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ABSTRACT 
Vertices Principal Component Analysis (V-PCA), and Centers Principal Component 
Analysis (C-PCA) generalize Principal Component Analysis (PCA) in order to 
summarize interval valued data. Neural Network Principal Component Analysis (NN-
PCA) represents an extension of PCA for fuzzy interval data. However, also the first 
two methods can be used for analyzing fuzzy interval data, but they then ignore the 
spread information. In the literature, the V-PCA method is usually considered 
computationally cumbersome because it requires the transformation of the interval 
valued data matrix into a single valued data matrix the number of rows of which 
depends exponentially on the number of variables and linearly on the number of 
observation units. However, Cazes et al (1997) have shown that this problem can be 
overcome by considering the cross-products matrix which is easy to compute. The 
present paper offers a review of C-PCA and V-PCA (which hence also includes the 
computational short-cut to V-PCA) and NN-PCA. Furthermore, a comparison is 
given of the three methods by means of a simulation study and by application to an 
empirical data set. In the simulation study, fuzzy interval data are generated according 
to various models, and it is reported in which conditions each method performs best.  
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1. Introduction 
 
The need for fuzzy set theory emerged from the attempt of providing a rigorous 
mathematical framework for precisely dealing with uncertain phenomena. Here, the 
concept of uncertainty refers to situations characterized by absence of sharply defined 
criteria of class membership, as firstly noted by Zadeh (1965). Instead, interval 
analysis emerged from the desire to manage the inaccuracies of measuring 
instruments. Thus, fuzzy set theory and interval analysis arose from different needs, 
but the interrelationship between them is recognized. See, for more details, Lodwick 
and Jamison (2003).  
A fuzzy set consists of fuzzy scores or measurement of objects on variables. These 
fuzzy scores are given in the form of “membership functions”. Specifically, each 
score is defined fuzzily, as a function on a domain of possible values, where this 
function indicates for each possible value the degree of applicability (or certainty or 
belief) of this value to the object being measured. If the domain of possible values is 
X, then a membership function is a subset of +ℜ  such that ( ) ∞<

∈
xx

Xx
~µsup , but, 

usually, ( ) Xxxx ∈∀∈ ],1,0[µ ~  and ( ) 1µsup ~ =
∈

xx
Xx

 (normal fuzzy sets). Currently, a 

fuzzy set is represented solely by its membership function. See, for more details, 
Zimmermann (2001). 
A general class of fuzzy sets, that we will consider in this paper, is the so-called LR 
family. A fuzzy interval ( )++−−= RL xxxxx ,,,~ , with ++−− <<< RL xxxx , is of LR type 
if there exist two functions L (for left) and R (for right), which must fulfill particular 
requirements (see Zimmermann, 2001) with membership function 
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The quantities ( )−− − Lxx  and ( )++ − xxR  are the left and right spreads, respectively. 
The intervals [ ]+−

RL xx ,  and [ ]+− xx ,  are usually denoted as the support and the core of 
a fuzzy interval, respectively. A classical non-fuzzy, or crisp, interval can be derived 
from a fuzzy interval when −− = xxL  and ++ = Rxx  (when the spreads are equal to 0). 
In this case, (1) is replaced by  
 

( )


 ≤≤

=
+−

otherwise.0
,1

µ ~
xxx

xx        (2) 

 
From (2), it is easy to see that differently from fuzzy sets, intervals have an ‘all-or-
nothing nature’. Interval analysis has no gradations: one does not know the exact 
value of the measurement, but one only knows the exact limit of its domain of 
variation. A number x is either in an interval X, or it is not and, thus, the concept of 
degree of membership vanishes. Therefore, we can state that interval analysis can be 
considered as a subdomain of fuzzy set theory. For the sake of completeness, it is 
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fruitful to observe that a fuzzy  number and a crisp number are special cases of fuzzy 
interval when +− = xx  and ++−− === RL xxxx , respectively. See also Figure 1. 
 
Figure 1: Membership functions of fuzzy intervals (a), crisp intervals (b), fuzzy 
numbers (c), crisp numbers (d). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As with crisp data, it frequently occurs that one aims at summarizing the data through 
a low number of (unobservable) variables. Principal Component Analysis (PCA) is a 
well-known technique for summarizing crisp data. Specifically, let n and m be the 
numbers of, respectively, observation units and variables. PCA finds mp ≤  
unobserved variables, called components, which are linear combinations of the 
observed ones, such that they capture the (observed) information as much as possible. 
The observed data matrix X is approximated by 
 

BAX ′=ˆ ,         (1) 
 
where A (n×p) is the component scores matrix and B (m×p) the component loadings 
matrix. Note that X̂  provides the best p-rank approximation of X. Also note that 

XBA =  if the component loadings matrix is columnwise orthonormal.  
Several authors generalized PCA to deal with interval valued and fuzzy data: 
concerning interval valued data, we refer to Centers Principal Component Analysis 
(C-PCA) and Vertices Principal Component Analysis (V-PCA) by Cazes et al. 
(1997), also see Bock and Diday (2000). Further works can be found in Lauro and 
Palumbo (2000), Cazes (2002), Palumbo and Lauro (2003) and D’Urso and Giordani 
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(2004). Concerning fuzzy data, as far as is known by the authors, at least five works 
are available in the literature. Watada, and Yabuuchi (1997), Giordani and Kiers 
(2004a) and D’Urso and Giordani (2005) extend PCA so as to handle fuzzy numbers. 
Instead Coppi et al. (2004) and Neural Networks Principal Component Analysis (NN-
PCA) by Denœux and Masson (2004) attempt to generalize PCA so as to handle 
fuzzy interval data. It should be noted that methods for interval valued data can also 
be used to analyze fuzzy interval data by simply ignoring the spreads information. In 
other words, these methods then only use the cores of the fuzzy intervals. 
Alternatively, these methods could be applied to the supports, or to intervals midway 
between the cores and the supports. Vice versa, methods for fuzzy data can also be 
used for analyzing interval data, because the latter can be seen as a special case of 
fuzzy data, with spreads equal to 0. 
In this paper, we shall compare C-PCA, V-PCA and NN-PCA. At the time of writing, 
the latter is the only one published work for PCA of fuzzy intervals. C-PCA and V-
PCA are probably the two most popular methods for PCA of interval valued data and 
hence are chosen.Note also that C-PCA, V-PCA and NN-PCA have largely the same 
aim in summarizing the data: finding crisp loadings, and fuzzy (or interval valued) 
component scores of the ranges of data values. 
The C-PCA method basically consists of a PCA on the centers of the intervals, 
whereas the V-PCA method is based on using all vertices of the hyperrectangle 
defined by the intervals for all variables for each observation unit (as explained 
below). V-PCA consists of a PCA on the ensuing matrix. The number of rows of this 
matrix depends exponentially on the number of variables and linearly on the number 
of observation units, and appears to make the actual computation of a PCA solution 
practically impossible even for relatively small numbers of variables. Indeed, Cazes 
et al (1997) have shown that this problem can be overcome by considering the cross-
products matrix which is easy to compute. Nonetheless, V-PCA seems only to be 
commonly thought of as a method requiring the PCA of a huge matrix (see, e.g., 
Denœux and Masson, 2004, p. 337), which suggests to avoid performing V-PCA and 
rather use C-PCA instead. However, as Denœux and Masson note, C-PCA 
unfortunately “does not take into account the imprecision of the data in the feature 
extraction process and, consequently, builds only suboptimal low-dimensional 
representation of the data [...]”. Finally, the NN-PCA method detects the underlying 
structure of fuzzy intervals by extending in a fuzzy framework the connection 
between standard PCA and autoassociative multilayer perceptrons described by 
Boulard and Kamp (1988).  
C-PCA, V-PCA and NN-PCA have been described in the literature, but how to 
choose between these methods has received little or no attention. In the present paper, 
we offer empirical information for facilitating this choice, by comparing the methods 
by means of a simulation study and by application to an empirical data set. In the 
simulation study, fuzzy data are generated according to various models, and it is 
studied in which conditions each method performs best. 
The paper is organized as follows. In Section 2 and in Section 3, we present V-PCA 
and C-PCA, respectively. In particular, in Section 2, we explain in detail the 
computational short-cut for the solution of the V-PCA method. In Section 4, the NN-
PCA method is reviewed. Finally, Section 5 and Section 6 are devoted to, 
respectively, a simulation study carried out in order to compare the above three 
methods, and an application of all the methods to a fuzzy data set. 
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2. V-PCA: Vertices Principal Component Analysis 
 
The Vertices Principal Component Analysis (V-PCA), proposed by Cazes et al. 
(1997), offers the possibility to detect the underlying structure of the two-way interval 
valued data set stored in X (n×m): 
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The i-th row of X pertains to the i-th observation unit, ni ,,1 K= . As each 
observation unit is characterized by m (interval valued) variables, it can be 
represented as a hyperrectangle in mℜ  and the number of vertices of each 
hyperrectangle is m2 . If 1=m , each hyperrectangle is reduced to a segment and, if 

2=m , to a rectangle. 
V-PCA does not directly summarize the interval valued data in (2). In fact, (2) is 
replaced by a single valued data matrix obtained as follows. Each interval valued row 
is transformed into the numerical matrix iX : 
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iX  is obtained in such a way that each row refers to each vertex of the i-th 

hyperrectangle. If 3=m , we have 
 

 

































=

+++

−++

+−+

++−

+−−

−+−

−−+

−−−

321

321

321

321

321

321

321

321

iii

iii

iii

iii

iii

iii

iii

iii

i

xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx

X  .       (4) 

 
Thus, iX , ni ,,1 K= , has m2  rows and m columns. By stacking below each other all 
the matrices iX ’s, ni ,,1 K= , we get the new numerical valued data matrix PCAV −X  
with mn2  rows and m columns: 
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V-PCA consists of performing PCA on (5). As for ordinary PCA, it can advisable to 
preprocess the data in order to avoid unwanted differences among the variables. The 
matrix in (5) can be preprocessed as in the standard single valued case.  
The application of PCA to the matrix PCAV −X  will give BAX ′= −− PCAVPCAV

ˆ , and if B  
is chosen to be columnwise orthonormal, we have BXA PCAVPCAV −− = . To facilitate 
the interpretation of the solution, it is often useful to plot the observation units. When 
the loadings furnish an orthonormal basis, the component scores directly give the 
coordinates for a plot of the observation units projected on the space spanned by the 
components (e.g., see Kiers, 2000). In case of V-PCA, for each observation unit, we 
could analogously plot the component scores for all vertices for each observation 
unit, which would thus represent the projected hyperrectangles for all observation 
units. However, in this way, each projected hyperrectangle would be represented by a 
(large) number of projected vertices, and would not give a clear geometrical shape. A 
more attractive way of plotting would be to plot the rectangle (in two-dimensions), 
box (in three dimensions), or hyperrectangle in more than three dimensions, that 
envelops all projected vertices of a projected hyperrectangle. For this purpose, Cazes 
et al. (1997) proposed to determine, for each observation unit, for each component, 
the segment containing all component scores for vertices associated with this 
observation unit. Specifically, with respect to the k-th component, pk ,,1 K= , if in  
denotes the set of all the vertices for the i-th observation unit, ni ,,1 K= , the lower 
and upper bounds of such a segment are, respectively, 
 

( )lknlik aa
i∈

− = min ,        (6)

 ( )lknlik aa
i∈

+ = max .        (7) 

 
It should be clear that V-PCA implicitly takes into account the interval widths by 
considering all the vertices pertaining to each hyperrectangle. Unfortunately, it 
requires the analysis of a data matrix PCAV −X , see (5), the dimension of which is often 
huge. Specifically, as the number of columns increases, the number of rows increases 
exponentially. For example, suppose we deal with 16=n  observation units and 

12=m  interval valued variables, then, for this relatively small data set PCAV −X  
becomes huge because it has order 65536×12, which is hard to handle. Larger 
numbers of variables soon make the PCA of such a matrix PCAV −X  practically 
impossible. 
Cazes et al. (1997) have shown that this computational problem can be overcome by 
considering a special property of PCA. Specifically, it is well-known that the columns 
of the component loadings matrix are the eigenvectors obtained from the 
eigendecomposition of the cross-products matrix. Note that the eigenvectors are 
arranged in such a way that the first ones are associated with the highest eigenvalues. 
Dealing with the cross-products matrix PCAVPCAVPCAV −−− ′= XXC  has two relevant 
advantages. The (square and symmetric) matrix PCAV −C  has order m, that is the 
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number of observed variables. Moreover, PCAV −C  is very simple to compute without 
involving the computation of PCAV−X . In fact, let us consider two different columns of 

PCAV−X  (without loss of generality the first two columns) whose cross-products are 
stored in the off-diagonal elements of PCAV −C . These two columns have only two 
values: the first −

1ix  and +
1ix , ni ,,1 K= , and the second −

2ix  and +
2ix , ni ,,1 K= . The 

two columns are such that the four combinations ),( 21
−−
ii xx , ),( 21

−+
ii xx , ),( 21

+−
ii xx , 

),( 21
++
ii xx  occur equally often. More specifically, if there are two variables, each 

combination occurs only once, if there are three variables, twice, if there are four 
variables, four times, if there are m variables, each combination occurs 22 −m  times. 
This implies that, the cross-product of the first two columns is 
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Let us consider the diagonal elements of PCAV −C . The first element refers to the first 
column of PCAV−X . The cross-product is the sum of the squared (lower and upper) 
bounds times a constant. In the general case of m variables, it is easy to see that this 
constant equals 12 −m . Hence, we have 
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analogous expressions hold for the other columns of PCAV −X . Now taking into 
account (8) and (9), we get 
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The extracted components can then be found by performing the eigendecomposition 
of (10), because the component loadings are the eigenvectors associated with the first 
p highest eigenvalues. Thus, we can compute the V-PCA loadings without actually 
setting up the huge matrix PCAV −X .  
Above, we have seen how to compute the loadings, without setting up the huge 
matrix PCAV −X , as proposed by Cazes et al. (1997). The component scores have not 
been computed in this way, although they now could be computed as 

BXA PCAVPCAV −− = , because indeed the obtained loading matrix B  is columnwise 
orthonormal. However, this would require that we nevertheless use the huge matrix 

PCAV −X . In practice, however, we do not need the component scores for all vertices, 
but only, for each observation unit, for each component, the segment covering the 



 

 8 

component scores for the associated vertices, given by the formulas (6) and (7). 
Rather than actually computing all component scores for all vertices, which would 
require setting up the matrix PCAV −X , we can again use a short-cut offered by Cazes et 
al. (1997), as follows. Let us first define what we may call the positive and negative 
component loadings matrices, respectively, +B  and −B  with generic elements 
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where bjk gives the loading of variable j on component k. Thus, +B  (and −B ) contains 
the non-negative (non-positive) elements of B whereas the negative (positive) 
elements of B are replaced by 0. In matrix notation, the bounds of the component 
scores matrix are given by 
 
 +−−+− += BXBXA         (13) 
 
and  
 
 −−+++ += BXBXA .        (14) 
 
It can be seen that (13) and (14) are easily computed, and do not require setting up the 
huge matrix PCAV−X .  
Thus, it has been seen that, we can get (6) and (7) without explicitly having to 
compute all the component scores for all the vertices. It follows that this 
computational approach to V-PCA finds the same component loadings and the same 
segments for the observation units, as the original computational approach to V-PCA. 
We only lose the component scores of all individual vertices, but not of the segments 
that enclose them. 
 
 
3. C-PCA: Centers Principal Component Analysis 
 
An alternative exploratory tool in order to summarize interval valued data sets is the 
Centers Principal Component Analysis (C-PCA), as proposed by Cazes et al. (1997). 
Similarly to V-PCA, C-PCA transforms the interval valued data matrix in (2) into a 
new single valued matrix. Specifically, the interval valued score of the generic 
observation unit i on the generic variable j is replaced by the single valued score 
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for ni ,,1 K=  and mj ,,1 K= , that is the midpoint or center of the interval at hand. 
Therefore, we then get the centers matrix 
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In C-PCA, a PCA is performed on the standardized (in the classical way) matrix in 
(17).  
In order to compare C-PCA to V-PCA, it is interesting to compute the cross-products 
matrix for the Centers method. Starting from PCAC −X  in (16), we have 
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By means of (15), (17) can be rewritten as  
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Therefore, by comparing (10) and (18), it is easy to see that the off-diagonal elements 
of the two cross-products matrices are equal up to a constant m2 . Ignoring these 
constants, the matrices differ in the diagonal elements only. Hence, the proportion of 
elements that differ across the two matrices is mmm 12 = . As a consequence, when 
the number of variables increases, the cross-products matrices on which the 
eigendecompositions are performed differ on a smaller proportion of elements. 
Disregarding the constants in (10) and (18), the difference between each pair of 
diagonal elements is  
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mj ,,1 K= , where ijw  denotes the interval width of the i-th observation unit, 
ni ,,1 K= , with respect to the j-th variable, mj ,,1 K= . Hence, the differences 

between the matrices depend only on the interval widths, as can be seen in (19). 
As for V-PCA, it can be desirable to plot the entities of the unit mode in the obtained 
low dimensional space. In this case, assuming, without loss of generality, that (16) is 
already preprocessed, the k-th component score of the i-th center is  
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provided that B is columnwise orthonormal. It is worthwhile to note that, after 
preprocessing the observed (lower and upper) bounds using the mean and the 
standard deviation of the centers of the variable at hand, one may compute the 
component scores for the vertices (see Cazes et al., 1997). This can be done in the 
same way as for V-PCA, but then, of course, using as component loadings those 
obtained performing C-PCA. Again, as for V-PCA, it is attractive to only determine 
the hyperrectangles that envelop all projected vertices, and for this purpose, we can 
again use (13) and (14), but then, of course, again using as component loadings those 
obtained performing C-PCA.  
Summing up, the Centers method is nothing but performing ordinary PCA on the 
midpoints matrix. It follows that C-PCA as such does not exploit all the available 
information in detecting the underlying structure of the data. To use the interval 
information, the vertices of all data hyperrectangles are projected on the obtained 
subspace and next segments enveloping these projections are determined in the same 
way as for V-PCA, using the (columnwise orthonormal) loadings matrix. 
 
 
4. NN-PCA: Neural Networks Principal Component Analysis 
 
The PCA extension for fuzzy data proposed by Denœux and Masson (2004) is based 
upon the connection between classical and autoassociative multilayer perceptrons 
noticed by Boulard and Kamp (1988). In fact, Boulard and Kamp (1988) showed that 
standard PCA can be seen as a constrained feedforward three-layer neural network 
with one hidden layer of size p. Specifically, when p<m, the neural network finds the 
best compression of the input layer (the raw data X) according to the quadratic loss 
function: 
 

22ˆ),( XTSXXXTS −=−=f ,      (21) 

 
where the output layer (the estimated data XTSX =ˆ ) is defined implicitly in (21), S 
(p×m) is the hidden-to-output weights matrix and T (m×p) is the input-to-hidden 
weights matrix. Baldi and Hornik (1989) showed that the global minimum of (21) is 
given by S=UB’ and T=BU-1, where B (m×p) contains the eigenvectors associated 
with the p highest eigenvalues of the cross-products matrix XXC ′=  and U (p×p) is 
an arbitrary nonsingular matrix. From the above description of S and T it follows that 

BXBXTSX ′==ˆ =AB’, where A is defined implicitly. Hence, we can conclude that 
classical PCA can be seen as a particular neural network with one hidden layer of size 
equal to the number of extracted components. Specifically, the role of the hidden 
layer is to compress the data at hand as is the role of the components in PCA.  
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The PCA extension for fuzzy data is based on a suitable distance for comparing 
observed and estimated fuzzy data. Denœux and Masson (2004) propose to consider 
the following quadratic loss function: 
 

  ( ) ( ) ( ) ( ) ,ˆˆˆˆ)(
2222 ++++−−−− −+−+−+−= RRLLf XXXXXXXXB  (22) 

 
which compares all the ‘ingredients’ of fuzzy intervals. In order to define the 
component scores matrix and the estimated fuzzy data matrix ( )++−−= RL XXXXX ˆ,ˆ,ˆ,ˆˆ , 
Denœux and Masson (2004) make use of the extension principle (see, for instance, 
Zadeh, 1975). According to the extension principle, the fuzzy component scores 
matrix can be obtained as 
 

( )
( ),,,,

,,,
−−++−−++−++−−++−

++−−

++++

==

BXBXBXBXBXBXBXBX

AAAAA

LRRL

RL   (23) 

 
where +B  and −B  are constructed according to (11) and (12) but the component 
loadings matrix is that obtained from NN-PCA. The estimated fuzzy data matrix is 
then given by 
 

( )
, ,,,

ˆ,ˆ,ˆ,ˆˆ






 ′+′′+′′+′′+′

==

−−++−−++−++−−++−

++−−

BABABABABABABABA

XXXXX

LRRL

RL

 (24) 

 
which, taking into account (23), can be written as 
 

( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

. 
,

,,

ˆ,ˆ,ˆ,ˆˆ

















′++′+′++′+

′++′+′++′+

==

−−++−+−−++−−++−+−−++

−−−+++−++−−−−+++−++−

++−−

BBXBXBBXBXBBXBXBBXBX

BBXBXBBXBXBBXBXBBXBX

XXXXX

RLLR

LRRL

RL

 (25) 

 
Therefore, (22) can be elaborated as 
 

( ) ( )

( ) ( )

( ) ( )

( ) ( ) .

)(

2

2

2

2






 ′

++
′

+−

+




 ′

++
′

+−

+




 ′++′+−

+




 ′

++
′

+−=

−−++−+−−+++

−−++−+−−+++

−−−+++−++−−

−−−+++−++−−

BBXBXBBXBXX

BBXBXBBXBXX

BBXBXBBXBXX

BBXBXBBXBXXB

RLLRR

LRRLLf

  (26) 
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The minimization of (26) is attained by means of a standard gradient descent 
procedure. As far as we can see, such a minimization procedure does not constrain the 
loadings to be columnwise orthonormal. See, for more details, Denœux and Masson 
(2004).  
As with C-PCA and V-PCA, the component scores can be used to plot 
(hyper)rectangles for the objects. In the case of NN-PCAS, this is particularly easy, 
because for each object we have fuzzy interval component scores, so we can use the 
supports, or the cores for each component to define the (hyper)rectangles to be 
plotted. 
In conclusion, like V-PCA and C-PCA, NN-PCA finds a crisp loading matrix, but in 
contrast to V-PCA and C-PCA, NN-PCA finds fuzzy interval component scores 
exploiting the potential of autoassociative multilayer neural networks and taking into 
account the extension principle. 
Before presenting the results of the simulation study and of the application, it is 
important to note that C-PCA, as PCA, finds the best rank p decomposition of the 
data matrix at hand (the centers matrix). If such a matrix has rank p, it follows that C-
PCA perfectly decomposes it into two rank p matrices, namely the component scores 
and the loadings ones and such a decomposition gives exactly the original data 
matrix. However, C-PCA is not able to optimally capture the data uncertainty. In fact, 
C-PCA only models the centers by PCA and then in a second step projects the 
uncertainties on that space, but that space need not optimally capture the 
uncertainties. Therefore, if the centers matrix has rank p, C-PCA can only find p-
dimensional spaces such that the m-dimensional centers perfectly lie in it. Also V-
PCA is not able to capture the uncertainties. Specifically, a perfect V-PCA solution 
would imply a perfect fit of all the vertices, which is impossible, as follows from the 
fact that the vertices matrix in (5) with mn2  rows and m columns cannot lie in the low 
dimensional space spanned by the ( mp < ) columns of the component loadings 
matrix. In fact, this would require that the vertices matrix PCAV −X  would have rank p, 
which is obviously not true (due to the structure of such a matrix). Note that this 
holds whenever the number of extracted components is lower than that of the 
variables. Basically, there is a geometrical reason for which the obtained low 
dimensional space does not optimally capture the uncertainty about the data (as given 
by the intervals). In fact, it is trivial that m-dimensional hyperrectangles cannot be 
fully described in the low dimensional space. If 3=m  and 2=p , we could never 
construct three-dimensional data (hyperrectangles) in such a way that all data lie in a 
plane. Similar comments hold concerning NN-PCA. That is, it seems hard, if not 
impossible, to find nontrivial data matrices X and component loadings matrices B of 
rank p, for which the distance in (26) is 0.  
Therefore, both C-PCA and V-PCA, which involve the use of standard mathematical 
tools, and NN-PCA, which involves the use of the extension principle and the 
concepts derived from fuzzy arithmetic cannot perfectly capture the uncertainty of the 
data. On the contrary, in classical PCA, we are able to construct m-dimensional data 
(points) that lie in a p-dimensional subspace. 
 
 
5. Simulation study 
 
In the previous sections, we reviewed three methods for performing a component 
analysis on fuzzy data. In C-PCA and V-PCA, the methods suitably transform the 
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interval valued data matrix into a single valued one on which classical PCA is 
performed. We also showed that the cross-products matrices obtained considering C-
PCA and V-PCA differ only in considering the interval width in the diagonal 
elements to find the underlying components. Thus, it has become clear that C-PCA 
and V-PCA are rather similar. Instead, in NN-PCA, computation of component scores 
and data estimates is based on the extension principle, which is a quite different 
approach. To choose, among the methods, it is now necessary to know which method 
performs best in practice. To gain knowledge on the performance of the three 
methods, we set up a simulation study in which fuzzy interval data are generated 
according to a model, and next C-PCA, V-PCA and NN-PCA are applied to these 
data, and it is inspected to what extent each method recovers the underlying 
information. Specifically, we analyzed the performance of the methods with respect 
to recovering the known component loadings and the component scores. Note that C-
PCA and V-PCA are applied to the cores of the thus constructed fuzzy interval data. 
We simulated data sets with fuzzy intervals for n (which was chosen equal to 16, 32, 
48 or 64) observation units and m (which was chosen equal to 6, 12, 18 or 24) 
variables, as follows. We constructed a component loadings matrix (B) with p=2 or 3 
components. Specifically, we considered two situations. In the first one, all the 
elements were randomly generated from the uniform distribution on [ ]1,0  or the 
standard normal distribution and the matrix was columnwise orthonormalized. In the 
latter one, B was constructed so that it had a simple structure. To do so, B was built as 
 



















=

pb00
0

b0
00b

B

L

OMM

ML

L

2

1

 ,       (27) 

 
where 0’s are pm -vectors with zero elements, and kb , pk ,,1 K=  are pm -vectors 
with elements equidistantly chosen from the interval [0.6, 0.9]; for instance, if m=12 

and p=3, we got [ ]′= 9.08.07.06.0kb , pk ,,1 K= . Then B was 

orthonormalized: this was done by multiplying B by ( ) 2
1−′BB . Next, we constructed a 

component scores matrix of fuzzy intervals for p (=2 or 3) components. Specifically, 
for each observation unit, we generated the lower bounds of the fuzzy intervals (from 
the uniform distribution on [ ]1,0  or from the standard normal distribution) and the 
width of such fuzzy intervals considering the following three choices. In the small 
width case, we have widths equal to 0.4 for the first component, 0.3 for the second 
one and 0.2 for the third one if p=3; in the medium case, 0.8, 0.7 and 0.6 (the last only 
if p=3); in the large case, 1.2, 1.1 and 1.0 (the last only if p=3). By adding the width 
to the lower bounds, we obtained the upper bounds. The upper and lower bounds 
(hence, the support) of the fuzzy component scores for the i-th observation unit, 

ni ,,1 K= , are denoted as −
ikLa   and +

ikRa  , pk ,,1 K= . Similarly, we constructed the 
core of the fuzzy component scores. This was done according to four assumptions 
concerning the left and right spreads of the component scores which are constructed 
as a percentage (20% or 40%) of the support of the fuzzy component scores going 
from −

ikLa   to +
ikRa  , ni ,,1 K= , pk ,,1 K= . This allowed us to check how the methods 

worked in case of fuzzy component scores with small (20%) and big (40%) 
symmetric spreads and in case of fuzzy component scores with asymmetric spreads 
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with small or big cores. Next, given a component score matrix with fuzzy intervals 
( )++−−= RL AAAAA ,,,  and the component loading matrix B, we constructed our 

fuzzy interval data (i.e., their supports and cores) according to (24). Let 
( )++−−= RL XXXXX ,,,  be the resulting matrix of fuzzy intervals. Then, noise was 

added to this matrix. The noise values were generated from the standard normal 
distribution, when the component scores were based on the normal distribution, and 
from the uniform on [ ]5.0,5.0− , when the component scores were based on the 
uniform distribution. In particular, we considered five different levels of added noise 
(which was chosen as 2.00 ,01.0 ,50.0 ,10.0 ,01.0=e ). Let −

LXE , −XE , +XE  and +
RXE  

denote the matrices containing noise values for −
LX , −X , +X  and +

RX , respectively. 

These matrices were next scaled such that 
22

−=− LX L
XE , 

22
−=− XE

X
, 

22
+=−+ XE

X
 and 

22
+=+ RX R

XE , in order to quantify exactly the relative amount 

of noise added to −
LX , −X , +X  and +

RX , which was, respectively, −
LXeE , −XeE , 

+XeE  and +
RXeE . If, after adding noise to the fuzzy data matrix X, it happened that, 

for some elements, the lower bound −
LX  and +

RX , any element of −
LX  was higher than 

the corresponding one of +
RX , we replaced the values involved by the average one, 

hence leading to a crisp number. Note that the midpoints matrix on which C-PCA is 
performed was obtained as  
 

2

−+

−
+= XXX PCAC .        (28) 

 
In the sequel, we refer to the case in which B and A are generated from the normal 
(uniform) distribution as the normal (uniform) case. 
The aim of the simulation study is to study which method works best not only in 
recovering the known component loadings but also the component scores. For each 
combination of number of observation units (16, 32, 48, 64), number of variables (6, 
12, 18, 24), number of extracted components (2, 3), interval width (small, medium, 
large), level of added noise ( 2.00 ,01.0 ,50.0 ,10.0 ,01.0=e ), structure of the left and 
right spreads (both 20%, 20% and 40%, 40% and 20%, both 40%), structure of B 
(random or simple) and generating distribution (normal or uniform), 10 data sets were 
generated. Thus, the simulation was carried out on 4×4×2×3×5×4×2×2×5 = 38400 
fuzzy data sets.  
In order to compare the performances of all methods, we must take into account the 
possible rotational freedom of V-PCA, C-PCA and NN-PCA. Thus, a component 
loadings matrix obtained with either method must be rotated so that it is as similar as 
possible to the known one. For instance, with respect to the loadings, if CB  is the 
component loadings matrix obtained by means of C-PCA, we rotated CB  by means 
of the rotation matrix CT  in such a way that  
 

22 min BTBBTB
T

−=− CCC .      (29) 
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Note that the minimum of (29) can be attained by solving an ordinary regression 
problem with respect to T. The same can be done with respect to the component 
loadings matrix VB  obtained performing V-PCA, and for the matrix BNN.obtained 
with NN-PCA. As far as we can see, the NN-PCA procedure, however, does not leave 
rotational freedom for B. This implies that the results we report for NN-PCA may be 
more optimistic then in the actual practical use of NN-PCA. 
Let CB , VB  and BNN now denote the rotated component loadings matrices. The 
recovery of the loadings by each method was assessed by means of the Mean 
Absolute Difference (MAD) between every element of the known component 
loadings matrix and the estimated one (see, e.g., Giordani and Kiers, 2004) divided by 
the number of elements of the matrix involved. For the component loadings matrix 
from C-PCA (similarly for V-PCA and NN-PCA), we have: 
 

mp

bb
MAD

m

j

p

k
jkjkC

BC

∑∑
= =

−
= 1 1 ,       (30) 

 
where jpCb  and jpb , mj ,,1K= , pk ,,1 K= , denote the generic elements of CB  and 
B, respectively. The closer the MAD value is to 0, the better the method works.  
In order to evaluate the recovery of the component scores, we consider the average 
MAD measure between the known upper and lower bounds of the component scores 
corresponding to the cores and those obtained by C-PCA, V-PCA and NN-PCA. Note 
that, for computing these bounds using (13) and (14), we must now use the 
component weights defined as ( ) 1−′ CCC BBB , ( ) 1−′ VVV BBB  and ( ) 1−′ NNNNNN BBB , 
respectively. This is because, in general, in ordinary PCA, component scores are 
given by A=XB(B′B)-1, with A denoting the component scores matrix, and B the 
loadings matrix, and when B is not columnwise orthonormal, this expression cannot 
be simplified further, so in that case the component weights  are given by B(B′B)-1. 
Due to the (oblique) rotation, the present loading matrices are no longer columwise 
orthonormal, so the component weights matrices used in (13) and (14) must be based 
on B(B′B)-1, where now B is replaced by CB , VB  or BNN. 
Given the component scores, we compute the overall component scores recovery 
value (for C-PCA, but likewise for V-PCA and NN-PCA) as  
 

 
2

−+ +
= CC

C

AA
A

MADMAD
MAD ,       (31) 

 

where, for instance, 
np

aa
MAD

n

i

p

k
ikikC

AC

∑∑
= =

++ −
=+

1 1  in which ikCa +  and +
ika  are the generic 

elements of the matrices of, respectively, the obtained upper bounds of the cores of 
the component score intervals and of the known ones. 
In a few cases, we observed that the recovery of the known loadings was quite bad 
and the best-rotated component loadings matrices were nearly collinear. If B is nearly 
collinear, the weights in W become very large. As a matter of fact, this causes a very 
poor recovery of the component scores. The frequency (out of 9600 cases) of such 
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extreme cases is given in Table 1. 
 
Table 1: Frequency (out of 9600 cases) of extremely poor recovery of the component 
scores: MAD values higher than 10, 25 and 50 distinguished with respect to the 
method at hand, the generating distribution and the structure of the component 
loadings matrix.  
 

Uniform Case 
Random Loadings 

Uniform Case 
Simple Loadings 

Normal Case 
Random Loadings 

Normal Case 
Simple Loadings MAD 

C- V- NN- C- V- NN- C- V- NN- C- V- NN- 
>10 134 146 187 114 152 224 10 16 27 5 3 16 
>25 54 58 67 35 61 91 6 7 11 0 1 5 
>50 25 27 37 16 32 45 3 2 6 0 1 1 
 
We noted that this misrecovery often occurred when the level of noise was high 
( 0.1≥e ) and especially when 0.2=e . 
In order to avoid that such anomalous cases will dominate our conclusions, in 
comparing the methods, we considered the median MAD values. The results are 
given in Figures 2 and 3. All the figures display the median MAD values 
distinguished with respect to the number of observation units, number of variables, 
number of extracted components, level of added noise, the structure of the fuzzy 
intervals (symmetry and size of the spreads) and the choice of the component scores 
widths. In particular, Figure 2 refers to the recovery of the known component 
loadings according to (30) and Figure 3 to that of the known component scores 
according to (31). 
Figures 2 and 3 provide useful information in order to assess which method works 
best in which situation. With respect to the recovery of the loadings, we observe that, 
in the uniform case, the results were conflicting. Specifically, in the simple structure 
case, NN-PCA should be preferred, even when the level of added noise increased 
(e=1.0 or e=2.0), the performance of NN-PCA got worse. On the contrary, when the 
loadings were randomly generated, C-PCA worked somewhat better than V-PCA 
and, above all, than NN-PCA. In the normal case, when the loadings had simple 
structure, NN-PCA worked well and better than C-PCA and V-PCA. When the 
loadings were randomly generated, V-PCA and C-PCA seemed to work equally well 
and much better than NN-PCA. As far as the recovery of the component scores is 
concerned (Figure 3), in the uniform case with simple structure loadings, all the three 
methods appeared to work equally well, with NN-PCA performing relatively poorly 
in the highest noise condition. When the loadings had random structure, we observed 
that NN-PCA performed considerably more poorly than C-PCA and V-PCA. In the 
normal case, all the three methods worked almost similarly.  
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Figure 2: Badness of recovery of component loadings ( median MAD values). 
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Figure 3: Badness of recovery of component scores (median MAD values). 
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Further details can be found in Tables 2 and 3 in which we summarize how many 
times one method worked noticeably better than the others in recovering the known 
component loadings (Table 2) and scores (Table 3). As Figures 2 and 3 showed that 
C-PCA and V-PCA worked almost similarly (with C-PCA working uniformly 
slightly better than V-PCA), we decided to limit our comparison to C-PCA and NN-
PCA.  
In Tables 2 and 3, each cell gives the percentage of the number of times in which the 
method in the column worked noticeably better than the other method, both overall, 
and in each the conditions mentioned in the first column. The conditions are the 
number of observation units, the number of variables, the number of extracted 
components, the interval width for the component scores, the structure of the fuzzy 
intervals (symmetry and size of the spreads) and the level of added noise. Here we 
decided to consider that one method performed noticeably better than the other one 
when the difference on the MAD index exceeded a threshold value equal to 0.03 for 
the recovery of the component loadings and 0.30 for the one of the component scores. 
If the difference was smaller, we considered the difference to be negligible.  
 
Table 2: Percentage of the number of times in which one method worked noticeably 
better with respect to the recovery of the component loadings.  
 

Uniform Case 
Random Loadings 

Uniform Case 
Simple Loadings 

Normal Case 
Random Loadings 

Normal Case 
Simple Loadings Condition 

C- NN- C- NN- C- NN- C- NN- 
Overall 53.1 3.3 12.2 5.2 16.8 0.5 1.3 2.4 
n=16 44.8 3.7 12.6 4.3 15.5 1.5 0.9 4.4 
n=32 52.2 3.8 11.0 5.9 18.0 0.4 2.2 3.0 
n=48 55.9 2.8 12.4 6.4 15.0 0.0 1.6 1.2 
n=64 60.6 3.1 13.3 4.3 19.3 0.0 0.6 1.3 
m=6 57.7 10.5 18.5 12.3 30.3 1.7 3.9 7.5 
m=12 55.5 2.5 11.3 5.4 19.3 0.2 0.6 1.6 
m=18 53.6 0.1 10.3 2.3 10.6 0.0 0.5 0.6 
m=24 46.8 0.2 9.2 0.9 7.5 0.0 0.2 0.1 
p=2 47.3 2.8 11.8 4.5 6.5 0.6 1.1 2.1 
p=3 59.0 3.9 12.5 5.9 27.1 0.4 1.6 2.8 
small 35.4 2.5 6.8 5.4 4.2 0.3 0.7 2.0 
medium 60.3 3.0 12.5 5.2 15.0 0.5 1.2 2.6 
large 64.5 4.5 17.8 5.1 31.6 0.7 2.1 2.7 
20-20 52.5 3.6 12.0 5.4 17.6 0.5 1.2 2.7 
20-40 54.1 3.2 12.4 4.9 17.1 0.5 1.2 2.5 
40-20 52.9 3.4 12.0 5.7 16.5 0.5 1.5 2.4 
40-40 54.0 3.1 13.0 4.8 16.5 0.5 1.4 2.3 
e=0.01 84.6 0.0 1.7 0.0 25.1 0.0 0.0 0.0 
e=0.10 79.9 0.0 1.6 0.0 20.2 0.0 0.0 0.0 
e=0.50 55.7 0.5 11.5 7.2 8.2 0.0 0.0 0.2 
e=1.00 33.4 7.2 30.2 9.9 8.8 1.0 0.7 1.6 
e=2.00 13.3 8.9 16.7 8.9 22.3 1.5 5.9 10.5 
 
Concerning the recovery of the loadings (Table 2), in the uniform case, C-PCA 
relatively often performed noticeably better than NN-PCA, while the reverse did not 
happened often. This was found in the simple structure case, and more strongly in the 
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random case. In the normal case with random loadings, again C-PCA relatively often 
performed noticeably better than NN-PCA, while now the reverse happened only 
rarely. In the normal case with simple loadings, neither method often performed 
noticeably better than the other, but as far as this happened, it happened somewhat 
more often for NN-PCA than for C-PCA.  
As far as the recovery of the component scores is concerned, Table 3 shows that, in 
the normal case, neither method often performed noticeably better than the other, for 
both random and simple structure loadings. However, in the few cases where there 
are noticeable differences, these are found more often in favor of C-PCA than of NN-
PCA. Conversely, in the uniform case, the C-PCA method relatively frequently 
performed noticeably better than NN-PCA, while the reverse happened considerably 
less often. 
 
Table 3: Percentages of the number of times in which one method worked noticeably 
better with respect to the recovery of the component scores.  
 

Uniform Case 
Random Loadings 

Uniform Case 
Simple Loadings 

Normal Case 
Random Loadings 

Normal Case 
Simple Loadings Condition 

C- NN- C- NN- C- NN- C- NN- 
Overall 16.4 7.6 15.0 5.9 1.8 0.7 1.7 0.4 
n=16 18.6 8.3 17.7 7.9 2.8 2.0 3.3 1.5 
n=32 15.3 8.8 13.0 6.6 2.1 0.2 2.2 0.1 
n=48 16.6 6.8 15.3 6.0 1.1 0.5 0.9 0.0 
n=64 15.3 6.5 14.3 3.1 1.3 0.0 0.6 0.1 
m=6 13.3 8.5 14.0 9.8 4.4 1.6 3.9 0.3 
m=12 15.5 9.0 14.4 5.0 1.8 0.6 0.6 0.7 
m=18 21.0 6.1 15.0 4.9 0.9 0.5 0.8 0.7 
m=24 16.0 6.9 17.0 3.9 0.2 0.0 1.6 0.0 
p=2 15.1 5.4 11.8 4.7 0.8 0.1 0.4 0.0 
p=3 17.6 9.9 18.2 7.1 2.8 1.3 3.0 0.8 
small 6.9 4.5 9.5 3.7 1.1 0.4 1.3 0.3 
medium 14.2 7.9 15.6 5.8 1.7 0.7 1.7 0.4 
large 28.3 10.5 20.2 8.3 2.6 1.0 2.3 0.6 
20-20 17.6 8.3 15.3 6.8 1.8 0.7 1.6 0.4 
20-40 17.0 7.3 14.8 5.6 1.6 0.6 1.6 0.5 
40-20 17.0 7.7 15.0 6.1 1.9 0.8 1.9 0.4 
40-40 14.2 7.2 15.2 5.3 2.0 0.6 1.9 0.4 
e=0.01 9.6 0.0 1.1 0.0 0.0 0.0 0.0 0.0 
e=0.10 8.4 0.0 1.0 0.0 0.0 0.0 0.0 0.0 
e=0.50 8.2 0.4 5.1 0.1 0.0 0.0 0.0 0.0 
e=1.00 11.5 5.9 21.3 4.1 0.2 0.0 0.6 0.0 
e=2.00 23.6 31.8 46.9 25.5 8.9 3.4 8.1 2.1 
 
Summing up, the results of the simulation study showed that for the uniform case C-
PCA had the best overall performance (especially for the random loadings case). 
Such a comment does not hold in the normal case, where NN-PCA performed best in 
the simple loadings case and C-PCA in the random case. On the whole, NN-PCA 
seemed to work better in the simple loadings case, as compared to the random case. 
Finally, the performance of the three methods could be ordered as C-PCA, NN-PCA 
and V-PCA.  
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6. Application 
 
In this section we illustrate the results of an application of the three methods to a 
fuzzy interval data set describing 16 fruit juices evaluated by a group of judges on 6 
features. More specifically, there are eight fruit juices (apple, apricot, banana, 
pineapple, grapefruit, orange, peach and peer) and two brands for each juice. The 
features are appearance, smell, naturalness, taste, density and sweetness. All the 
judges evaluated the appearance and the smell before tasting and the remaining 
characteristics later. To evaluate each attribute, a scale, whose values are from 1 to 
10, is used. Unfortunately, the interindividual differences in judges were unknown.  
 
Table 4. Fruit juices data. 

Fruit juices Appearance Smell Taste Naturalness Sweetness Density 

Apple1 (6.78,6.78, 
7.50,7.52) 

(5.47,5.59, 
6.49,6.59) 

(7.40,7.40, 
8.17,8.40) 

(5.66,5.77, 
6.86,7.20) 

(7.27,7.27, 
7.99,8.29) 

(5.81,5.81, 
6.7,6.74) 

Apple2 (6.60,6.79, 
7.64,7.72) 

(6.28,6.34, 
7.23,7.40) 

(6.31,6.32, 
7.33,7.43) 

(5.72,5.87, 
6.91,7.12) 

(6.67,6.67, 
7.57,7.65) 

(5.47,5.55, 
6.53,6.59) 

Apricot1 (6.82,6.82, 
7.50,7.68) 

(7.87,7.87, 
8.45,8.68) 

(7.60,7.60, 
8.36,8.54) 

(7.35,7.51, 
8.25,8.47) 

(7.42,7.46, 
8.11,8.40) 

(7.03,7.04, 
7.82,8.15) 

Apricot2 (7.32,7.53, 
8.15,8.16) 

(7.09,7.09, 
7.89,8.19) 

(5.17,5.42, 
6.42,6.71) 

(4.66,4.81, 
5.82,6.06) 

(4.90,5.15, 
6.15,6.31) 

(5.79,5.87, 
6.72,6.77) 

Banana1 (4.96,5.24, 
6.21,6.37) 

(3.92,4.14, 
5.20,5.60) 

(3.64,4.13, 
5.20,5.32) 

(4.27,4.63, 
5.68,5.95) 

(4.76,4.98, 
5.92,6.16) 

(3.62,3.78, 
4.73,4.74) 

Banana2 (5.27,5.46, 
6.46,6.67) 

(3.68,3.98, 
5.08,5.36) 

(3.26,3.58, 
4.69,4.94) 

(3.92,4.15, 
5.18,5.46) 

(4.23,4.57, 
5.63,5.91) 

(3.65,3.83, 
4.77,4.77) 

Grapefruit1 (6.28,6.30, 
7.26,7.40) 

(6.52,6.65, 
7.59,7.65) 

(5.17,5.46, 
6.58,6.85) 

(6.00,6.16, 
7.20,7.33) 

(2.45,2.65, 
3.39,3.39) 

(3.64,3.84, 
4.72,4.76) 

Grapefruit2 (6.31,6.42, 
7.21,7.43) 

(5.63,5.83, 
6.70,6.75) 

(6.35,6.46, 
7.30,7.47) 

(6.11,6.12, 
6.96,7.23) 

(4.14,4.14, 
5.02,5.19) 

(3.06,3.38, 
4.34,4.46) 

Orange1 (6.64,6.64, 
7.44,7.59) 

(7.12,7.15, 
7.97,8.24) 

(6.39,6.39, 
7.29,7.44) 

(5.67,5.74, 
6.70,6.72) 

(5.75,5.75, 
6.57,6.67) 

(3.64,3.80, 
4.76,4.97) 

Orange2 (6.89,6.93, 
7.55,7.55) 

(6.06,6.09, 
6.87,6.90) 

(6.82,6.82, 
7.66,7.94) 

(5.60,5.75, 
6.69,6.72) 

(5.93,5.93, 
6.89,7.13) 

(3.88,4.06, 
4.98,4.98) 

Peach1 (7.09,7.21, 
7.81,7.93) 

(6.94,6.94, 
7.69,7.78) 

(6.42,6.52, 
7.44,7.54) 

(5.70,5.89, 
6.86,7.10) 

(6.69,6.75, 
7.56,7.68) 

(5.03,5.03, 
5.92,5.92) 

Peach2 (6.98,7.01, 
7.74,7.82) 

(6.22,6.29, 
7.11,7.11) 

(7.38,7.38, 
8.15,8.38) 

(6.83,6.83, 
7.60,7.72) 

(6.83,6.96, 
7.74,7.81) 

(4.99,4.99, 
5.83,5.85) 

Peer1 (6.89,6.89, 
7.67,7.76) 

(7.19,7.28, 
8.04,8.24) 

(7.14,7.17, 
7.99,8.19) 

(6.44,6.47, 
7.33,7.49) 

(7.59,7.59, 
8.37,8.54) 

(7.22,7.34, 
8.06,8.27) 

Peer2 (7.52,7.52, 
8.20,8.20) 

(6.32,6.40, 
7.28,7.44) 

(7.69,7.69, 
8.33,8.57) 

(6.72,6.72, 
7.48,7.63) 

(7.71,7.71, 
8.45,8.62) 

(6.72,6.72, 
7.60,7.67) 

Pineapple1 (6.61,6.77, 
7.51,7.66) 

(5.74,5.74, 
6.54,6.66) 

(6.18,6.21, 
7.10,7.31) 

(5.45,5.52, 
6.52,6.85) 

(5.63,5.82, 
6.71,6.75) 

(3.92,4.16, 
5.00,5.00) 

Pineapple2 (6.66,6.66, 
7.42,7.59) 

(5.90,6.19, 
7.09,7.30) 

(5.65,5.84, 
6.76,6.98) 

(5.23,5.52, 
6.48,6.56) 

(5.52,5.62, 
6.62,6.92) 

(3.28,3.69, 
4.67,4.69) 

 
In fact, with respect to the rating pertaining to the i-th juice and the j-th variable, we 
only know the lower bound ( −

Lx ), the upper bound ( +
Rx ), the mean value (m) and the 

standard deviation (s). Every fuzzy interval datum is then constructed as 
( +− +− RL xsmsmx ,,, ) under the assumption that the data are concentrated near the 
mean and their likelihood decreases as they are farther from the centers. The way of 
setting up fuzzy intervals by using simple statistics for a distribution of crisp data is 
similar to that by, for instance, Denœux and Masson (2004). The data are summarized 
in Table 4. 
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On the preprocessed data (by centering them using, for each variable, the mean of the 
lower and upper bounds), C-PCA, V-PCA and NN-PCA were applied. In particular, 
C-PCA and V-PCA were applied to the data set given by the cores of the fuzzy 
intervals, ignoring the spread information. Instead, NN-PCA was applied to the entire 
fuzzy intervals. The fit values of all the three methods are displayed in Table 5. 
 
Table 5: Fit values of C-PCA, V-PCA and NN-PCA with different numbers of 
components.  
 
Number of components C-PCA V-PCA NN-PCA 

p=1 69.71 58.15 71.29 
p=2 85.54 73.58 85.34 
p=3 93.96 84.29 91.91 
p=4 98.76 91.25 97.25 
p=5 99.62 96.43 99.04 
p=6 100.00 100.00 100.00 

Note: The fit value of NN-PCA is obtained dividing the sum of explained squares by the total 
sum of squares considering the bounds of the core and the left and right spreads. 
 
For all the methods, we decided to extract p=2 components because the fit increase in 
going from one to two components was still worthwhile, and because in this way all 
variables were well captured by at least one component. The component loadings 
matrices (by extracting two components) are given in Table 6. Those resulting from 
C-PCA and V-PCA are varimax rotated, whereas the loadings from NN-PCA are the 
optimal ones obtained performing the minimization procedure by Denœux and 
Masson (2004), without further rotations. 
 
Table 6: Component loadings matrices from C-PCA, V-PCA and NN-PCA.  
 

PC1 PC2 Variables C- V- NN- C- V- NN- 
Appearance   0.25   0.25   0.34  0.04  0.02 -0.03 
Smell   0.65   0.61   0.51 -0.14 -0.13 -0.01 
Taste   0.54   0.57   0.59  0.14  0.12  0.06 
Naturalness   0.46   0.47   0.50 -0.02 -0.04 -0.04 
Sweetness -0.08 -0.07 -0.00   0.80   0.80   0.73 
Density  0.13  0.14  0.02   0.57   0.57   0.66 
 
From Table 6, we can observe that the components have similar interpretations. In 
fact, the first component is especially related to smell, taste and naturalness. These 
features play a relevant role in evaluating the fruit juices ratings. The appearance is 
correlated to the overall rating, but it is less important than the other attributes. In 
fact, it is intuitively plausible that the sense of smell and the palate liking are probably 
more relevant than the appearance. A fruit juice can be very nice but its appearance 
may be unpleasant. The second component mainly refers to sweetness and density. 
These aspects, apparently, are distinghuished clearly from the other four attributes, 
and is somewhat less related to how much one likes the juices. Therefore, the first 
component is interpreted as the overall liking. High component scores mean that the 
fruit juices involved are considered more pleasant. The second component is simply 
denoted as ‘sweetness and density’.  
Using the component score intervals as computed by means of (13) and (14), in 
Figure 4 we plotted the fruit juices (as rectangles) based on the C-PCA solution - the 
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differences with the V-PCA solution. In Figure 5, we also plotted the fruit juices 
using the fuzzy component scores resulting from NN-PCA. It can be seen at once that 
differences between the two plots are only in the details.  
 
Figure 4: Low dimensional representation of the fruit juices (first two components of 
C-PCA solution).  

 
The plots are consistent with the interpretation of the components. As one can 
observe from the figures, the positions of the fruit juices are rather similar. From the 
right, one can easily see the juices whose liking is the highest: the peer juices and 
Apricot 1. This group also has high sweetness and density values. This explains its 
position on the high right corner of the first principal plane. Two subgroups can be 
found below and on the left with respect to the above juices. Apple and peach juices 
form the first subgroup although Apple 1 liking is sensibly higher than those 
pertaining to the remaining juices. The latter subgroup is given by the fruits whose 
position is in the middle of Figures 4 and 5. Here, one can find the orange and 
pineapple juices and the remaining apricot juice (Apricot 2). Except for the latter one, 
the subgroup refers to the ‘sour’ fruits. Finally, the banana and grapefruit juices are 
positioned, respectively, on the left and below the latter group. All the ratings 
pertaining to the banana juices are low. Thus, the judges seem to dislike such juices, 
which have the lowest first component scores. Also the scores pertaining to the 
second component are quite low but, the grapefruit juices - displayed at the bottom of 
the plot – have the lowest second component scores. Their liking equals that of the 
‘sour’ group but, as one may expect, the level of sweetness is the lowest. It is 
interesting to observe the existing hierarchy of the fruit juices along the second 
component. The sweetest fruits are on the top (except Apricot 2 which has particular 
features) and the sourest ones (orange and pineapple and, above all, grapefruit) on the 
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bottom.  
 
Figure 5: Low dimensional representation of the fruit juices (first two components of 
NN-PCA solution).  

 
Figures 4 and 5 also give a graphical representation of the widths of the original 
variables. Specifically, the size of the low dimensional hyperrectangles depends on 
the uncertainty associated to the most relevant variables with respect to the 
component at hand. The sizes of the hyperrectangles do not show sizeable differences 
in the low dimensional widths. However, we can approximately state that the more 
the liking of the fruit juices increases, the more the width regarding the first 
component decreases. Thus, when the judges like the juices, the ratings are 
systematically high; when the juices are less satisfactory, the judgements are fuzzier. 
On the contrary, such a relation does not hold with respect to the second component. 
 
 
7. Conclusion 
 
The present paper has reviewed three methods for recovering the underlying structure 
of fuzzy interval data: C-PCA, V-PCA and NN-PCA. In fact, C-PCA and V-PCA are 
suitable for interval valued data, but can be adopted for summarizing fuzzy intervals 
by ignoring the spread information. It has been explained how V-PCA can be made 
just as computationally efficient as C-PCA, by directly computing the cross-products 
matrix. We also described that, on the basis of the results, this approach does not 
modify the information needed for plotting the low dimensional hyperrectangles for 
the observation units: the minimum and maximum values of the vertex component 
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scores associated with each observation unit. NN-PCA exploits the tools of fuzzy 
arithmetics in order to compress fuzzy data sets. The approach is based upon a 
generalization for fuzzy data of the relationship between neural networks and PCA. 
The results of a simulation study were given in order to analyze the performance and 
the peculiarities of all the methods. It was found that it is impossible to state which is 
the best method in general. In fact, we observed that each method should be chosen 
according to the data structure (i.e., NN-PCA for simple loadings, C-PCA for 
nonsimple loadings), and the aims of the analysis. Finally, V-PCA, C-PCA and NN-
PCA have been compared on the basis of an application to an empirical data set.  
Future research can be considered in extending methods for interval valued and fuzzy 
data to deal with three-way data. In this respect, Giordani and Kiers (2004b) 
generalize C-PCA and V-PCA in a three-way context.  
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