var(N(|B(t)])), respectively.

We analyze now the particular case where a = A, since the previous results are
considerably simplified and thus it is possible to evaluate the equation governing the

distribution of N el as we did for the other processes in the previous sections.

Theorem 2.3 For o = X\ the state probabilities of N¢ read

pi (1) = (A\/\/gE’;f;H (’\\g) . k=21 (2.20)
and, for k =0,
pt) = ( ) \\[ 1 <—)‘\g) (2.21)

Proof The Laplace transform (2.10) can be immediately inverted, for o = A, as
follows

e )‘k -1 A 71@72,
PR = T { (\/5 + \/’7) ’t} (222)
OO s [ MWE
- ok EEEH <_ V2 ) ’ k21,

by applying again (2.11). For k = 0, if we put & = X the Laplace transform (2.13)

reduces to
A 1 1

1
- + -
2 A )
A V2 2+ n
(35 +va) VitV
which gives the first expression in (2.21). An alternative expression for p§' can be
obtained by rewriting (2.13), for o = A, as follows

L{pin} =

An_%

1
{p0777} 5—ﬁm

(2.23)

The Laplace transform (2.23) can be inverted by applying (2.11) for 6 = 2, § = 5
w = f% and v = 2, thus obtaining the second form of (2.21). We check that the

two expressions of (2.21) coincide, by applying the relation holding for generalized

Mittag-Lefller functions proved in Beghin and Orsingher [3] (see formula (3.8), for
n:O,m:27z:1,V:%):



1 (25) S () 1+t ()
i i&{z)*%irg_ﬂm”
S Y L
AR R

Remark 2.2 By comparing (2.20) with (2.8) for a« = A, we extract the following
interesting relation holding for generalized Mittag-Leffler functions:

ZnggllMH() ENZ (@), 2€R 2>0,k>1 a>0  (2.24)

Formula (2.24) can be directly verified as follows

k41 _ "(m+ k)!
Z,T Ea of l+k)+z( ) - k' Z Z m'F m T A + l) T Z) (225)

m=0

= [m :m+l]

8

oo

1 . 2™ = m! — 1+ k)
- k!;xm,z::l(m—l)'l“(a( ¥ k) T 2)
_ li ™ i —l+k
- k'mZOI‘ a(m+k)+z2) —

which gives (2.24), by noting that the followmg result holds

m

£

=0

o (R, (mtk
= . .

_ 1+(k+1)+(k+1)(k+2)+(k+1)(k+2)(k+3)+ L Ut D +2)...(k+m)

5 i =
— (k+2) {1+ (k-QH) . (k+1;(!k+3) - (k+1)(k+ﬁi)...(k+m)}

_ (k+2)(k+3) [(B+1) (k+1)(k+4)...(k +m)

B 2 [ 3 o 3-4-..m ]
kA 2)k+3) ek tm 1) (k+m+D! mAk+1l
- m! " ik + 1)) _< >

m

10



Remark 2.3 We check that the state probabilities sum up to one. Indeed we can
rewrite the distribution (2.22) as follows, for k£ > 1, by using again formula (3.8) cited
above,

l
P (

~

2

WD i AWEY WO Wi
=SB (0F) - T () e

and consider it together with (2.21) so that we get

iﬁil(t) (2.27)
k=0

- 1 ﬂ (gw) o S (A];) SO0 L (-2F)
I N

In order to obtain the recursive differential equation governing the distribution
of the process N¢(t),t > 0, we note that p¢!(¢) (in the form given in (2.26)) can be

rewritten in terms of the probability distribution p,i/ 2, k > 1, of the fractional Poisson
process N, (t),t > 0, with parameters v = 1 and % (see Beghin and Orsingher [3]).
We recall that

Pl = Pr{Ny () =k} = (/\VX/zik)kEngz}H (A\g) . t>0

solves the fractional recursive differential equation

dl/ka; )\
@z 2 {Pip( )~ Pi/Ql(t)] k>0 (2.28)

with initial conditions
(0) = 1 k=0
PEY =Y 0  k>1

and p_1(t) = 0 (see Theorem 2.1 in Beghin and Orsingher [3]). The process N%

analyzed there is equal in distribution to N(|B(t)|), where B is a Brownian motion
with variance equal to 2t (and this is the reason of the appearance here of % instead

of A\). Therefore we can write, in view of formula (2.12) of Beghin and Orsingher [3],
that

= Pr{N(B()|) =k} - Pr{N(IB(1))) = k+ 1}
= P;lc/Q( t) — pifl (t), for k > 1.

Analogously, for £ = 0, we get, in view of (2.27), that

- i Pi(t) =1—pi/?(). (2.30)

k=1

11



Theorem 2.4 For o = A, the state probabilities ﬁ,‘;l of Nel, given in Theorem 2.3,
are solutions to the following recursive differential equation

dt/? A
ka(t) = A [pk(t) — pr—1(t)], k>1, (2.31)
with initial condition p¢(0) = 0; for k = 1, the governing equation is given by
dt/? A MW Wit
—=pi1(t) = ———= t) — t —F: e — 2.32
G0 =25 I - w0+ 58 (2] e
with p§L(0) = 0, while, for k = 0, it reads
d/? A MWt MWt
S po(t) = ——= | polt) = LB s -2 2.
im0 = = [ - 25 By (<27 (2.33)

with initial condition pg(0) = 1.
Proof By (2.28) and (2.29) we can write, for k > 2,

d1/2 d1/2 1/2 d1/2 1/2
dtl/zﬁfil ¢ dtl/zpk/ t)— dt1/2pk{ﬁ-1(t)

=~ PO -RAe]+ e -ste).

which gives (2.31). For k = 1, we have instead

ill/; 5l(t) = j;/;p}/? t) - j;/;p;/ *(t)
_ 7\% [p}/Q(t) 7p(1)/2(t)} + \}\i [p§/2(t) *p}/2(t)}
= [by (2.30)]
- -5 {ﬁil(t) - 50— 5 [1=n0) }
- -2 {me-mo- 2 [-e (-22)])
= 2o+ 20, (20)].

The presence of the term )‘—\/\/;E; 3 (—)‘7‘/;) in (2.32) is explained by the fact that

272
Pel(t) (given in (2.21)) can be obtained from the general formula (2.20) by putting
k = 0 and adding the term produced by the absorbing probability g,. The same is

true for k = 0, so that we get (2.33) by similar steps, as follows:
d1/2 .
SR = by (2:30)

d1/2
- _dt1/2p1/2(t)
A
= 5[0 -n0)

_% [Ael(t) - A\g b3 (‘A\/\/;ﬂ '

0

12



Equation (2.33) can be checked directly by taking the fractional derivative of pg'(t)
in the form (2.21):

d1/2 A d1/2 A
7206 (1) = [\/%EE% <_\/£>}

d C/2dt1/? V2
j
< G+ (-%) [ J
- A Z ;< 3\/5) /(t—s) 2527 2ds +
2\/ﬁjzo F(§+§> 0
o J
A iﬂ<]+1,)(_\>§) /t(t—s)_;s%_2ds
2\/%3':0 F(%+%) 0
oo (—AvE)’ oo i (=AY’
C s O raen i) ey
25T+ M5+ V25 T(5+3) D(5+1)
- (V)
which yields (2.33). [ |

Remark 2.4 We evaluate now the probability generating function, by using the
expressions of the probabilities given in (2.26) and (2.21):

G (u,t) =Y uFpE (1) = pi (1) + D uF (L) (2.34)
k=0 k=1
Nt 2) Tt v eV ) ue Vo e T

LSS e OV (_w)
1 k4l
Ryt \/2]CT 27z 11 \/5

_ 1+(u—1)L\/iEé M)'Fu_li eV pie (—M>

2 i\ V2 2 S T
- 2 [t e () -5 ()
e (o) ()]

where, in the last step, we have applied formula (2.47) of Beghin and Orsingher [3].
We note that, for u = 1, formula (2.34) reduces to one, while for u = 0 it gives pg(¢),

13



since it is

lim G(u,t) = 1— lim

u—0 u—0 U

(2.35)

=T gy |
0 (_M)m (1—w)m-1

= 142 2 =lj=m-—-1

+ mz::l 0 (@) -~ [j ]

- ( ) )\\[
= 142 ey —1f/\\fE;é< ﬁ)
u=0

We can check that (2.35) coincides with pg'(¢) by showing that

au - (’%{)j
ﬂ”@é@ﬂ>”@”§uwb
G+1) ( %)j MWE o AVt

Z T (1+3) N ﬁE%’% (_\/5)

By taking the first derivative of G we can evaluate the expected value of N, in the
case @ = A\ :

EN°(t) = m Gel(u t)

- (o)

which coincides with (2.14) for a = A.

w\»—A

()]t (B

3 Poisson processes at Brownian first-passage times

In this section we analyze the Poisson process stopped at the random time T} =
inf{s > 0: B(s) = t}, where B is a standard Brownian motion. Clearly T} is the first
passage time of B through level t. The probability density of T; reads

te” 2
Pr{T; € ds} /ds = q(t,s) = , s,t >0 3.1
and satisfies the partial differential equation
&*q _ g
— =2—. 3.2
ot? 0s (3:2)

14
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We consider the process R
N(t) = N(Ty),

with state probabilities defined, for £ = 0,1, .., as

Bl) = Po{FO =k} = [ poalto)ds (3.3)
0
k +oo 7%
- ske*)‘site s,
k! Jo V27rs3

where pg(t),t > 0 represents the standard Poisson distribution which solves the equa-

tion
%pk(t) — Alp(t) = proa ()], (3.4)

Theorem 3.1 The state probabilities pi(t), k > 0, t > 0, given in (3.3) satisfy the
following difference-differential equation

d2
m(t) = 20pu(t) ~ e (0], (35
Proof By taking the derivatives of (3.3) and considering (3.2), we get that
a2 +o0 82g
ka(t) :/0 pk(s)w(t, s)ds (3.6)
+o0 o
q
= 2 —
/0 pk(s)as ds
oo T dpi (s
= oy —2 [ Py
0 S

= [by (3.4)]
= 2X[Pr(s) — Pr—1(s)].

The first term in the third line of (3.6) is zero for k = 0, because lim,_ o+ q(¢,s) = 0,
while, for k£ > 1, this is implied by the form of the Poisson distribution ]

The explicit distribution of N (t),t > 0, is given in the next theorem.

Theorem 3.2 The state probabilities py(t), k > 0, t > 0, given in (3.3) are given by

23— Al +igerd

ﬁk(t) - k'ﬁ kaé(t v 2)‘)7
where )
1/z\v [T®et~T

18 the modified Bessel function of index v.
Proof We rewrite (3.3) as follows:

)\kt +oo

t2
pr(t) = PN sFBemMem 5 s (3.8)
ARt (42\77H —~
2%—%/\§+%tk+%
= TKM%(W”\),

15



2

by applying formula 3.471.9, p.340 of Gradshteyn and Ryzhik [5] for v = k— %, b= %
and v = A\ |

Remark 3.1 We evaluate py(t) for some values of k, directly from (3.3). First of

all, we note that
2

+o00 — =
te” 2s
-~ —As — V2
Do(t) = / e ds=e ,
o) 0 V2ms?
by a well-known result on the Laplace transform of T;. This result can be checked by
considering that

ﬂe
(see formula 8.469.3, p.967 of Gradshteyn and Ryzhik [5]), so that we get, from (3.8),

. 21313
Polt) = NG K_1(tV2)) (3.9)
_ 2iaaed VIR _ VIR
e 2t\/

The probability (3.9) coincides with the density of the waiting-time of the first event
of the process N(t),t > 0.
Analogously, we obtain, for £k = 1,2, that

+o0 ]. by 7‘2 eitm
p1(t) = At ——e MYe mds = M 3.10
pl( ) 0 \/% \/ﬁ ( )
and
O s s 2
pa(t) = te” e 2 ds 3.11
ne = [0 (3.11)
A2t +oo A t2
= — se” e % ds
22w Jo Vs
Mt e s 2| Foo g As
— ————\/8€e 2s 6 25 dS"’
2\/27’[’ ( f 0 > 2\/ 27('/
M3t e ﬁ
+7 —AS
427 Jo \[
At e~ tV2A )\th_tr
= = +
4 /2) 4
Theorem 3.3 The probability generating function of N is given by
= utpi(t) = e VRO <1, (3.12)
k=

which gives the following alternative expression for the state probabilities

i km(“ﬁ) <k> (3.13)

m=0

16



Proof From (3.3) we get

=R +o0 —% i k
Glut) = t / i S Gl ) (3.14)
0 .

V2ms3 k!
t2
— t/ e—)\(l—u)s e % ds = et 2\ (1—u)
0 2ms3

which coincides with (3.12). If we now consider its series expansion we get

Sty = 3 " oaa -y

|
O’ITL.

(/2T i (%) (—u)*

m!
k=0

R Sl Gl GE2VG (’g)

m!

3
Il

Il
it

I
M8

B
Il

0 m=0

from which (3.13) follows. Moreover, simple calculation suffices to check that the prob-
abilities (3.13) yield (3.9), (3.10) and (3.11) for k = 0, 1, 2, respectively, by rewriting

(gz) mm 1) (k1)

- !
m

Remark 3.2 By taking the first derivative of (3.12), for u = 1, it is easy to check
that the first moment of N(7}) is infinite:

9a )
EN(Ty) = %G(%t) :%e—/\tm
u=1 —
_owm |
NI N

For this reason we consider a different time-argument instead of T}: we define T} =
inf {s > 0: B¥(s) =t}, where B* = B"(t),t > 0 denotes a Brownian motion with
drift u. Therefore the composition of a standard Poisson process with the first passage-
time of a Brownian motion with drift T}* corresponds to considering the following
process R

NE(t) = N(T}), t >0,

with probability distribution given by

—+o0
Pty = / pe()q™ (1, 5)ds (3.15)
0
2
Abg oo -l
= — she=rs & 2 ’ ds
kL Jo V2ms?
where
_ (t—ps)?
te 2s
“(t,s) = ——— s,t>0, peR, (3.16)

Vorsd

17



denotes the density of the first-passage time of B* through the level £. We note that,
for u < 0, density (3.16) does not integrate to unity; indeed it is, in this case,

Pr{T}!' < o} = e 2lnlt

and thus Pr{T} = oo} = 1 — e 2I#*, This result is intuitively justified because the
negative drift drives the sample paths away from the threshold t.

Theorem 3.4 The state probabilities pi(t), k > 0, t > 0, given in (3.15) are solutions
to the difference-differential equations

d? d
Pk = 2P = 2A[pr — pr-1, (3.17)

with initial conditions
1, k=0
P (0) = { 0, k=1

Proof We first show that the density ¢, defined in (3.16) satisfies the partial diffren-

tial equation
2

0 0 0
@q(t, 8) - 2/~L§q(t, 8) = Q%C](t, 8). (318)

Indeed, by taking the derivative of (3.16) with respect to s we get
9 0 [ e fets
2s 2
T i) = emt 282 7
0Os ds V2ms3

2 2 2
-5 o2 -5 -5 2 u?s
= et 67—2 < +t° (—M> ez ,.
2 ot V2rs3 V2ms3 2

Taking the derivatives with respect to ¢ we get

2 7L2. 7“25 7& 7u25
O i) = Ll T w0 (e T
ot , ot V2ms3 ot V2ms3

2 s 2 p?s
Jq 9 25 3 e 2se 2
= 27— 4+ 2u”ett +2uett — | t
0 2ms3 ot V2ms3
oq* oq+
as M ar

which gives equation (3.18). As a consequence we can derive the equation solved by

18



(3.15):

d2 . o0 d2
PR — H
GO = [ e sds

= [y (3.18)
+oo Hat Hat
= 2/0 pi(s) (8qs —&-/L(;It) ds
s=—4o0 oo d d ~
= WP 2 [ L)+ 2
0

d

by (34
+0o d
[P (s) — Pr—1(s)]ds + 2#@@@)

(=)

2
= 2L — B (0] + 2P

Remark 3.3 As a consequence of the previous result the probability generating
function G*(u,t) solves the following equation:

P 96 —ana—uwe (3.19)
12 o™ = W '

subject to G*(u, 0) = 1. From (3.15) the solution to (3.19) can be evaluated as follows:

all _ = kot () oo _as€ = (Asu)®
G*(u,t) > uFpi(t) tO M= > 45 (3:20)

— ep‘tft\/,uz%»Q)\(lfu)

For pu = 0, (3.20) reduces to (3.12). By taking the first derivative of (3.20), for u = 1,
we derive the first moment of N(T}*) and show that it is finite in this case

EN(T}) = géu(%t) _ ie“t—t\/m
ou T -
Atent=—t/i+2A(1-u) Ae—tUul—n)
= 1?2+ 201 — u) s - 1] .
Therefore we get
Ate2tlul
" W H<0
EN(TY) = 00, nw=20
%7 u>0

19



The variance can be obtained analogously, as follows:

EA{N(T!) [N(T}") — 1]}
2

92 ~
— 7
au2 G (U, t)

u=1
()\t)Q ettt 12421 (1—u)
w2+ 221 —u)

>\2teut7t 242X (1—u)
w2220 - )

2 2
— l(/\t) _,_/\tl e—(lul—u)t’

2 TP
so that
At A A
Varv(r) = oo (14 2 ) e — e (14 5 ).

For the process N(T}') the variance is proportional to the mean value and this distin-
guishes this model from the classical one.

Remark 3.4 We derive now the probability distribution of N(T}"),t > 0:

)\kt nt oo 2 t2
pht) = ° sFEem s 5 g (3.21)

kj!\/27‘f‘ 0
1
2\ tert [ ¢ o1
= K 1 (821 + p2).
Nz (2A+u2) ey V2AH 5

For k = 0 we obtain the probability density of the waiting time of the first event of
N(TY):

[NE

I

Pt = 2t [ 2\ K_1(tV2) + 12)
Do - \/% 2)\_1_“2 -1 M
_ VRezer an g 2 T DR gt/
e N

which coincides with (3.20) for u = 0.

We generalize the results obtained so far to the case of n successive iterations: let
us denote by
T;(t) =inf{s > 0: Bj(s) =t}
the first-passage time through the level ¢ of a Brownian motion Bj(t), for j = 1,...,n,
and let us assume that B; is independent from any other B;, i # j and from N. The
process defined as

N™(t) = N(Ty(Ty...(Ta_1(TH(1)))...)),  t>0 (3.22)
possesses distribution given by
pr(t) (3.23)
+oo “+o0 “+oo “+oo
= [ [ mwatun w0t - at o) dwsdus..dw,du,
0 0 0 0
w3 w} t2

Ak oo pAeo +oo  p+oo b e Tur e 2n_1 . e Zun dwnd J J
— whe Wy W, widws...dw,,_1dw,,.
k! ! \/ 2mwd 3 2mw3

0 0 0 0 1 2w, 4 \/ n
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We state the following result.

Theorem 3.5 The state distributions py of the n-times iterated Poisson process
N™(t),t > 0, given in (3.23), are solutions to the following equations

" n
ka(t) = 22" " \[pr(t) — pr_1(t)], t>0, k>0, (3.24)

with initial conditions )
~n _ 17 =0
k(O) - { O, E>1

Proof For n =1 equations (3.24) reduce to (3.5). We prove this result in the special
case n = 2:

d4 A2 +oo  ptoo 84
P (t) :/ / pk(wl)Q(w%wl)@‘](tawﬂdwldw? (3.25)

= [by (3.2)]

—+00 [e%e) 62
= / / wg,wl)aw q(t, we)dwydws

2

+oo +oo 2
= 2/ / pk(wl)WQ(w% w1)q(t, wa)dwydws
0 wa

) +oo “+oo o
= 2 / / pk<wl)7(](w27wl)Q(t7w2)dw1dw2

“+oo “+oo d

= *22/ / d — Pk wl)q(wg,wl)q(t,wg)dwldwg
W1

= 22X [pr(t) — Dr_1(1)] -

By induction it can be checked that (3.24) holds for any n > 1. |

Remark 3.5 We derive the probability generating function that, in this case, is
equal to

Zuk k (1 ﬁ))\ﬁ(lf’u)%ﬂt' (326)
=0

By taking the first derivative of (3.26) it is easy to see that the expected value of the
process is infinite:

EN"(t) = 4 n (u, t)

u=1

a2 g2

u=1

Remark 3.6 In the case where each Brownian motion is endowed by a drift u, the
process is defined as

Ni(8) = N(TH(TY Ty (TH (D)), >0,

For the sake of simplicity we will assume hereafter that pu > 0. We start again by
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considering the case where n = 2: the probability distribution is, in this case,

(3.27)

Pk( )
—+oo +oo
/ / pr(w1)g" (wa, wy)g" (t, wa ) dw dws
0 0
(wy—pwi)?  _ (t—pwy)?

k +oo +oo - y 2
by _ e 2wy e 2wy
= I w’fe AW g0 t dwydws,

V2mw? V2mw3

for k > 0. We start by taking the second-order derivative with respect to ¢ of (3.18):

84
@qu(t’ w)
82

0 0
= M
gy { B —q (t,w)+2u8tq (t,w)}

02 02 &
= 2 [28w2q“(t, w) + 2pm "t w)] +2u554"(t, w).

Therefore, by taking the fourth-order derivative of (3.27) we get
d4 +oo +oo 34
@ﬁz(t) = / / i (w1)g" (wa, wl)@q“(t,wg)dwldwg (3.28)
) +oo +oo (9
= 2 / / pr(wi)g wg,wl)a 5q" (t, wo)dw; dwsy +
+oo +oo o
+22 / / w1)qu(w2,’w1)7f] (t, w)dwidwy +
ot ow
“+o0 +oo
+2ﬂ8t3/ / & (w1)g" (wa, w1)g" (t, we)dw dws
—+oo —+o0 8
= —22/ / pk(wl)—q“(wg,wl)a—wq“(t,wg)dwldwg +
+oo +oo
u@t / / k(w1) 2q“(w2,w1)q“(t,w2)dw1dw2 +
+2p dt3pk pr (t)
) +oo  ptoo 92
= 2 / / pk(wl)wq“(w%wl)q“(t,wg)dwldwg

+oo +oo
u@t / / i (w1) 2‘1“(“’2, wi)g" (t, we)dwidwy +

+2u P pk Pi (1)

By considering that for the second-order derivative of (3.27) the following result holds

d2 +oo +oo 82
ﬁﬁg(t) = / / pk(wl)q“(wg,wl)@q“(t, wa)dwy dws (3.29)

oo oo 8 9
2/ / pr(wr)gh (we, w) %q"(t,wz%ru&q“(t?wz) dwidws

“+o0 “+o0
—2/ / w(wr) q H(we, wr)gH (t, we)dwy dws +
2
+ thpk( ),
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we get, from (3.29),

+oo —+oo 8
/ / pk(wl)TqM(WQa wi) g (t, wa)dwidw;
Wy
1 2 d_
= 5 bk P (t) + WPk (t).

Therefore formula (3.28) can be rewritten as

d* -
@pk (t)

+oo +oo 52
= 22/ / pk(w1)m¢‘(w27w1)<1”(t,w2)dw1dw2 +
2
2

d 1 d? d 3
-2 — 7t 20— (t
wr |- thka<>+udtpk<>]+ p B

+oo +oo
B 23/ / wl q (wQawl)q#(t,UJQ)dwlde +

d
23 T
+ u{ thgpk(t)+ﬂdtpk(t):| +

d3 9 o d2 3
+2ﬂ@f"g(t) —-2%u ﬁﬁ?(t) + 2#@?’2@)

“+o0 “+o0
= —23/ / —pk (w1)g" (w2, w1)g" (t, we)dwi dws +
5 d d? d>
2 22 7/“1’7, _2 2 N
thgpk()+ I dtpk()+ PP (t) = 2707 2o Pk (1)
d d?
_ 3 3 2
= 2N () — PR()] + 2% PR (8) + 22 n s PR () +
2 &
—2 M(1+N)ﬁﬁ;§(t)~

Finally we get that, for n = 2, the state probabilities (3.27) satisfy
d* , d° 2 d’ 3 2d 3
2aPe(t) = 22 g i(t) + 271+ p) s pe(t) = 2707 2pi(t) = 27X [pe(t) = pr—1 ()]

The expression of the probability generating function is much more complicated
in this case, due to the presence of the drift.

Theorem 3.6 The probability generating function of the process ]V;}(t),t > 0 s given,
for any n > 1, by

~ pit— 22t\J ——u+2%\/—2—;¢+2% ..... 25/ L2 4\ (1-w)
Gr(ut) =e ’ ¢ v . Jul<1 0 (3.30)

and the expected value is equal to

EN"(t) = = n>1. (3.31)
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Proof We give the details of the calculations in the case where n = 2:

A kon
GZ(u,t) = E u"pp (t) (3.32)
k=0
_(wa—pw)? (b= pwg)?
[e%e) k/\kt +oo +oo ke e Wy e 2ws
= E u ? wie 1’LU2 3 3 dU}lde
k=0 ©Jo 0 V2mw} V2mw3
‘LU2
400 2, +00 2, —
_ pent B T / e My - W2 T L
0 V2w 0 V2mw§
+oo 1 +2

2
— _pTwa _ / _ 2
= et e Tup T THW2mwa/2A(A-u)tp? g,

+oo 2
_ et b ety —we Uy —py/23 (=) 02)
e —€ 2 wWo
0o \/2mwj

1 1
eyt7t2§ \/%7#4»25 \/%Jr)\(lfu)

By taking the first derivative of (3.32), it is easy to see that the expected value of the
process is finite:

N d ~
EN;(t) = @GZ (u,t)
u=1
1 1 /2
12y F o oo Y
B 2 2 1 2 B E.
\/“2+)\(1—u)\/“2—u+22\/“2+/\(1—u) )
u=
For n = 3 the probability generating function can be obtained in an analogous way:
Gn (u,t) (3.33)
_ (wo—pwi)? _(wz—pw9)?  _ (t—pwg)?
= U = 1 - - 10W20Ws3
— kg 0 0 2w V2mw3 V2mw3
(wg—pwp)? _ (t—pwz)? —
too  ptoo —T T 2w _ 2 _
= t/ / 6*7”22“)2 +pwy+pws W€ 2 e ? 3[ e “’2\/2[‘2 +A1 “)] dwsydws
0 0 V2mws V2mw3

2
+oo g —3;  —w ¢2{ﬁ7 +\/2 #2 4 N(1—w) }
_ pfwg e 3 3 3 —H 2
= te“t/ e” Tz THW3 e [ } dw
0

V2rws °

12 1) u2 I VN
eutftzz ¢”77M+22 \/“77;&22 \/”7+)\(17u)
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and then the expected value reads, for n = 3,

ENy(t)

227

\/“;—M—Fﬁ\/”;—u-i-ﬁ\/“;—i—)\(l—u)

1 1/ . .
3 3y ;Lt—t27\/%—u+2%\/%—u+2f \/”—22+)\(1—u)
e

At

1 1
. : '
\/‘?—u+25\/‘§+k(1—u)\/“2“U—“) g

u=1

By the same reasoning we arrive at formulas (3.30) and (3.31) for any n > 1. For
p = 0 formula (3.30) coincides with (3.26). [ |

Remark 3.7 By considering (3.24) it is easy to check that (3.30) satisfies the following
recursive differential equation

-G (ut) = 2T W) - R (1)
k=0
= 22" "\ (u—1)G"(u, t).

Indeed by taking the derivatives of (3.30) we get

~ 1 1\ 2" 1- .1 1
Gauwt) = (27T (Mu— 1)) 20

= 22" \(u—-1)G"(u,t).

4 Poisson processes at Brownian sojourn times

We consider the composition of a homogeneous Poisson process with a random process,
distributed as the sojourn time on the positive half-line of a standard Brownian motion
I} =meas{s <t: B(s) > 0}, ie.

N(t) = N(T}), t > 0. (4.1)

Since the density function of I'; is equal to

d
Pr{Fjeds}zis, 0<s<t, (4.2)
my/s(t — $)
the probability distribution of N(t),t > 0 is given by
— 1 [ (As)ke s
(1) = Pr{N(t) = k :—/ W€ " 4s k>0t>0. 43
R e e = ®

An explicit expression for (4.3) is obtained in the following result.

Theorem 4.1 The state probabilities of the process N can be expressed as follows:

Pr(t) = pr(t) <2kk_ 1)21% \Fy (; k+1; )\t> , (4.4)
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where pg, k = 0,1, ... is the probability distribution of the homogeneous Poisson process
and 1Fy (o, B;x) denotes the confluent hypergeometric function defined as

0 Bia) = Zalat+ ). (ati-1) 2
1P (o B @) 1+;7(7+1) e
_ o)
- ;(73‘]'

where (v), = v(v +1)..(y+r—=1) (for r =1,2,..., and v # 0) and (v), = 1.(see
Gradshteyn and Ryzhik [5], p.1085).

Proof We can recognize in the integral (4.3) formula 3.383.1, p.365 of Gradshteyn
and Ryzhik [5],i.e.

/ x“—l(u - x)u—leﬁwdx =B (Ma V) ut vl 1F1 (:ua v ﬂu)v (45)
0
so that we get

N Yo 11 1 .
Be(t) = Bkt gy ) B (kLN

= [by 9.212.1, p.1086 of Gradshteyn and Ryzhik [5]]

k, —M\t
_ e g (k+1 1) Py (;,k+1;At)

k! 2’2

= [by the duplication formula of Gamma function]
2k —1 1
= pk(t)< L )212’“1F1 (2,k+1;)\t>.

Remark 4.1 We can interpret the process (4.1) in some distributionally equivalent
forms. Since it is well-known that

To(t) =sup{s < t: B(s) =0}
and

O(t) = inf {s <t:B(s) = Or;lggtB(z)}

possess the same distribution (4.2) as I'}", we can interpret the results of this section
as pertaining to the following compositions

N(To(t)) and N(O(@), t> 0.

Theorem 4.2 The state probabilities p;, given in (4.4) solve the following recursive
differential equations:

d k k41

%Pk(t) = 7 Px (t) .

peii(t),  k>0,t>0 (4.6)

with initial conditions
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Proof We rewrite (4.3) as follows

o (w)F /1 “Atz k-1 —1
Pi(t) = A e~ MNP Te(1 — 2)T2dz (4.7)

and take the first order derivative with respect to ¢, so that we get

kool
45 (t) = )\—/ zk_%(l - z)_%i (tke_)‘tz) dz

@ = Tl
A" k-1 ' k—3% -3 =Xt k ' k+3 —1 At
= kt "2 (1 —2)"2e M dz — At 2"z (1 —2)"2e "dz
7Tk' 0 0
k_ k+1_
= ?Pk(t) - Tkarl(t)'
[ ]
Remark 4.2 We evaluate the Laplace transform of (4.7) which reads
Loy = [ e (4.9
0

00 kk
= / _”t)\ / k_%(l—z)_%e_(’\z)tdzdt
0

k!
1 oo \Fih

= 7/ 21— ) / Z__ e At g,
™ Jo 0 k'

1o 1 MT(k+1)

N|=

S R L S .5 L
- o) et

The last expression in (4.8) permits us to interpret the process N(t),t > 0 as the
standard homogeneous Poisson process with random rate A distributed as a Beta
random variable of parameters %, % Indeed the Laplace transform of a standard
Poisson process is given by

P k
L{pk(t),n} = (n_i(_)\/\i)kﬂ

The same conclusion can be drawn directly from (4.7).

Remark 4.3 The probability generating function can be evaluated as follows:

_ i )\su
G(u,t) = D 4.9
> ot / %Z . (4.9)
t e—As(l—u)
= / ds
0o m/s(t—s)

= [by (4.5)]
= R (; 15 M(u — 1)>



[by 9.215.2, p.1086 of Gradshteyn and Ryzhik [5]]

t(l—u At
e )Jo(—?(l—u)eﬂ)

_ At(1—u) i (—em)k (=At(1— u))Qk

P (k!)2 24k
Catimw o= 1 (M1 —u))?k
= )Z(k!)z 24k)
k=0
= GunnpY),

where G(u, t) denotes the probability generating function of the homogeneous Poisson
process with rate \/2.
We can derive the same result by evaluating the integral in (4.9) directly, as follows,

t ef)\s(lfu)sfé

0 T/t — s

= [by putting s = tsin® ¢

ds

s ) _1
= M/z e*)\(lfu)tsianB(tSln ¢) 2 SiH¢COS¢d¢
T Jo cos
_ g /E e—)\(l—u)tsin2 ¢d¢
T Jo
1 —cos2
~ [sin2g = 12829
2
QQ_M % A(1—u)tcos2¢
B S RS
m 0
CA(l—w)t x
2 A(l—wu)tcos @
= 67/ e
™
Gz ()\t (1—u )
= e 2
For the factorial moments, we get from (4.9)
E [N(t) ) (N(t) —r +1)] (4.10)
d"
= G(u,t
du” (u, )u 1
bsrereimu) “> _ 11
=\ B e
s(t —s) ™ (T " 2’ 2)
At 1 r 1
_ ( )F r4+ = :pr(t)e)\t (T+2).
rly/m 2 Nz
From (4.10) it is easy to derive
At
EN(t) = —
(="
and -
— A%t At
Var(N(t —+ =
ar(N(0) = -+ 5
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Remark 4.4 We can give an alternative representation to the distribution (4.4) and
the factorial moments (4.10), in terms of the time T° of the first return in zero of a
coin tossing random walk, whose distribution is given by

2K\ 1 1
0 __ _ —
Pr{T _2k+2}_(k>k+12%+1’ kE=0,1,.. (4.11)

Indeed the distribution (4.4) can be written as
1
Pr(t) =2(k+ Dpp(t) Pr{T° =2k + 2} 1} (2, k+1; At) .

The factorial moments, instead, read

E[N(t) ) (N(#) =7+ 1)] =2(r + 1)p,(t) Pr {T° = 2r + 2} .

5 Poisson processes at Bessel times

Let us denote by R, (t),t > 0 the y-Bessel process, starting at zero, with transition
function given by

257’16’%
py(s,t) = (5.1)
(2t)3T (%)
for s,t,v > 0, and with generator
1(02 ~y-10
A_2{832+ S 65} (5.2)

We study now the composition of a homogeneous Poisson process with a process
defined as the square of R (t),t > 0, which will be denoted by RZ = (R,(t))*,t > 0.
We derive the transition density of this second process, as follows:

d/f2uﬂ le %
& hy i)™

Il
|
g
—
v
=y
no
=
A
»
——
Il
|

d
p?y(‘s?t) dS

Therefore are interested in deriving the probability distribution of the following pro-

- N,(t) = N(R3(t)), t>0,

and its governing equation.

Theorem 5.1 The state probabilities ,py of the process Nv(t),t > 0 are given, for
any k>0, by

@ )k T (k+3)
@xt+ D2 ET(3)

JBu(t) = Pr{N, () =k} = (5.3)

The probability generating function of the distribution (5.3) has the following form

~ 1

Gl = @At(1 — ) + 1)/ =t o4
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Proof The distribution is obtained directly as follows

_ 400 )\k & N
) = [ st s s
O .

A oo " .
= f/ e Mgt lemai s
k"(?t)fr(%) 0

AF 2t kt3 5
= T (k+ =
k!(2t)2T (%) (2)\t+1> ( + 2)’

which coincides with (5.3). We derive the probability generating function as follows:

~ L ONC R s 1 T a1 B
Gy (u,) ;OU +Dr(t) T (2)\t+1)7/2/0 e Fzz leditidy
B 1 1
(2At +1)/2 (17 22ty )*
2At+1
1

A1 —u) + 1)/

Remark 5.1 An alternative expression for the probabilities (5.3) can be obtained
by rewriting it as follows:

~ (2>\t)k 1 /+OO — k+2—1

pe(t) = - e w2 T dw 5.5

Pr(0) @2t + 1) 2 T (3) Jo (55)
(2At)* 1

+oo .
) (2At+1)k+3r(g)/0 Pr{N(w) =k} w?"'dw.

Formula (5.5) possesses an interesting interpretation for k > 1, since, in this case, we
can recognize the probability distribution of a birth-death linear process M(t),¢ > 0
with birth and death rates equal to 2\, which reads

2 k—1
2\t + 1)
and o\
Pr{M() =0} = ;==

(see, for example, Bailey [1]). Therefore we get

oAt Pr{M(t)
@x+1):t (3

— +o0
~Pr(t) = )_ k) /0 Pr{N(w) = k}w? 'dw. (5.6)

In the special case where v = 2, formula (5.6) reduces to

(2)¢)F1

Pr(t) = 20—
2Pk(1) (2xt 4 1)

= M Pr{M(t) = k}. (5.7)

The presence of the factor 2\t can be explained by considering that, for the Poisson
process, the extinction probability must be equal to zero.
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Remark 5.2 Tt is easy to check that (5.7) represents, for k > 0, a genuine probability

distribution:
oo o0

_ (2Mt)k
)= =1
S R T
In the general case v > 0, this check is a bit more complicated:

S (et )

> (2)t)F Foo 4
7 Z e 2 a1,
r(1) (2)\t+1 )2 =k (2At+ 1)

oo

_ 1 /+°° 2% 12 (2Xtz)*
T (2)ex+1)"2Jo K2t + 1)

1 Foo e | 2tz
= 7 e fz2  texitI
I'(3) @t +1)7

_ 1 1 I 7\ 1
- /2 3 \2)
L (2)@2xt+1) (1_ 2§?i1)

Remark 5.3 By taking the first derivative of (5.4) we get that the first moment is
equal to

Nty (2ME(1 —u) + 1)2

EN,() = @M1 —u) +1)7

= A, (5.9)

while its variance can be obtained as follows
E [Kfv(t) (]T/'W(t) - 1)}

2xt)%y (2 +1)
2 (2M(1 — u) + 1) F?

=)y (v +2),

u=1

so that we get
Var (M(t)) = Aty 20t 4 1]. (5.10)

Results (5.9) and (5.10) can be checked, in the case v = 2, by using (5.7) and consid-
ering that
EM(t) =1, VarM(t) = 2Xt.

Finally we derive the differential equations satisfied by (5.3) and (5.4).

Theorem 5.2 The state probabilities py, given in (5.3), are solutions to the following
difference-differential equations

d k k+1
—pk(t) = ;Pk(t) -

pk+1(t)7 t>0, k>0 (511)

subject to the initial conditions

_ 1, k=0

while the probability generating function G +(u,t) is solution to

oG 1-udG
— < .
() —S(ut), >0, ul <1, (5.12)
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with G (u,0) = 1.

Proof We can check (5.11), directly, by taking the derivatives of (5.3)

d = P(k+3)d  (2x)*
7’ka(t) - | 0l ar L4k
a KIT(3) dt (2xt + 1)
o L (k 4 3) KA (@0 + 1) — (314) (a0t x4+ 1)+
kD (%) (2)\t—|—1)7+2k
Pk 3 3Hk) 20
= 2)(2x)F! ( fyz) E_ (42 kl
kT (5) (2Xt + 1)EJF (2)\t—|—1)5+ +
ko k+1
= 7)== P (0)-

Since the partial derivatives of 67 are equal to

o0
Zu’“ o Pt (5.13)
k=0
and ~
oG k1~
(Tu”(u,t) = kuF L pi(t), (5.14)
k=0
we get
. d
k ~
- t 5.15
kz:;u 7 P (t) (5.15)
1—u 1 o~
k=0
I~ jo1 ~ 1 ~
= - Z kuP b pr(t) + n Z ku® p(t)
k=0 k=0
1 oo
S WSS St
k=1
= [for k—1=11in the ﬁrst sum}
1 oo
= 3 Z(l + 1) AP (t Z ku® +Dr(t
1=0
which coincides with (5.12). [ ]
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