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Abstract. In this paper odd-order heat-type equations with dif-
ferent random initial conditions are examined. In particular, we
give rigorous conditions for the existence of the solutions in the
case where the initial condition is represented by a strictly ϕ-
subGaussian harmonized process η = η(x). Also the case where
η is represented by a stochastic integral with respect to a process
with independent increment is studied.

1. Introduction

Third-order heat-type equations have been considered either as lin-
ear approximations of the Korteweg-de Vries equation (see [4]) or in
connection with certain chemical reactions ([7], p.299). By means of
the solutions of these equations some pseudoprocesses have been con-
structed and some of the related relevant functionals (sojourn time
and maximum) have been investigated by means of extensions of the
Feynman-Kac functional in [19]. In [3] the case where the pseudo-
process is constrained to be zero at the end of the time interval is
considered; the distribution of the maximum is then obtained under
these circumstances. In the unconditional case, the joint distribution
of the maximum and of the process for this higher-order diffusion is
presented in [2].

Odd-order heat-type equations of the form

(1.1)
∂u

∂t
= cn

∂2n+1u

∂x2n+1
, n = 1, 2, ...

(where cn = ±1), subject to the initial condition u(x, 0) = δ(x), have
also been examined by many authors: in [9] the Laplace transforms of
the sojourn times have been obtained while their inverse, and thus the
explicit distributions, have been derived by Lachal [16].
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In [1] the analysis of the local time in zero of the pseudoprocesses
related to 1.1 is performed and the connection of its distribution with
a fractional diffusion equation is established and discussed

While in all the investigations mentioned above the key tool is the
Feynman-Kac functional, the approach of Lachal [17] is somewhat dif-
ferent and consists in some approximation of the underlying pseudo-
processes by means of generalized random walks and the application of
a generalization of the Spitzer identity.

The idea of studying equations of the form 1.1 subject to random
initial conditions (represented by stationary processes) is presented in
[4]. In the spirit of the last work we analyze here more general odd-
order equations of the following form

(1.2)
∂u

∂t
=

N∑

k=1

ak
∂2k+1u

∂x2k+1
, N = 1, 2, ...,

subject to the random condition

(1.3) u(0, x) = η(x),

where

η(x) =

∫

R

eiuxdy(u)

and y is a complex-valued process. We remark that, in the special case
where η is a stationary process, y is a white noise. We present the exact
expression for the solution of the problem (1.2)-(1.3) and formulate
rigorous conditions on the initial data which guarantee that the process
representing the solution satisfies the equation with probability one
(Section 3).

We concentrate our attention, in particular, to the case where the
initial condition is represented by a strictly ϕ-subGaussian harmonized
process. The general conditions of Section 3 are reduced to a more
convenient and tractable form (see our main result in Section 6). We
consider also the problem where the initial data is represented by a sto-
chastic integral with respect to a process with independent increments
(Section 8).

Many random processes relevant for applications (as numerous recent
studies confirm) display a non-Gaussian behaviour, possess heavy tails
and have non-symmetric densities. However, some of these processes
can be considered as ϕ-subGaussian because they display the corre-
sponding properties. ϕ-subGaussian random variables and processes,
which are generalizations of sub-Gaussian and Gaussian random vari-
ables and processes, were introduced in the papers [11],[13]. The theory
of ϕ-subGaussian random variables and processes is presented in the
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book [5]. In the paper [8] a more general definition of ϕ-subGaussian
random variables is presented.

In order to make the paper self-contained, a certain digression on
sub-Gaussian and ϕ-subGaussian processes is presented in Sections 4
and 5, as well as some auxiliary results in Sections 7, 8 needed to treat
the case of initial condition represented by stochastic integrals with
respect to processes with independent increments.

Note that our study can be specialized in order to include the case
of Gaussian initial conditions.

2. Harmonized random processes

We now present the definitions of integrals in the mean square sense
and also of the harmonized random processes (see, for example, Loeve
[18]).

Let y = {y(t), t ∈ I} be a complex-valued, centered random process
of second order (that is E|y(t)|2 < ∞, t ∈ I), I = [a, b] a finite or

infinite interval and Γy (t, s) = Ey (t) y (s) the covariance function of
y (t) .

Definition 2.1. ([18]) Let D and D′ be the following partitions of
the interval [a, b]:

D = {tj, j = 1, ..., n + 1 : a = t1 < t2 < . . . < tn+1 = b} ;
D′ =

{
t′j, j = 1, ...,m + 1 : a = t′1 < t′2 < . . . < t′m+1 = b

}
.

Let also
∆∆′Γy (tk, t

′
k) = Γy

(
tk+1, t

′
k+1

)−Γy (tk+1, t
′
k)−Γy

(
tk, t

′
k+1

)
+Γy (tk, t

′
k).

The covariance function Γy (t, s) has finite variation on the finite
interval I = [a, b] if there exists a number 0 < CI < ∞ such that, for
all D and D′, the following inequality holds

∑
t∈D

∑

t∈D′
|∆∆′Γy (t, t′)| < CI .

The covariance function Γy (t, s) has finite variation on the infinite
interval I if there exists a number C < ∞ such that CI′ < C for all
finite I ′ such that I ′ ⊂ I.

Definition 2.2. ([18]) Let f = {f(t), t ∈ I} be a measurable func-
tion (where I = [a, b] is a finite interval), y = {y(t), t ∈ I} a centered

second-order random process and Γy (t, s) = Ey (t) y (s) the covariance
function of y. The integral

∫
I
f (t) dy (t) is defined as the mean square

limit of the Riemann sums
∑

k f (t′k) (y (tk+1)− y (tk)) , tk ≤ t′k ≤ tk+1.
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The integral
∫

R
f (t) dy (t) is defined as the mean square limit of the

integrals
∫ b

−a
f (t) dy (t) as a →∞, b →∞.

The integral
∫

I
f (t) dy (t) exists iff the integral

∫
I

∫
I
f (t) f (s) dΓy (t, s)

exists.

Definition 2.3.([18]) The second-order random function X = {X(t), t ∈
R} is called harmonized if there exists a second-order random function

y = {y(t), t ∈ R} such that the covariance Γy (t, s) = Ey (t) y (s) has
finite variation and X(t) =

∫
R

eitudy (u) .

Theorem 2.1.([18]) The second-order random function X = {X(t), t ∈
R} is harmonized iff there exists a covariance function Γy (t, s) with fi-
nite variation such that

Γx (u, v) = EX (u) X (v) =

∫

R

∫

R

ei(tu−t′v)dΓy (t, t′) .

Example. Let X = {X(t), t ∈ R} be a second-order centered
stationary random process and let its covariance function B (τ) =

EX (t + τ) X (t) be mean square continuous. In this case B (τ) =∫
R

eiuτdF (u), where F (u) is a non-decreasing left continuous function
such that F (−∞) = 0, F (+∞) = B (0) and X(t) =

∫
R

eitudy (u),
where y = {y(t), t ∈ R} is a second-order random process with uncor-
related increments such that E |y (t)− y (s)|2 = F (t)− F (s) as t > s.

3. A general theorem on the solution of odd-order
heat-type equations

Let us consider the linear equation

(3.1)
N∑

k=1

ak
∂2k+1u (t, x)

∂x2k+1
=

∂u (t, x)

∂t
, t > 0, x ∈ R1

subject to the random initial condition

(3.2) u(0, x) = η(x), x ∈ R1,

where ak, k = 1, . . . , N are some constants.
Let η(x), x ∈ R1, be a harmonized process

η(x) =

∫

R

eiuxdy (u) ,

where

(3.3) Ey (t) y (s) = Γy (t, s) ,
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with covariance function

(3.4) Γη (x, x′) = Eη (x) η (x′) =

∫

R

∫

R

ei(xu−x′v)dΓy (u, v) .

Theorem 3.1. Let

(3.5) I (t, x, λ) = exp

{
i

(
λx + t

N∑

k=1

akλ
2k+1 (−1)k

)}
,

and

(3.6) U (t, x) =

∫

R

I (t, x, λ) dy (λ) .

If the following integrals exists

(3.7)

∫

R

λsI (t, x, λ) dy (λ) , s = 0, 1, 2, . . . , 2N + 1,

and if there is a sequence an > 0, an →∞ as n →∞, such that for all
A > 0 and T > 0 the sequence of the related integrals

∫ an

−an
λsI (t, x, λ) dy (λ)

converges in probability, uniformly for |x| ≤ A, 0 ≤ t ≤ T, then U (t, x)
is the classical solution to the problem (3.1)-(3.2) (that is U (t, x) sat-
isfies equation (3.1) with probability one and U(0, x) = η(x)).

Proof. Since
∫ an

−an
λsI (t, x, λ) dy (λ) converges in probability uni-

formly for |x| ≤ A, 0 ≤ t ≤ T, then there exists a subsequence

bn > 0, bn →∞ as n →∞, such that
∫ bn

−bn
λsI (t, x, λ) dy (λ) converges

with probability one to
∫

R
λsI (t, x, λ) dy (λ), uniformly for |x| ≤ A,

0 ≤ t ≤ T.
Let

(3.8) Ubn (t, x) =

∫ bn

−bn

I (t, x, λ) dy (λ) .

It is self-evident that

(3.9)
∂sUbn (t, x)

∂xs
=

∫ bn

−bn

(iλ)s I (t, x, λ) dy (λ) , s = 0, 1, 2, . . . , 2N+1,

and

(3.10)
∂Ubn (t, x)

∂t
=

∫ bn

−bn

(
i

N∑

k=1

akλ
2k+1 (−1)k

)
I (t, x, λ) dy (λ) ,
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for s = 0, 1, 2, . . . , 2N + 1. It follows from (3.9) and (3.10) that

(3.11)
N∑

k=1

ak
∂2k+1Ubn (t, x)

∂x2k+1
=

∂Ubn (t, x)

∂t
, t > 0, x ∈ R1,

since

∂2k+1Ubn (t, x)

∂x2k+1
converges to

∂2k+1U (t, x)

∂x2k+1

and
∂Ubn (t, x)

∂t
converges to

∂U (t, x)

∂t

uniformly for |x| ≤ A, 0 ≤ t ≤ T with probability one. Therefore
U (t, x) satisfies equation (3.1) and U(0, x) =

∫
R

eiλxdy (x) = η(x).¤

Remark 3.1. The integrals
∫

R
λsI (t, x, λ) dy (λ) exist if the twofold

integrals
∫

R

∫
R

λsµsI (t, x, λ) I (t, x, µ) dΓy (λ, µ) exist or otherwise if∫
R

∫
R
|λ|s |µ|s dΓy (λ, µ) < ∞.

On the other side all the integrals
∫

R
λsI (t, x, λ) dy (λ) , s = 0, 1, 2, . . . ,

2N + 1, exist if
∫

R

∫

R

|λ|2N+1 |µ|2N+1 I (t, x, λ) I (t, x, µ) dΓy (λ, µ) < ∞.

Remark 3.2. Under the conditions of Theorem 3.1 we can write
down the expression for the covariance function of the random field
U (t, x) given by formula (3.6):

cov (U (t, x) , U (s, y)) =

∫

R

∫

R

I (t, x, λ) I (s, y, µ)dΓy (λ, µ) .

In particular, in the case where the process η (x) representing the initial
condition is centered and stationary with a spectral function F (λ), we
have that

cov (U (t, x) , U (s, y)) =

∫

R

ei(λ(x−y)+(t−s)
∑N

k=0 akλ2k+1(−1)k)dF (λ)

=

∫

R

I (t− s, x− y, λ) dF (λ)

and thus the solution U (t, x) is stationary in space and time.
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4. ϕ-subGaussian random variables and processes

Definition 4.1. ([14]) Let ϕ = {ϕ(x), x ∈ R} be a continuous even
convex function. The function ϕ is an Orlicz N−function if ϕ (0) = 0,
ϕ(x) > 0 as x 6= 0 and the following conditions hold:

lim
x→0

ϕ (x)

x
= 0, lim

x→∞
ϕ (x)

x
= ∞.

Definition 4.2. ([14]) Let ϕ = {ϕ(x), x ∈ R} be an N−function.
The function ϕ∗ defined by

ϕ∗(x) = sup
y∈R

(xy − ϕ (y))

is called the Young-Fenchel transform of ϕ.

Remark 4.1. ([14]) The Young-Fenchel transform of an N−function
is again an N−function and the following inequality holds (Young-
Fenchel inequality)

(4.1) xy ≤ ϕ(x) + ϕ∗ (y) as x > 0, y > 0.

Condition Q. Let ϕ be an N−function which satisfies

lim inf
x→0

ϕ (x)

x2
= C > 0.

It may happen that C = ∞.

Example 4.1. The functions

ϕ (x) = c |x|α , c > 0, 1 < α ≤ 2;

ϕ (x) =

{
α−1 |x|2 , |x| ≤ 1
α−1 |x|α , |x| > 1

, α > 2

are N−functions which satisfy the Condition Q.

Definition 4.3. ([8]) Let ϕ be an N−function satisfying Condition
Q and {Ω, B, P} be a standard probability space. The random variable
ξ belongs to the space Subϕ(Ω), if Eξ = 0, E exp{λξ} exists for
all λ ∈ R and there exists a constant a > 0 such that the following
inequality holds for all λ ∈ R

(4.2) E exp{λξ} ≤ exp{ϕ (λa)}.
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The space Subϕ(Ω) is a Banach space with respect to the norm ([13])

τϕ (ξ) = sup
λ 6=0

ϕ(−1) (ln E exp{λξ})
|λ| ,

where ϕ(−1) denotes the inverse function of ϕ.
Examples of ϕ−subGaussian random variables can be found in the

paper [8] and in the book [5]. In particular, all bounded centered
random variables belong to all Subϕ(Ω). Some random variables having
a centered Weibull distribution belong to a certain space Subϕ(Ω). The
Normal centered random variable ξ = N(0, σ2) belongs to the space

Subϕ(Ω), with ϕ (x) = x2

2
, τ 2 (ξ) = σ2.

Definition 4.4. ([14]) A family ∆ of random variables ξ ∈ Subϕ(Ω)
is called strictly ϕ−subGaussian if there exists a constant C∆ such that
∀ finite set I of random variables ξi ∈ ∆ the following inequality holds

(4.3) τϕ

(∑
i∈I

λiξi

)
≤ C∆

∣∣∣∣∣∣
E

(∑
i∈I

λiξi

)2
∣∣∣∣∣∣

1/2

.

The constant C∆ is called the determining constant of the family ∆.

Lemma 4.1. ([14]) The linear closure of a strictly ϕ−subGaussian
family ∆ in the space L2 (Ω) is the strictly ϕ−subGaussian family with
the same determining constant.

Definition 4.5. The random process ξ = {ξ (t) , t ∈ T} is called
ϕ−subGaussian if all random variables ξ (t) , t ∈ T, are ϕ−subGaussian
and supt∈T τϕ (ξ (t)) < ∞.

The random process ξ = {ξ (t) , t ∈ T} is called strictly ϕ−subGaussian
if the family of random variables ξ (t) , t ∈ T, is strictly ϕ−subGaussian.

Examples ([14]).

1. Let {ξk, k = 1, ...,∞} be a family of strictly ϕ−subGaussian ran-
dom variables with determining constant C. Let ξ (t) =

∑∞
k=1 ξkfk (t)

be a mean square convergent series for all t ∈ T. Then ξ (t) is a strictly
ϕ−subGaussian random process with the same determining constant.

2. Let ξ (t) =
∑∞

k=1 ηkfk (t) , t ∈ T, where ηk are independent random
variables, ηk ∈ Subϕ(Ω), ϕ (x) is an N−function such that the function

ψ (x) = ϕ (
√

x) is convex. If τϕ (ηk) ≤ R (Eη2
k)

1/2
, and the series
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∑∞
k=1 ηkfk (t) converges in mean square for all t ∈ T, then ξ (t) is the

strictly ϕ−subGaussian random process with the determining constant
R.

3. A Gaussian centered random process ξ (t) is strictly ϕ−subGaussian

with ϕ (x) = x2

2
and the determining constant is equal to 1.

Definition 4.6. A harmonized random process

η(x) =

∫

R

eiuxdy (u)

is a strictly ϕ−subGaussian harmonized random process if the process
y is strictly ϕ−subGaussian.

Remark 4.1. It follows from Lemma 4.1 that in this case the process
η and all the processes

ηa,b(x) =

∫ b

a

eiuxdy (u)

are strictly ϕ−subGaussian.

5. The conditions of convergence in probability in C (T )
of a sequence of ϕ-subGaussian random processes

Let (T, d) be a compact metric space and C (T ) is the Banach space of
continuous functions with uniform norm. Let Xk = {Xk (t) , t ∈ T} be
a sequence of ϕ−subGaussian random processes such that Xk ∈ C (T ) .
The general conditions of convergence in probability of Xk in the space
C (T ) are presented in the book [5]. In the paper [15] these conditions
are presented for the case where T is a finite-dimensional space.

Theorem 5.1. ([15]) Let Rk be a k-dimensional space,
d (t, s) = max1≤i≤k |ti − si| , T = {0 ≤ ti ≤ Ti, i = 1, 2, ..., k}, Ti > 0;
Xn = {Xn (t) , t ∈ T} be a sequence of ϕ−subGaussian random pro-
cesses such that Xn ∈ C (T ) . Let us assume also that there exists
a continuous increasing function σ = {σ (h) , h > 0}, σ (h) → 0 as
h → 0, such that

(5.1) sup
d(t,s)≤h

τϕ (Xn (t)−Xn (s)) ≤ σ (h)

and
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(5.2)

∫

0+

Ψ

(
ln

1

σ(−1) (ε)

)
dε < ∞,

where Ψ (u) = u
ϕ(−1)(u)

, σ(−1) (u) is the inverse function of σ (u) , ϕ(−1) (u)

is the inverse function of ϕ (u) , for u > 0, and
∫

0+
f (ε) dε denotes∫ δ

0
f (ε) dε for sufficiently small δ > 0. If the sequence of processes

Xn (t) , n ≥ 1, converges in probability to X (t) for all t ∈ T , then
Xn (t) converges in probability to X (t) in the space C (T ) .

6. The main result

Lemma 6.1.([14]) Let θ (u) , u ≥ u0 ≥ 0, be a continuous, increasing
function such that θ (u) > 0 and the function u

θ(u)
is non-decreasing for

u > u0 , where u0 ≥ 0 is a constant. Then for all u, v 6= 0

(6.1)
∣∣∣sin u

v

∣∣∣ ≤ θ (|u|+ u0)

θ (|v|+ u0)
.

Example 6.1. The functions θ (u) = uα, u ≥ 0, 0 < α ≤ 1 (u0 = 0)
and θ (u) = (ln u)α , α > 0, u > u0 ≥ eα, satisfy the conditions of
Lemma 6.1.

Assumption Ψ. Let ϕ be an N -function satisfying the condition Q;
Ψ (u) = u

ϕ(−1)(u)
, where ϕ(−1) (u) is the inverse function of ϕ (u) . Let

the function θ (u) , u > u0, satisfy the condition of Lemma 6.1. We say
that the function θ (u) , u ≥ u0 ≥ 0, satisfies the assumption Ψ if the
following integral converges

(6.2)

∫

0+

Ψ
(
ln

(
θ(−1)

(
ε−1

)))
dε < ∞,

where
∫
0+

f (ε) dε denotes the integral
∫ δ

0
f (ε) dε for sufficiently small

δ > 0.

Example 6.2. Let, for sufficiently large x, ϕ (x) = |x|p
p

, p > 1 and

θ (x) = (ln x)α , x > eα . Then θ (x) satisfies the assumption Ψ if
α > 1− 1

p
. Indeed

∫

0+

Ψ
(
ln

(
θ(−1)

(
ε−1

)))
dε =

∫

0+

Ψ
(
ε−1/α

)
dε

=
1

p1/p

∫

0+

ε−
1
α(1− 1

p)dε < ∞.

The function θ (x) = xα, α > 0, x > 0 also satisfies the assumption Ψ.
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Theorem 6.1. Let us consider the linear equation (3.1)

N∑

k=1

ak
∂2k+1u (t, x)

∂x2k+1
=

∂u (t, x)

∂t
, t > 0, x ∈ R1

subject to the random initial condition

u(0, x) = η(x), x ∈ R1.

Let η (x) be the harmonized process defined above, which is a strictly ϕ-
subGaussian random process. Let θ (x) , x > u0 be a function satisfying
the assumption Ψ. Let us assume that the following integral converges
(6.3)∫

R

∫

R

|λ|2N+1 |µ|2N+1 θ
(
u0 + |λ|2N+1

)
θ
(
u0 + |µ|2N+1

)
dΓy (λ, µ) < ∞.

Then

U (t, x) =

∫

R

I (t, x, λ) dy (λ) ,

where

I (t, x, λ) = exp

{
i

(
λx + t

N∑

k=1

akλ
2k+1 (−1)k

)}

is the classical solution of the problem (3.1)-(3.2).

Proof. It follows from Theorem 3.1 that it is sufficient to prove that
there exists a sequence an > 0, an → ∞ as n → ∞, such that the
sequences Un,s (t, x) =

∫ an

−an
λsI (t, x, λ) dy (λ) , s = 0, 1, 2, ..., 2N + 1

converge uniformly in probability for |x| ≤ A, 0 ≤ t ≤ T , where
A > 0 and T > 0 are some constants. Since the random processes
Un,s (t, x) are strictly subGaussian, then

(6.4)

τ 2
ϕ (Un,s (t, x)− Un,s (t1, x1))

≤ CξE |Un,s (t, x)− Un,s (t1, x1)|2

= Cξ

∫ an

−an

∫ an

−an

λsµs (I (t, x, λ)− I (t1, x1, λ))

× (I (t, x, µ)− I (t1, x1, µ)) dΓy (λ, µ)

≤ Cξ

∫

R

∫

R

|λ|s |µ|s |I (t, x, λ)− I (t1, x1, λ)|
× |I (t, x, µ)− I (t1, x1, µ)| d |Γy (λ, µ)| ,
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where Cξ is the determining constant of the family {ξ(t), t ∈ T}. It is
evident that

(6.5)

|I (t, x, λ)− I (t1, x1, λ)|

= [(cos(λx + t

N∑

k=1

akλ
2k+1 (−1)k)− cos(λx1 + t1

N∑

k=1

akλ
2k+1 (−1)k))2

+(sin(λx + t

N∑

k=1

akλ
2k+1 (−1)k)− sin(λx1 + t1

N∑

k=1

akλ
2k+1 (−1)k))2]1/2

= 2

∣∣∣∣∣sin
1

2
(λ (x− x1) + (t− t1)

N∑

k=1

akλ
2k+1 (−1)k)

∣∣∣∣∣

≤ 2

(∣∣∣∣sin
x− x1

2
λ

∣∣∣∣ +

∣∣∣∣∣sin
t− t1

2

(
N∑

k=1

akλ
2k+1 (−1)k)

)∣∣∣∣∣

)
.

It follows from (6.1) that

|I (t, x, λ)− I (t1, x1, λ)|(6.6)

≤ 2

(
θ

(
u0 +

|λ|
2

)(
θ

(
u0 +

1

|x− x1|
))−1

+θ

(
u0 +

1

2

∣∣∣∣∣
N∑

k=1

akλ
2k+1 (−1)k

∣∣∣∣∣

) (
θ

(
u0 +

1

|t− t1|
))−1

)
,

where the function θ (u) satisfies the assumption Ψ. Now it follows from
(6.4.) and (6.6) that

(6.7) sup
|t−t1|≤h
|x−x1|≤h

τϕ (Un,s (t, x)− Un,s (t1, x1)) ≤ Cs

θ
(
u0 + 1

h

) ,

where

Cs

= 2Cξ

∫

R

∫

R

|λ|s |µ|s
∣∣∣∣∣θ

(
u0 +

|λ|
2

)
+ θ

(
u0 +

1

2

∣∣∣∣∣
N∑

k=1

akλ
2k+1 (−1)k

∣∣∣∣∣

)∣∣∣∣∣

×
∣∣∣∣∣θ

(
u0 +

|µ|
2

)
+ θ

(
u0 +

1

2

∣∣∣∣∣
N∑

k=1

akµ
2k+1 (−1)k

∣∣∣∣∣

)∣∣∣∣∣ dΓy (λ, µ) .

It is evident that the last integrals converge since the integral (6.3)
converges.
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Now the theorem follows from Theorem 5.1 since

σ (h) =
Cs

θ
(
u0 + 1

h

) and σ(−1) (ε) =
1

θ(−1)
(

Cs

ε

)− u0

, 0 < ε <
θ (u0)

Cs

that is∫

0+

Ψ

(
ln

(
θ(−1)

(
Cs

ε

)
− u0

))
dε <

∫

0+

Ψ

(
ln

(
θ(−1)

(
Cs

ε

)))
dε

= Cs

∫

0+

Ψ

(
ln

(
θ(−1)

(
1

ε

)))
dε

< ∞.

Corollary 6.1. Let ϕ (x) = |x|p
p

, p > 1 for sufficiently large x. Then

the statement of Theorem 6.1 holds if the following integral converges

(6.8)

∫

R

∫

R

|λµ|2N+1 (ln (1 + λ) ln (1 + µ))α dΓy (λ, µ) ,

where α is a constant such that α > 1− 1
p
.

Proof. It follows from Example 6.2 that in this case the function
θ (x) = (ln x)α , where α > 1− 1

p
, satisfies the assumption Ψ. Therefore

the assertion of Theorem 6.1 holds if the following integral converges∫

R

∫

R

|λµ|2N+1
(
ln

(
eα + |λ|2N+1

)
ln

(
eα + |µ|2N+1

))α

dΓy (λ, µ) < ∞.

But this integral converges if the integral (6.8) converges.

Remark 6.1. If in Theorem 6.1 the process η (x) is a strictly ϕ-
subGaussian stationary random process that is

η(x) =

∫

R

eiuxdξ (u) ,

where ξ (u) is a centered process with uncorrelated increments (Eη(x+

τ)η(x) =
∫

R
eiτλdF (λ)), then the assumptions (6.3) and (6.8) are of

the form ∫

R

|λ|4N+2 θ2
(
u0 + |λ|2N+1

)
dF (λ) < ∞,

∫

R

|λ|4N+2 (ln (1 + λ))2α dF (λ) < ∞,

if α > 1− 1
p
.

Corollary 6.2. Let us assume that η (x) (representing the initial
condition) is a Gaussian process. Then η (x) is a strictly ϕ-subGaussian

random process, where ϕ (x) = x2

2
and θ (u) = (ln u)α , where α > 1

2
.
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7. Uniform convergence of random series with
independent terms

Lemma 7.1. Let {ξk, k = 1, 2, ...} be a sequence of centered in-
dependent random variables such that E|ξk|2 = 1. Let T be a bounded
interval on R and let fk(t), k ≥ 1 be a sequence of continuous functions
on T such that

(7.1)
∞∑

k=1

f 2
k (t) < ∞, t ∈ T.

Assume that one can find a continuous function σ(h), h > 0, such that
σ(h) is increasing, σ(0) = 0, and for all sufficiently small ε > 0

(7.2)

∫ ε

0

∣∣ln σ(−1)(v)
∣∣1/2

dv < ∞

(σ(−1)(v) denotes the inverse function for σ(v)) and the following in-
equalities hold

(7.3) sup
t,s∈T
|t−s|≤h

|fk(t)− fk(s)| ≤ bkσ(h),

(7.4)
∞∑

k=1

b2
k < ∞.

Then the series
∑∞

k=1 ξkfk(t) converges uniformly for t ∈ T with
probability one.

Proof. This theorem is a modification of Theorem 3.5.5 of the book
by Buldygin and Kozachenko [5]. Consider the random pseudometric,

on the space T, Ψ(t, s) = (
∑∞

k=1 ξ2
k|fk(t)− fk(s)|2)1/2

. Let HΨ (ε) =
ln (NΨ (ε)), where NΨ (ε) is the smallest number of elements of an ε-
covering of the space (T, Ψ(t, s)). In the proof of Theorem 3.5.5 in [5]
Buldygin and Kozachenko proved the following assertion:

The series
∑∞

k=1 ξkfk(t) converges uniformly for t ∈ T with proba-
bility one if with probability one

(7.5)

∫ ε

0

|HΨ (v)|1/2 dv < ∞

for any sufficiently small ε > 0.
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We now prove that (7.5) holds. It follows from the assumption (7.3)
that

sup
t,s∈T
|t−s|≤h

Ψ(t, s) ≤
( ∞∑

k=1

ξ2
kb

2
k

)1/2

σ(h) = η1/2σ(h).

The series
∑∞

k=1 ξ2
kb

2
k = η converges with probability one since

∑∞
k=1 Eξ2

kb
2
k =∑∞

k=1 b2
k < ∞. By consulting the book [5] we can see that

NΨ (u) ≤ |T |
2σ(−1)(u

η
)

+ 1,

where |T | is the length of T . Therefore for sufficiently small ε > 0

∫ ε

0

|ln (NΨ (u))|1/2 du ≤
∫ ε

0

∣∣∣∣∣ln
(

|T |
2σ(−1)(u

η
)

+ 1

)∣∣∣∣∣

1/2

du(7.6)

=

∫ ε/η

0

∣∣∣∣ln
( |T |

2σ(−1)(v)
+ 1

)∣∣∣∣
1/2

ηdv

≤
√

2

∫ ε

0

∣∣ln σ(−1)(v)
∣∣1/2

dv

because

ln

(
T

2σ(−1)(v)
+ 1

)
≤ ln

(
T

σ(−1)(v)

)
≤ ln T +

∣∣ln σ(−1)(v)
∣∣

≤ 2
∣∣ln σ(−1)(v)

∣∣ ,

for sufficiently small v. Therefore the integral (7.6) converges with

probability one if
∫ ε

0

∣∣ln σ(−1)(v)
∣∣1/2

dv < ∞. ¤

8. Stochastic integrals with respect to processes with
independent increments

Let ξ (λ) , λ ∈ R, be a random process with independent increments
such that Eξ (λ) = 0, E|ξ (λ) |2 < ∞. Let F (λ) be the spectral function
of this process, that is E |ξ (λ2)− ξ (λ1)|2 = F (λ2)−F (λ1) if λ2 > λ1,
F (−∞) = 0, F (+∞) = 1.

Let f (λ) , λ ∈ R, be a function which possesses continuous derivative
f ′ (λ). We suppose that

∫∞
−∞ f (λ) dξ (λ) exists, that is

∫∞
−∞ |f (λ)|2 dF (λ) <

∞.
There exists a lot of stochastically equivalent modifications of the

process ξ (λ) . J.L.Doob [6] proved that there exists a modification of
the process ξ (λ) such that, with probability one, the sample paths of
ξ (λ) are measurable, bounded on any interval [a, b], right continuous
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and have only a countable set of discontinuities. It is also assumed that
the process ξ (λ) possesses limits for λ → ±∞.

In the sequel we shall consider such a version of ξ (λ) , for which

the Riemann integral
∫ b

a
f ′ (λ) ξ (λ) dλ exists and coincides with the

Lebesgue integral. Define the following integral by means of the equal-
ity

∫ b

a

f (λ) dξ (λ) = f (b) ξ (b)− f (a) ξ (a)−
∫ b

a

ξ (λ) f ′ (λ) dλ.

Such integrals, in some particular cases, were introduced by Hunt [10]
and in a more general case were considered in the paper [12]. It is
easy to show that these integrals coincide with integrals of the form∫ b

a
f (λ) dξ (λ) in the mean square sense, with probability one (see also

the paper [12]).
Define

∫∞
−∞ f (λ) dξ (λ) as the limit with probability one of the inte-

grals
∫ b

a
f (λ) dξ (λ) as a → −∞, b →∞ (if this limit exists).

Theorem 8.1. Let g (t, λ) be a continuous function for t ∈ T,
λ ∈ R, and let us assume also that g′λ (t, λ) exists and is continu-
ous. Let ξ (λ) , λ ∈ R, be a centered random process with independent
increments, F (λ) be the spectral function of ξ (λ) . Let the following
assumptions hold

(8.1)

∫ ∞

−∞
A2 (|λ|) dF (λ) < ∞,

where

A (λ) = max
|u|≤λ
t∈T

|g (t, u)| ,

(8.2) sup
|t−s|≤h

|g (t, λ)− g (s, λ)| ≤ Z (|λ|) σ (h) ,

where Z (|λ|) is a monotonously increasing function such that∫∞
−∞ Z2 (|λ|) dF (λ) < ∞, and σ (h) , h > 0, is a continuous function

such that σ (0) = 0 and the assumption (7.2) holds for this function.
Then the integral

∫∞
−∞ g (t, λ) dξ (λ) converges uniformly for t ∈ T

with probability one.

Proof. To prove this theorem we use Lemma 7.1 and the method
worked out by Hunt [10]. Let us introduce the random process yn (u) =
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ξ
(

k
n

)
as k

n
≤ u < k+1

n
, and consider the difference of the integrals

Im =

∣∣∣∣
∫ m+1

m

g (t, λ) dξ (λ)−
∫ m+1

m

g (t, λ) dyn (λ)

∣∣∣∣
= |g (t,m + 1) ξ (m + 1)− g (t,m + 1) yn (m + 1)− g (t,m) ξ (m) +

+g (t,m) yn (m)−
∫ m+1

m

g′λ (t, λ) (ξ (λ)− yn (λ)) dλ|
≤ A (m + 1) |ξ (m + 1)− yn (m + 1)|+ A (m) |ξ (m)− yn (m)|+

+B (m)

∫ m+1

m

|ξ (λ)− yn (λ)| dλ,

where

B (m) = max
t∈T

m≤λ≤m+1

|g′λ (t, λ)| .

The properties of the process ξ (λ) guarantee that Im → 0 as m →∞
uniformly for t ∈ T with probability one.

For any ε > 0, there exists a number nε,m such that, with probability
larger than 1− ε

2|m|+2 , the following inequality holds

(8.3)

∣∣∣∣
∫ m+1

m

g (t, λ) dξ (λ)−
∫ m+1

m

g (t, λ) dynε,m (λ)

∣∣∣∣ <
ε

2|m|+2
.

Consider now the random process yε (λ) = ynε,m (λ) as m ≤ λ ≤ m+1.
For A1 < A2 the following inequality holds

(8.4)

∣∣∣∣
∫ A2

A1

g (t, λ) dξ (λ)

∣∣∣∣ ≤
∣∣∣∣
∫ A2

A1

g (t, λ) dξ (λ)−

−
∫ A2

A1

g (t, λ) dynε,m (λ)

∣∣∣∣ +

∣∣∣∣
∫ A2

A1

g (t, λ) dynε,m (λ)

∣∣∣∣ .

It follows from (8.3) that
∣∣∣∣
∫ A2

A1

g (t, λ) dξ (λ)−
∫ A2

A1

g (t, λ) dynε,m (λ)

∣∣∣∣ ≤ ε

with probability larger than 1 − ε. Therefore there exists a sequence
εk, εk → 0 as k →∞, such that with probability one uniformly for all
A1, A2, t ∈ T

∫ A2

A1

g (t, λ) dyn,εk
(λ) →

∫ A2

A1

g (t, λ) dξ (λ)

as εk → 0. Therefore the assertion of the theorem holds true if the
integral

∫∞
−∞ g (t, λ) dyn,ε (λ) converges uniformly as t ∈ T for any
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ε > 0 with probability one (see inequality (8.4)). Note that I (t) =∫∞
−∞ g (t, λ) dyn,ε (λ) is the random series of the form

I (t) =
∑∞

s=−∞ g (t, λs) (ξ (λs+1)− ξ (λs)) where λs+1 > λs.
Denote δ2

s = F (λs+1)− F (λs) . Then

I (t) =
∞∑

s=−∞
g (t, λs) δs1 (δs 6= 0)

ξ (λs+1)− ξ (λs)

δs

=
∞∑

s=−∞
g (t, λs) δs1 (δs 6= 0) ηs,

where ηs are independent random variables such that E |ηs|2 = 1. We
check that the assumptions of Lemma 7.1 hold true for the series I (t) .
It follows from the assumption (8.1) that

∞∑
s=−∞

g2 (t, λs) δ2
s1

2 (δs 6= 0)

≤
∞∑

s=−∞
A2 (|λs|) (F (λs+1)− F (λs)) ≤

∫ ∞

−∞
A2 (λ) dF (λ) < ∞.

We now check that the assumptions (7.3) and (7.4) hold. Indeed, it
follows from assumption (8.2) that

sup
t,u∈T
|t−u|≤h

|g (t, λs)− g (u, λs)| δs ≤ Z (|λs|) δsσ (|h|)

and
∞∑

s=−∞
Z2 (|λs|) δ2

s =
∞∑

s=−∞
Z2 (|λs|) (F (λs+1)− F (λs))

≤
∫ ∞

−∞
Z2 (|λ|) dF (λ) < ∞.

¤

Theorem 8.2. Consider the linear equation (3.1)

N∑

k=1

ak
∂2k+1u (t, x)

∂x2k+1
=

∂u (t, x)

∂t
, t > 0, x ∈ R1

subject to the random initial condition

u(0, x) = η(x), x ∈ R1,
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where

η (x) =

∫ ∞

−∞
eiλxdξ (λ) ,

ξ (λ) is a random process with independent increments and the spec-
tral function F (λ). Let θ (x) , x > x0, be a function satisfying the
conditions of Lemma 6.1 and such that for sufficiently small ε > 0

∫ ε

0

ln θ(−1)(u−1)du < ∞.

Let the following integral converge
∫

R

|λ|4N+2 θ2
(
u0 + |λ|2N+1

)
dF (λ) < ∞.

Then

U (t, x) =

∫

R

I (t, x, λ) dy (λ) ,

where

I (t, x, λ) = exp

{
i

(
λx + t

N∑

k=1

akλ
2k+1 (−1)k

)}

is the classical solution of problem (3.1)-(3.2).

Proof. The proof coincides with that of Theorem 6.1 with Theorem
5.1 replaced by Theorem 8.1.

Example. The function θ (x) = (ln x)α , α > 1
2
, x > eα satisfies the

conditions of Theorem 8.2 (see Examples 6.1 and 6.2). Therefore, the
statement of Theorem 8.2 holds true if the following integral converges

∫

R

|λ|4N+2
(
ln

(
e2 + |λ|2N+1

))2α

dF (λ) < ∞,

as α > 1
2
. This integral converges when

∫

R

|λ|4N+2 (ln (1 + |λ|))2α dF (λ) < ∞

for α > 1
2
.
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9. Note on generalized solutions

Generalized solutions for equation (3.1), with the random initial data
(3.2), where η(x) a harmonized process

η(x) =

∫

R

eiuxdy (u) ,

are given by processes of the form

(9.1) U (t, x) =

∫

R

I (t, x, λ) dy (λ) .

where

I (t, x, λ) = exp

{
i

(
λx + t

N∑

k=1

akλ
2k+1 (−1)k

)}
,

provided that the integral (9.1) converges uniformly in probability for
|x| ≤ A, 0 < t ≤ T for all A, T . The condition under which the integral
(9.1) converges is given below.

Condition G. There exists a sequence an > 0, an → ∞ as n →
∞, such that for all A > 0 and T > 0 the sequence of the integrals∫ an

−an
I (t, x, λ) dy (λ) converges in probability to U (t, x)

=
∫

R
I (t, x, λ) dy (λ) uniformly for |x| ≤ A, 0 ≤ t ≤ T .

Condition G implies that there exist a subsequence ank
> 0 of the

sequence an such that
∫ ank

−ank
I (t, x, λ) dy (λ) converges almost surely to∫

R
I (t, x, λ) dy (λ) uniformly for |x| ≤ A, 0 ≤ t ≤ T .
Analyzing the proofs of the results of sections 6 and 8 we arrive at

the following statements.
Let η(x) be a harmonized process which is strictly ϕ-subGaussian

and the function θ (x) , x > u0, be a function satisfying the assumption
Ψ. Then condition G holds if the following integral converges

(9.2)

∫

R

∫

R

θ
(
u0 + |λ|2N+1

)
θ
(
u0 + |µ|2N+1

)
dΓy (λ, µ) < ∞.

When η(x) is a strictly ϕ-subGaussian stationary process

η(x) =

∫

R

eiuxdξ (u) ,

where ξ (u) is a centered process with uncorrelated increments (Eη(x+

τ)η(x) =
∫

R
eiτλdF (λ)), the condition (9.2) becomes

(9.3)

∫

R

θ2
(
u0 + |λ|2N+1

)
dF (λ) < ∞.
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Finally, let

η (x) =

∫ ∞

−∞
eiλxdξ (λ) ,

where ξ (λ) is the random process with independent increments with
spectral function F (λ). Let θ (x) , x > x0, be a function satisfying the
conditions of Lemma 6.1 such that for sufficiently small ε > 0∫ ε

0

ln θ(−1)(u−1)du < ∞.

Then condition G holds if the following integral converges∫

R

θ2
(
u0 + |λ|2N+1

)
dF (λ) < ∞.

Example. For the function θ (u) = (ln u)α , α > 1
2
, the last integral

converges when ∫

R

(ln (1 + |λ|))2α dF (λ) < ∞
for α > 1

2
.

10. Concluding remarks

A possible direction of future research is the analysis of the proba-
bilistic properties of the solutions, such as the probabilities of exceeding
of a given level, the distribution of the supremum and other function-
als, the asymptotic behavior of solutions (eventually, rescaled). An
important practical problem is the development of methods of com-
puter simulation of the solutions.
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[18] M. Loève. Probability Theory. Foundations. Random sequences. New York:
D. van. Nostrand Co., Inc. XV, 1955. 515 p.

[19] Orsingher E. (1991), Processes governed by signed measures connected with
third-order ’heat-type’ equations, Lith. Math. Journ., 31, 321-334.



ODD-ORDER HEAT-TYPE EQUATIONS WITH RANDOM INITIAL DATA 23

(L.Beghin) Dipartimento di Statistica, Probabilità e Statistiche ap-
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applicate, University of Rome ”La Sapienza”, p.le Aldo Moro 5, 00185,
Rome, Italy

E-mail address, E.Orsingher: enzo.orsingher@uniroma1.it

(L.M. Sakhno) Department of Mechanics and Mathematics, Kyiv Na-
tional Taras Shevchenko University, Kyiv, 01033, Ukraine

E-mail address, L.M. Sakhno: lms@univ.kiev.ua


