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Abstract: Observed data often belong to some specific intervals of values (for instance in case of 
percentages or proportions) or are higher (lower) than pre-specified values (for instance, chemical 
concentrations are higher than zero). The use of classical Principal Component Analysis (PCA) may 
lead to extract components such that the reconstructed data take unfeasible values. In order to cope 
with this problem, a constrained generalization of PCA is proposed. The new technique, called 
Bounded Principal Component Analysis (B-PCA), detects components such that the reconstructed 
data are constrained to belong to some pre-specified bounds. This is done by implementing a row-
wise Alternating Least Squares algorithm, which exploits the potentialities of the Least Squares 
with Inequality (LSI) algorithm. The results of a simulation study and two applications to bounded 
data are discussed for evaluating how the method and the algorithm for solving it work in practice. 
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1. Introduction 
 
Alternating Least Squares (ALS) procedures have been extensively used in component analysis. 
ALS procedures solve a least squares problem with respect to a set of parameters. The intuition 
behind ALS techniques is to split the set of the parameters into several subsets and to determine 
iteratively every optimal subset of parameters conditionally upon considering the other subsets as 
fixed. Such an iterative procedure is repeated until the value of the function to be minimized does 
not vary noticeably across two consecutive iterations. As the loss function is bounded and at every 
iteration a least squares problem is solved, the loss function value decreases or remains the same. 
This guarantees the convergence of the procedure. 
In the literature, several constrained versions of standard Alternating Least Squares (ALS) 
algorithms have been introduced (see, for instance, [1-12]).  
Most of the previous mentioned works are devoted to suitable constrained generalizations of 
Principal Component Analysis (PCA). PCA is a well-known tool aiming at detecting the underlying 
structure of a data set stored in matrix X. Specifically, PCA consists of synthesizing the (n×m)- 
matrix X as 
 
  X≅AB′.           (1) 
 
In (1), X is summarized by matrix AB′ having rank p (<m), where A (n×p) and B (m×p) are, 
respectively, the component score and component loading matrices and p is the number of extracted 
components. Usually, n and m denote the numbers of observation units and variables, respectively. 
The optimal component matrices are obtained by minimizing 
 
 ||X-AB′||2.           (2) 
 
As is known, the unconstrained minimization of (2) can be attained by means of the Singular Value 
Decomposition of X. Furthermore, the loss function in (2) can be minimized according to various 
constraints concerning the component matrices. Generally speaking, for instance, one can set these 
matrices to be equal to pre-specified ones or linearly constrain them by means of external 
information. A different way to act consists of requiring that certain elements are equal to zero, to a 
non-zero pre-specified value, to each other or are non-negative. The latter case is useful when 
negative component scores make no sense from an empirical point of view.  
In several real life applications, the data set at hand may refer to phenomena described by variables 
or attributes the values of which belong to a given domain of scores. For instance, in spectroscopic 
data, the scores are non-negative and, at the same time, it can be reasonable to assume that these are 
lower than a maximum value. The same comment holds for concentrations of chemical substances. 
Negative values are unfeasible as well as extremely high concentrations. Moreover, one may think 
about sensory data which contains the ratings of a set of judges on a collection of goods. The ratings 
may range from a lower bound (not necessarily equal to zero) to an upper bound. Once again, in 
case of proportions or percentages, the data must belong to the interval [0,1] or [0,100], 
respectively. In all of these situations, it would be desirable that the reconstructed data fulfil the 
requirement that they are higher than the lower bounds of the intervals to which they belong and 
lower than the upper bounds. In other words, it can be useful to get feasible reconstructed data 
without imposing any constraint on the component matrices.  
To corroborate our claim, let us consider the Household data set [13], which refers to the percentage 
of households in each of 16 European countries who consume a specific food items among a set of 
20 food items. The aim of the study is to investigate the existence of possible (dis)similarities 
among European countries in the food consumption. Unfortunately, three data elements are missing. 
We thus decided to ignore the associated countries. We have then examined the information 
concerning n = 13 countries and m = 20 food items. Following [13], we have performed 
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(unconstrained) PCA extracting p = 2 components and prior to fitting the model, we have 
preprocessed the data by centering and scaling (see also Section 3.3, in the sequel). The fit 
percentage using p = 2 components was equal to 50.22%. By inspecting the reconstructed data 
(applying the inverse preprocessing procedure), we saw that seven figures took unfeasible values, 
i.e. outside the interval [0, 100]. In particular, four times we got reconstructed percentages lower 
than 0%. Three times out of four, this occurred for percentages concerning Tinned Soup with 
respect to Italy (observed datum = 3% and reconstructed datum = -1.8%), Austria (1% and -0.4%, 
respectively) and, above all, Portugal (1% and -11.0%, respectively). Finally, the observed 
percentage concerning the consumption of frozen fish in Ireland is equal to 5%, but the 
reconstructed score was -2.1%. Regarding unfeasible scores higher than 100%, we can mention the 
consumption of Ground Coffee (observed 96% and reconstructed 108.3%) and Margarine (observed 
91% and reconstructed 110.4%) by Danish households. Finally, as one would expect, the observed 
consumption of tea in England is very high (99%). However, this does not admit a reconstructed 
consumption equal to 100.5%. Note that, if we chose p = 3 components (the fit percentage was 
65.19%), we got seven unfeasible values. Three of them were already found using p = 2 
components. Going into detail, these are the percentages of Tinned Soup in Italy (-3.4%) and 
Portugal (-9.5%) and Tea in England (106.4%). Moreover, we found reconstructed percentages of 
Tinned Soup in Luxembourg equal to 105.2% (observed 97%) and of Jam and Garlic in England 
equal to 100.1% and –9.9%, respectively (observed 91% and 11% respectively). These results seem 
to show that the increase of the number of extracted components does not prevent the tendency of 
PCA to obtain unfeasible values. 
Summing up, we think that the components to be extracted should be found in such a way that the 
reconstructed data take feasible values, otherwise, if at least one reconstructed score is unfeasible, 
the extracted components are somehow meaningless. It is thus convenient to constrain the model in 
order to ensure that the obtained components determine feasible reconstructed data. 
The paper is organized as follows. In the next section, three linear least squares problems with 
linear inequality constraints (Non-Negative Least Squares (NNLS), Least Distance Programming 
(LDP), and Least Squares with Inequality (LSI) problems) are briefly recalled [14]. In section 3, the 
constrained PCA problem is formalized and the iterative solution based on the LSI algorithm is 
described. Section 4 is devoted to a simulation experiment in order to compare the abilities in 
recovering the component structure underlying the data of the proposed constrained PCA and 
ordinary PCA and to evaluate the performance of the proposed algorithm in terms of computation 
time and risk of hitting local optima. Finally, extensive applications of the constrained PCA method 
to the Household data set and to a chemical data set are given in Section 5.  
 
 
 
2. Linear least squares with linear inequality constraints 
 
2.1. The Non-Negative Least Squares (NNLS) problem 
 
Let U be an -matrix, v an n-vector and w an m-vector. The standard NNLS problem consists 
of  

(n m× )

 

 
2min ,

s.t. ,m

−

≥
w

Uw v

w 0
          (3) 

 
where  is an m-vector with zero elements. A detailed description of the NNLS algorithm m0
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 along with the proofs of the optimality of the obtained solution and of the convergence of the 
algorithm in a finite number of iterations can be found in [14]. Also note that modifications of the 
NNLS algorithm for reducing the computation time have been proposed in [4, 12].  
 
 
2.2. The Least Distance Programming (LDP) problem 
 
A different problem, usually referred to as Least Distance Programming (LDP) can be written as 
follows: 
 

 
2min ,

s.t. ,≥
w

w

Gw h
             (4) 

 
where G is a ( -matrix and h an m-vector. The LDP problem in (4) consists of first assessing 
whether  is consistent and, if so, of finding the best value of w in the sense that the loss 
function in (4) is minimized. The optimal solution of (4) can be found by transforming the 
minimization problem into a particular NNLS problem. See, for more details, [14]. 

)l m×
hGw ≥

 
 
2.3. The Least Squares with Inequality (LSI) problem 
 
The NNLS problem given in (3) can be also generalized by means of the constraints of the LDP 
problem in (4). Then, the problem to be solved can be expressed as 
 

 
2min ,

s.t. .

−

≥
w

Uw v

Gw h
          (5) 

 
In the literature, this problem is usually christened as Least Squares with Inequality (LSI). The 
optimal solution of (5) can be attained by observing that the LSI problem can be transformed into a 
particular LDP problem. To this purpose, we can decompose U (having rank m) by means of the 

SVD. Let , where P (n×n) and R (m×m) contain the orthonormal left and right 

singular vectors of U, Q (m×m) is a diagonal matrix containing the singular values (of U) and 
 is a  matrix with zero elements. If we define y = R′w, hence w = Ry,  then (5) 

can be rewritten as 

( )n m m− ×

⎡ ⎤
′= ⎢ ⎥

⎣ ⎦

Q
U P R0

( )n m m− ×0 ( )( n m m− × )

 

 ( )

2

1

2

min ,

s.t. ,
− ×

′ ⎡ ⎤⎡ ⎤
− ⎢ ⎥⎢ ⎥′⎣ ⎦ ⎣ ⎦

≥

n m m
y

QyP
v 0P

GRy h

         (6) 

 
where  (n×m) and  (n×n-m) contain the first n and last n-m columns of P. By setting 1P 2P

,′= − 1s Qy P v  (6) can be expressed as 
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2 2

2

1

min ,

s.t. .− −

′+

′≥ −
s

1 1

s P v

GRQ s h GRQ P v
         (7) 

 
The problem in (7) coincides with that in (4) after observing that 2

2′P v  can be considered as a 
constant with respect to s. Of course, it follows that the LDP algorithm can be adopted for solving (7). 
 
 
 
3. Bounded Principal Component Analysis (B-PCA). 
 
3.1. Problem 
 
Let X (n×m) be the observed data matrix such that ≤ ≤X X X , where X  and X  are the (n×m) 
matrices of the lower and upper bounds, respectively. We now aim at summarizing matrix X under 
the constraints that the reconstructed data AB’ must belong to the interval ,⎡⎣X X⎤⎦ . Therefore, the 
problem can be formalized as 
 

 
2

,
min ,

s.t. .

′−

′≤ ≤
A B

X AB

X AB X
          (8) 

 
We refer to the constrained PCA problem in (8) as Bounded Principal Component Analysis (B-
PCA). 
 
 
3.2. Solution 
 
The optimal solution of the minimization problem in (8) can be obtained by performing an 
Alternating Least Squares (ALS) algorithm involving the solutions of specific LSI problems. In 
fact, as we shall see, during each iteration we update the rows of A and B by solving ad-hoc LSI 
problems. When we update with respect to a row, we solve the minimization problem in (8) keeping 
fixed the other rows of the component matrices. Whenever a row is updated, the loss function to be 
minimized decreases. After updating all the rows, if the value of the loss function decreases less 
than a specified value, say ε, (or than a specified percentage from the previous function value), we 
consider the algorithm converged, otherwise we repeat the updating of all the rows. As the 
expression in (8) has a lower bound, the function value converges to a stable value. This guarantees 
that the algorithm converges to, at least, a local optimum. To limit the risk of hitting local optima, 
more than one random start is recommended. 
Let us now describe in detail how to update the rows of A and B. Let us consider the update of the 
generic i-th row of A, say , i = 1,…,n. The loss function in (8) can be rewritten as ′ia
 
 ( ) ( )

22min ,′ ′ ′ ′− + −
i

i i i ia
x a B X A B         (9) 

 
where , i = 1,…,n, denotes the i-th row of X, and  and  denote the matrices X and A with 
the i-th row deleted, respectively. The second term of (9) can be considered as a constant with 
respect to  and will be thus be ignored in the sequel. Therefore, it follows that (9) can be replaced 

′ix ( )iX ( )iA

′ia
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by 
 
 2min −

i
i ia

Ba x .          (10) 

 
Furthermore, from (8), the update of  must fulfil the requirement that ′ia
 
 ,′ ′ ′ ′≤ ≤i i ix a B x            (11) 
 
where ′ix  and ′ix  denote the i-row of X  and X , respectively. After some manipulations, it is easy 
to see that (11) can be also expressed as 
 

 
≥ ⎡ ⎤⎡ ⎤

⇔ ≥ ⎢⎢ ⎥− ≥ − −−⎣ ⎦ ⎣ ⎦
i i i

i
i i i

Ba x xB
a

Ba x xB ⎥
i

.        (12) 

 
By combining (10) and (12), we get that the optimal row ′ia  can be found by solving the following 
problem: 
 

 

2min ,

s.t. .

−

⎡ ⎤⎡ ⎤
≥ ⎢ ⎥⎢ ⎥ −−⎣ ⎦ ⎣ ⎦

i
i i

i
i

i

a
Ba x

xB
a

xB

          (13) 

 
The solution of (13) can be obtained taking into account that the problem in (13) coincides with the 

LSI problem in (5) setting U = B, , = iw a = iv x , 
⎡ ⎤

= ⎢ ⎥−⎣ ⎦

B
G

B
 and 

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

i

i

x
h

x
. 

Analogously, we can determine the minimization problem for updating the j-th row of B, say ′jb , j 
= 1,…,m. In fact, bearing in mind that the other rows of the component matrices can be considered 
as fixed, the function to be minimized reduces to 
 
 

2
min −

j

j
jb

Ab x ,          (14) 

 
where , j = 1,…,m, denotes the j-th column of X. The constraints in (8) regarding jx ′jb  can be 
written as 
 

 
≥ ⎡ ⎤⎡ ⎤

⇔ ≥ ⎢⎢ ⎥− ≥ − − −⎣ ⎦ ⎣ ⎦

j j
j

jj ⎥j
j

Ab x A x
b

Ab x A x
,        (15) 

 
where jx  and jx  denote the j-column of X  and X , respectively. Expressions (14) and (15) yield 
 

 

2
min ,

s.t. ,

−

⎡ ⎤⎡ ⎤
≥ ⎢ ⎥⎢ ⎥− −⎣ ⎦ ⎣ ⎦

j

j
j

j

j j

b
Ab x

A x
b

A x

         (16) 
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which coincides with the LSI problem in (5) setting U = A, = jw b , j=v x , 
⎡

= ⎢
⎤
⎥−⎣ ⎦

A
G

A
 and 

j

j

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

x
h

x
. 

Summing up, the following row-wise constrained ALS algorithm can be implemented for solving 
the B-PCA problem introduced in (5). 
 
 
 

 

Step 0 Fix ε and p (number of extracted components).  
 Construct, for instance randomly, component matrices  and . [ ]0A [ ]0B

 Compute [ ] [ ] [ ]
2

0 0f ′= −X A B 0 . 

 Set 1k = . 
 

Step 1 Update , i = 1,…,n, [ ]′ k
ia by solving (13). 

 

Step 2 Update , j = 1,…,m, [ ]′ k
jb by solving (16). 

 

Step 3 Compute [ ] [ ] [ ]
2

k kf ′= −X A B k . 
 

Step 4 If [ ] [ ]1− − <k kf f ε , then the algorithm has converged; otherwise set  and go to 

Step 1. 

1k k= +

 

 
 
3.3. Preprocessing 
 
In several occasions, the data at hand need to be preprocessed. This can be done both by centering 
in order to eliminate the so-called offset terms and by scaling in order to eliminate artificial 
differences among the variables. The centering procedure can be performed by subtracting the mean 
value of every variable from the observed scores. We then get the centered data QX where 

n n
n n

×= −
1

Q I  is the centering operator, in which  is the identity matrix of order n and nI n n×1  is an 

(n×n) matrix with unit elements. Using a different notation, the centered data can be also written as 
, where m is the column vector of order m holding the mean of the j-th variable in the j-th 

element and  is a row vector of order n with unit elements. The scaling procedure consists of 
multiplying the scores of every variable by a scalar, which is usually the inverse of the standard 
deviation. We thus obtain the scaled data XD, where D is the diagonal matrix of order m with the 
inverses of the standard deviations as non-zero elements. In case of both centering and scaling, PCA 
is performed on matrix QXD. In order to guarantee that the constraints in (8) are still satisfied after 
preprocessing (applying the inverse preprocessing procedure), it is necessary to preprocess the 
lower and upper bounds using the same transformations adopted for the data matrix X. Therefore, 
the B-PCA problem in (8) is replaced by  

n ′−X 1 m

n1

 

 7



 
( ) ( )

2

,
min

s.t. .n n

′−

′ ′ ′− ≤ ≤ −
A B

QXD AB

X 1 m D AB X 1 m D
       (17) 

  
It should be clear that the problem in (17) can be minimized by iteratively solving the LSI problems 
in (13) and (16) replacing the rows and the columns of X, X  and X  with the preprocessed ones 
implicitly defined in (17).  
 
 
Remark 1: Rotational freedom 
 
As for classical unconstrained PCA, the B-PCA method allows rotations of the obtained 
components. In fact, if the component matrices A and B satisfy the membership of the reconstructed 
data in the interval ,⎡⎣X X⎤⎦  and T is a (p×p) rotation matrix, then =A AT  and 1−′=B BT  are 

feasible component matrices because ( )1 1 ,− −′ ′ ′′ ′ ⎡= = = ∈⎣AB AT BT ATT B AB X X⎤⎦ . Obviously, 
this can be useful for simple structure rotations in order to facilitate the interpretation of the 
extracted components. 
 
 
Remark 2: Non-Negative Principal Component Analysis  
 
Suppose that the data are bounded to be non-negative ( n m×=X 0  where n m×0  is a  matrix with 

zero elements and 
(n m× )

X  is ignored) and the centering step is not required. Without loss of generality, 
let us assume that the data matrix X holds scaled scores. The B-PCA problem reduces to 
 

 
2

,
min ,

s.t. ,n m×

′−

′ ≥
A B

X AB

AB 0
          (18) 

 
which strongly resembles the so-called Non-Negative Principal Component Analyses (NN-PCA) 
(see, e.g., [15]). NN-PCA, which can be seen as a particular case of the so-called archetypal 
analysis proposed in [16], is formalized as 
 

 
2

,
min ,

s.t. , ,n p m p× ×

′−

≥ ≥
A B

X AB

A 0 B 0
          (19) 

 
where  are matrices with zero elements of order  and n p m p×0 0 × ( )n p×  and , respectively. 
Even if, from a mathematical point of view, problems (18) and (19) differ and have different 
solutions, from a practical point of view, the differences seem to be negligible. 

(m p× )

 
 
 
4. Results on simulated data 
 
In order to evaluate the performance of the B-PCA method, a simulation experiment was carried 
out. The research questions to be answered by means of the simulation study are: 
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- What is the recovering performance of B-PCA compared to that of ordinary PCA?  
- What is the tendency of the B-PCA algorithm to hit local optima? 
- Is the B-PCA algorithm efficient? 
- Is it preferable to consider the PCA solution as a rational starting point? 
 
To answer the above questions, data sets with a known underlying structure were randomly 
generated and noise was added. In particular, the generated data had six different data sizes with the 
numbers of observation units (n) and variables (m) ranging from 10 to 50 (10×10, 30×10, 30×30, 
50×10, 50×30 and 50×50). The data stored in the (n×m)-matrix X were constructed according to 
 
 ,          (20) ′= + ηX AB N
 
where A and B are the known component matrices and N is the noise matrix; to quantify exactly the 
relative amount of noise, the parameter η, which takes values 0.0, 0.1, 0.5 and 1.0 was introduced 
and the noise matrices were scaled in such a way that ||AB´||2=||N||2. All these three matrices were 
generated by two different approaches. Specifically, in the uniform case, their elements were 
randomly generated from the uniform distribution in [-1,1], whereas, in the normal case, from the 
standard normal distribution. The numbers of columns of A and B, e.g. the numbers of components, 
were chosen equal to p=2 or 3. For every level of every design variable, five data sets were 
randomly generated. Therefore, 6 (data sizes) × 2 (uniform or normal cases) × 2 (numbers of 
components) × 4 (levels of noise) × 5 (replications) = 480 data sets were randomly generated during 
the simulation experiment.  
We assumed that the lower and upper bounds of every randomly generated data matrix were, for 
every column, the minimal and maximal observed values, respectively. Thus, we get n=X 1 m  and 

n=X 1 m , where m  and m  are vectors of size m, in which the generic j-th elements correspond to 
the minimum and maximum of the j-th column of X, respectively. Therefore, we have randomly 
generated data matrices in a somewhat special way, because they contains (at least) 2m elements 
which coincide with the extreme values. 
B-PCA and ordinary PCA were then performed on the randomly generated data sets. We decided to 
extract two or three components according to the level of the corresponding design variable p for 
the data set at hand. For each case, eleven different starts of the B-PCA algorithm have been 
considered. Specifically, the algorithm was run using one rational start based on the PCA solution 
of X, and ten random starts. For the random starts, the component matrices have been randomly 
generated from the same distribution as the matrices used in generating the data, i.e, in the uniform 
case, from U[-1,1] and, in the normal case, from N(0,1). 
In order to compare the performances of B-PCA and ordinary PCA, we have checked whether B-
PCA is better in recovering AB’ than is PCA. We have chose the Proportion of Agreement (PA) 
index (see, e.g, [17]) for evaluating how B-PCA and PCA worked. With respect to B-PCA, we then 
get: 
 

 100− −
′ ′−

=
′

B PCA B PCAPA
A B AB

AB
× ,        (21) 

 
where AB-PCA and BBB-PCA are the optimal component matrices resulting from B-PCA (considering, 
for each case, the values pertaining to the run of the algorithm that led to the smallest function 
value). The PA index for PCA can be obtained analogously for the optimal component matrices 
from ordinary PCA. The PA index takes values from 0 to 100. When the score of the index is 100, 
the method at hand perfectly recovers the component structure. Table 1 contains the average PA 
values distinguishing among the levels of the design variables. 
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Table 1. Recovering performances of B-PCA and PCA: average PA values, mean PA differences 
(PAB-PCA- PAPCA) and 95% confidence intervals in brackets. The values are distinguished with 
respect to the data size, the generating distribution, the level of noise and the number of 
components. 
 

Design Variable PCA B-PCA mean PA differences (PAB-PCA- PAPCA) 
and [95% Confidence Intervals] 

10×10 82.47 82.94 0.47 [0.07, 0.86] 
30×10 87.98 88.18 0.20 [0.08, 0.31] 
30×30 94.22 94.23 0.01 [-0.04, 0.05] 
50×10 89.92 89.99 0.07 [0.02, 0.13] 
50×30 95.50 95.51 0.01 [-0.02, 0.04] 
50×50 96.72 96.71 -0.01 [-0.04, 0.03] 
N(0,1) 91.20 91.34 0.14 [0.04, 0.24] 
U[-1,1] 91.07 91.18 0.11 [0.01, 0.21] 
η=0.0 100.00 100.00 0.00 [0.00, 0.00] 
η=0.1 99.76 99.71 -0.05 [-0.06, -0.04] 
η=0.5 93.71 93.67 -0.04 [-0.11, 0.03] 
η=1.0 71.06 71.66 0.60 [0.34, 0.85] 
p=2 92.88 92.98 0.10 [-0.01, 0.21] 
p=3 89.39 89.54 0.15 [0.06, 0.24] 

Overall 91.13 91.26 0.13 [0.05, 0.20] 
 
From Table 1, we can observe that B-PCA worked at least equally well or better than ordinary PCA 
with respect to the recovery of the component parameters. In fact, the average PA value concerning 
B-PCA is slightly higher than that concerning PCA (91.26% for B-PCA and 91.13% for PCA) and 
the associated 95% confidence interval for the mean PA differences does not contain 0 and has 
positive bounds. It can be seen that this also holds for many levels of the design variables (notice 
that the best B-PCA performance is registered for case ‘η=1.0’). In some cases, confidence intervals 
around mean PA differences contain 0, and hence apparently the mean difference is not clearly and 
reliably systematically positive in favour of either method. Among all the levels of all the design 
variables, just once, when η=0.1, PCA seemed to work better than B-PCA. All in all, we can 
therefore conclude that the use of B-PCA does not only ensure that we get estimates within the 
given bounds, but also gives solutions that are typically better and never clearly worse than PCA in 
recovering the underlying structure. 
These results showed the usefulness of B-PCA, as compared to PCA and encouraged to give a 
better insight into its potentialities. Among them, the tendency of the B-PCA algorithm to hit local 
optima has been studied by checking for each case, the percentage of times in which the function 
value was more than 0.1% bigger than that corresponding to the optimal solution, i.e the lowest 
function value obtained in the eleven runs. This was done for η≥0.1. On the contrary, when η=0.0, 
since the optimal function value is equal to 0 (i.e., the model perfectly fits the data), we assumed 
that the global optimum has been attained if the function value was lower than 10-6. The results are 
displayed in Table 2. 
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Table 2. Percentages of times in which the global optimum was attained. The values are 
distinguished with respect to the data size, the level of noise, the number of components, the 
generating distribution and the kind of start. 
 

B-PCA  Design Variable 
Rational Start Random Start Rational+Random

10×10 97.50 84.38 85.57 
30×10 97.50 90.00 90.68 
30×30 87.50 75.75 76.82 
50×10 100.00 92.75 93.41 
50×30 95.00 77.13 78.75 
50×50 90.00 74.38 75.80 
N(0,1) 92.50 81.29 82.31 
U[-1,1] 96.67 83.50 84.70 
η=0.0 100.00 100.00 100.00 
η=0.1 79.17 40.67 44.17 
η=0.5 99.17 90.25 91.06 
η=1.0 100.00 98.67 98.79 
p=2 93.33 76.79 78.30 
p=3 95.83 88.00 88.71 

Overall 94.58 82.40 83.50 
 

Note: The figures corresponding to columns ‘Rational+Random’ are computed as weighted means. 
 
From Table 2, we can see that the overall percentages of times in which B-PCA hit global optima 
was higher than 83% (83.50%). The use of rational starts noticeably decreased the risk of the 
algorithm to hit local optima. This was observed for all of the levels of the design variables and, of 
course, during the entire simulation (approximately 94% for the rational start and 82% for the 
random start). When no noise was added to the data (η=0.0) the B-PCA algorithm always attained 
the global optima using both rational and random starts. Instead, the B-PCA algorithm seemed to be 
less prone to hitting global optima when the level of noise was low. More specifically, when η=0.1, 
we observed the smallest percentages of times in which B-PCA hit global optima (almost 80% for 
the rational starts and a bit more than 40% for the random starts). As the level of added noise 
increased, the chance of hitting global optima increased. The other design variables affected the 
results as follows. The percentages of times in which B-PCA hit global optima increased according 
to the increase of the number of components p. This holds especially when using random starts. The 
chance of B-PCA to hit global optima seemed to be lower in the normal case than in the uniform 
case. Finally, by inspecting Table 2, we can argue that the tendency of hitting local optima 
increased when m increased and the ratio between n and m decreased. Therefore, when the data 
matrix was close to be a square matrix and the number of its columns increased, the performance of 
the B-PCA algorithm seems to get worse. In fact, by ordering (from the highest to the lowest 
values) the percentages of times in which the global optima was attained with respect to the data 
sizes, we have: 50×10, 30×10, 10×10, 50×30, 30×30, 50×50. Such an order can be found for the 
random starts and, to a lesser extent, for the rational starts. 
All in all, in order to limit the risk of hitting local optima, more than one starts is recommended. 
However, the B-PCA algorithm is more prone to hit global optima when rational starts are 
considered. Moreover, particular attention should be paid when the data set at hand presents a high 
number of variables, especially if compared with the number of observation units, and a rather low 
level of noise. 
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To evaluate the efficiency of the B-PCA algorithms, we compared the computation times both using 
the rational start and the random starts. It is useful to note that the simulation was carried out on a 
personal computer with Centrino 1.73 GHz processor and 512 MB RAM. For every level of every 
design variable, the median computation times are displayed in Table 3. We decided to compute the 
median values instead of the mean values because the distribution of the computation times was 
skew and several outliers (very high registered computation times) occurred. To this purpose, we 
have inspected the boxplots (which are not reported here) for all the combinations of the levels of 
the design variables (data size, kind of distribution, number of components, level of noise) 
considering both random and rational starts. We have found that in various conditions there were 
severe outliers (up to about 1100 seconds). In fact, in 2.58% of runs of the algorithm (in all, 480 
data sets × 11 starts = 5280 runs were done), the registered computation time was higher than 60 
seconds and in 0.40% of runs higher than 180 seconds. Out of the 96 (combined) conditions in total, 
in 23 of these we registered at least one computation time higher than 30 seconds. In general, the 
most time-consuming conditions were those characterized by a high number of observation units (in 
17 of the 23 n was 50) and for a low (η=0.1) or medium (η=0.5) level of noise (18 times out of 23). 
Note also that computation times above 30 seconds were never registered in case η=0.0. 
Furthermore, it is worth mentioning that in the conditions 10×10, N(0,1), η=1.0, p=2 and 30×10, 
N(0,1), η=0.1, p=2 and, above all, 50×30, N(0,1), η=0.5, p=3 and 50×50, U(-1,1), η=0.5, p=3, 
extremely high computation times were registered. Finally, note that, in 57 conditions (out of 96), 
the registered computation times always remained below 10 seconds.  
 
Table 3. Efficiency of the B-PCA algorithms: median computation times (seconds) distinguished 
with respect to the data size, the level of noise, the number of components, the generating 
distribution and the kind of start. 
 

B-PCA  Design 
Variable Rational Start Random Start 
10×10 0.16 0.16 
30×10 0.22 0.26 
30×30 1.11 1.26 
50×10 0.32 0.52 
50×30 2.52 3.09 
50×50 4.46 4.83 
N(0,1) 0.71 0.90 
U[-1,1] 0.46 0.54 

p=2 0.47 0.57 
p=3 0.63 0.76 
η=0.0 0.03 0.08 
η=0.1 1.62 2.22 
η=0.5 1.45 1.88 
η=1.0 0.84 0.95 

Overall 0.50 0.68 
 
From Table 3, it is interesting to see that the use of rational starts appears to be more helpful. In 
fact, the increase of the median computation time during the entire simulation when using random 
starts was equal to about 35% if compared with that resulting from the use of rational starts (the 
median values are 0.50 for the rational starts and 0.68 for the random starts). Moreover, for all the 
levels of the design variables, the B-PCA algorithm was more efficient in case of rational starts, 
except for data size 10×10 in which the difference was negligible. With respect to the design 
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variables, the analysis of the median values showed that, when no noise was added to the data, the 
algorithm worked very well and converged in about 0.16 seconds (median values). As far as the 
level of noise added increased, the median computation time firstly increased (when η=0.1) and 
then decreased, but, however, remained considerably higher than the case η=0.0. Also the number 
of components affected the computation time, which increased, according to the median values, 
when p passed from 2 to 3. Moreover, the computation time was affected by the kind of 
distribution. In fact, the algorithm was more efficient for the uniform case than the normal one. The 
data size was related to the efficiency of the algorithm as follows. When the number of variables 
increased, the average computation time increased. The same did not hold for the number of 
observation units. Nonetheless, in case of equal number of variables, the median computation times 
increased when the number of observation units increased.  
Summing up,  similarly to what we found for the tendency of the algorithm to hit global optima, the 
use of rational starts is recommended for improving the efficiency of B-PCA. In fact, it makes the 
B-PCA algorithm more efficient when compared to the use of random starts. 
 
 
 
5. Application 
 
5.1 Household data 
 
In this subsection, the application of the B-PCA method to the Household data set [13] is described. 
It is worth to recall that the data at hand contain the percentages of households in n = 13 European 
countries (three countries with missing values were ignored) who consume each of m = 20 food 
items.  
Before fitting B-PCA to the data, we performed ordinary B-PCA. In Table 4, we first report the fit 
percentages and the numbers of unfeasible values obtained performing classical PCA (on the 
preprocessed data by means of centering and scaling). 
 
Table 4. Fit percentages from PCA and B-PCA and numbers of unfeasible values from PCA. 
 

Number of 
extracted 

components 

Fit 
Percentage 
from PCA 

Number of 
unfeasible 

values from 
PCA 

( ′ <AB X ) 

Number of 
unfeasible 

values from 
PCA 

( ′ >AB X ) 

Total number 
of unfeasible 
values from 

PCA 

Fit 
Percentage 

from B-PCA 

p = 1 33.54 2 0 2 33.33 
p = 2 50.22 4 3 7 49.69 
p = 3 65.19 3 4 7 64.47 
p = 4 73.80 3 4 7 73.22 
p = 5 80.38 3 3 6 80.04 
p = 6 86.05 3 3 6 85.90 
p = 7 91.17 4 3 7 91.05 
p = 8 94.98 5 1 6 94.93 
p = 9 97.37 3 1 4 97.35 
p = 10 98.76 2 1 3 98.74 
p = 11 99.83 1 0 1 99.83 
p = 12 100.00 0 0 0 100.00 
p = 13 100.00 0 0 0 100.00 
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From Table 4, we can see that the numbers of unfeasible values remain almost stable passing from p 
= 2 (seven unfeasible values) to p = 8 (six unfeasible values). In particular, starting from value p = 
2, it is interesting to observe that the increase of the number of extracted components does not 
imply a decrease of the number of unfeasible values (there is an additional unfeasible value when p 
moves from 6 to 7). When p = 1, we have a very low number of unfeasible values (only two). We 
may argue that when the number of extracted components is very low, the component method 
captures only the most essential structural part of the data. As a consequence, the reconstructed data 
do not well resemble the anomalous points, i.e. in the current data set those very close to the (lower 
and upper) bounds. It is surprising that the risk of unfeasible values is not limited to low numbers of 
extracted components and, indeed, to low fit values. For instance, when p = 9, the fit percentage is 
97.37% but three unfeasible values occur. Even when p = 11, with a fit percentage equal to 99.83%, 
we get one reconstructed datum lower than 0%. 
Because there were unfeasible values for all relevant numbers of components, it seems useful to 
apply B-PCA to these data in order to avoid unfeasible values. In order to determine the optimal 
number of components, we can inspect the last column of Table 4, where the fit percentages 
obtained performing B-PCA with p = 1,…, 13.  are given. We chose p = 3 components. This is 
because passing from two to three components implies a noticeably increase of the fit percentage. 
Moreover, using three components guarantees that all the foods (except Butter and, to a lesser 
extent, Olive Oil) are well captured by at least one component as one can see in Table 5, which 
contains the varimax rotated component loadings. For the sake of completeness, we also reported 
the loadings from PCA (within parentheses). Note that the given PCA loadings were rotated so that 
they resembled as much as possible the varimax rotated B-PCA loadings. 
 
Table 5. Varimax rotated component loadings from B-PCA and (within parentheses) from PCA. 
 

Food Component 1 Component 2 Component 3 
Ground Coffee -0.38 (-0.36) 0.28 (0.31) 0.19 (0.17) 
Instant Coffee 0.35 (0.33) 0.20 (0.19) -0.14 (-0.12) 

Tea 0.25 (0.30) -0.05 (-0.06) 0.19 (0.17) 
Sweetener 0.13 (0.12) 0.12 (0.13) 0.33 (0.31) 
Biscuits 0.25 (0.24) 0.17 (0.17) -0.02 (-0.01) 

Powder Soup 0.28 (0.26) 0.21 (0.21) -0.15 (-0.16) 
Tinned Soup 0.32 (0.36) -0.02 (0.03) -0.00 (0.04) 

Industrial Potatoes -0.01 (0.01) 0.24 (0.23) 0.11 (0.10) 
Frozen Fish -0.12 (-0.12) -0.01 (-0.00) 0.49 (0.47) 

Frozen Vegetables 0.03 (0.02) 0.07 (0.07) 0.43 (0.42) 
Apples 0.07 (0.08) 0.40 (0.40) 0.06 (0.05) 
Oranges -0.08 (-0.07) 0.47 (0.47) 0.05 (0.05) 

Tinned Fruit 0.29 (0.27) 0.24 (0.24) 0.09 (0.09) 
Jam 0.42 (0.40) -0.10 (-0.10) 0.04 (0.02) 

Garlic -0.28 (-0.29) 0.23 (0.23) -0.26 (-0.24) 
Butter 0.12 (0.11) 0.13 (0.13) -0.05 (-0.04) 

Margarine -0.02 (-0.05) 0.08 (0.05) 0.26 (0.37) 
Olive Oil 0.18 (-0.17) 0.12 (0.11) -0.17 (-0.15) 
Yoghurt -0.03 (-0.02) 0.43 (0.43) -0.12 (-0.13) 

Crisp Bread -0.03 (-0.03) -0.06 (-0.06) 0.39 (0.36) 
 

Note: Loadings higher than 0.20 in the absolute sense are in bold.  
 
By inspecting Table 5, we can observe that the component loadings from PCA and B-PCA slightly 
differ. It follows that the interpretation of the components of the two solutions is the same for all 
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practical purposes. In particular, the first component can be interpreted as the style of nutrition 
characterized by rich and quick breakfast. For instance, Instant Coffee is highly partaken, whereas 
Ground Coffee is often missing because its preparation requires more time). The second component 
seems to be representative of healthy and quickly preparable food. Finally, the third component 
mainly reflects the presence of dietary food (especially, Frozen Fish and Frozen Vegetables, Crisp 
Bread and Sweetener). The B-PCA component scores for the Countries are displayed in Figure 1. 
 
Figure 1. Low dimensional representation from B-PCA (Left side: Components 1 and 2; Right side: 
Components 2 and 3)  
 
 
 
 
 
 
 
 
 
 
 
 
 
       Note:  x-axes: Component 1; y-axes: Component 2        Note:  x-axes: Component 1; y-axes: Component 3 
 
Starting from the right side of Figure 1, in which the scores of the third component are represented, 
we can observe the duality between the countries belonging to Northern Europe (Denmark and 
Norway above all) with high third component scores and those located in Southern Europe (Italy, 
France and Portugal) with low third component scores, even if the exception of Ireland is visible. 
We may argue that in Southern Europe the consumption of frozen foods is lower than that in the 
Northern countries, whereas the opposite comment holds for garlic. Thus, such a component also 
reflects the geographical location and the culinary culture of the countries. The highest first 
component scores correspond to two countries located in the United Kingdom, which are in contrast 
with the countries from Southern Europe (characterized by the lowest first component scores). 
Finally, by inspecting the second component scores, we can state that this component reflects, to 
some extent, the distinction between the wealthy European countries (among them Luxembourg, 
France, Holland and Switzerland) and the other ones (Italy, Ireland, and Portugal, even if Austria 
also appears). 
To sum up, we conclude that ordinary PCA gives unfeasible values in solutions with all reasonable 
numbers of components. B-PCA can be used to avoid this problem, without losing the 
interpretability of the ordinary PCA solution.  
 
 
5.2 Greek red wine data 
 
The data here considered refer to the Anthocyanin concentrations of Greek red wines from the 1998 
vintage. The data can be found in Table 4 of Reference [18]. Specifically, n = 19 wines were tested 
with respect to the presence of m = 6 Anthocyanin concentrations. In this case, the constraints 
concerned the lower bounds of the data. In fact, it was desirable that the estimated chemical 
concentrations, expressed as mg/l, took non-negative values, whereas no attention was paid to the 
upper bound constraints. Note that a peculiarity of the data set at hand is the presence of several 
scores equal to 0 (28.9% of scores) for which the chance of getting negative estimated values by 
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using ordinary PCA is high. 
The data were preprocessed (by centering and scaling) and PCA and B-PCA were then applied. The 
presence of unfeasible values resulting from PCA and the fit percentages of PCA and B-PCA are 
given in Table 6. Note that the lowest unfeasible values (from PCA) after backtransforming the data 
are displayed. 
 
Table 6. Fit percentages from PCA and B-PCA and numbers of unfeasible values from PCA. 
 

Number of 
extracted 

components 

Fit 
Percentage from 

PCA 

Number of 
unfeasible values 

from PCA 
( ′ <AB X ) 

Lowest  
unfeasible value 

from PCA 
(mg/l) 

Fit 
Percentage from 

B-PCA 

p = 1 63.44 8 -25.1 63.25 
p = 2 83.00 15 -443.1 81.08 
p = 3 95.57 21 -80.0 95.21 
p = 4 98.75 13 -8.1 98.55 
p = 5 99.79 16 -3.1 99.71 
p = 6 100.00 0 - 100.00 

 
From Table 6, we can observe that, apart from the trivial case with p = 6, the number of unfeasible 
values obtained performing ordinary PCA ranges from 8 (7.0% of the estimated data) for p = 1 to 
21 (18.4% of the estimated data) for p = 3. The registered number of negative estimated values does 
not decrease according to the increase of the number of extracted components. In fact, also when p 
= 5, 14.0% of data are estimated by values lower than 0. Finally, it is surprising to see the notably 
unlucky estimated value (applying the inverse preprocessing procedure) regarding the concentration 
of Acylated malvidin-3-glucoside for wine 10, which is equal to -443.1 mg/l considering p = 2 
components (the observed score is 25.8 mg/l). On the basis of these results, we can conclude that 
the use of B-PCA is highly advisable here. 
A reasonable choice seemed to be the use of B-PCA with p = 3 components. The obtained varimax 
rotated component loadings are displayed in Table 7 (the PCA loadings are within parentheses and 
were rotated so as to become as similar as  possible to the B-PCA loadings). 
 
Table 7. Varimax rotated component loadings from B-PCA and (within parentheses) from PCA. 
 

Anthocyanin concentrations Component 1 Component 2 Component 3 
Delphinidin-3-glucoside 0.66 (0.66) -0.10 (-0.09) -0.37 (-0.37) 

Cyanidin-3-glucoside -0.01 (0.01) 0.99 (0.99) -0.02 (-0.02) 
Petunidin-glucoside 0.45 (0.43) 0.07 (0.06) 0.23 (0.23) 

Peonidin-3-glucoside 0.38 (0.39) -0.02 (-0.02) 0.35 (0.34) 
Malvidin-3-glucoside 0.47 (0.47) 0.10 (0.10) 0.14 (0.14) 

Acylated-malvidin-3-glucoside -0.07 (-0.07) -0.05 (-0.05) 0.82 (0.82) 
 

Note: Loadings higher than 0.30 in the absolute sense are in bold.  
 
The second component is essentially influenced by exactly one variable (Cyanidin-3-glucoside). 
The first and third components are mainly related to the remaining Anthocyanin concentrations. 
Specifically, Petunidin-glucoside and Malvidin-3-glucoside strongly affect the first component, 
Acylated-malvidin-3-glucoside the third one. Finally, Delphinidin-3-glucoside and Peonidin-3-
glucoside are related to both Components 1 and 3. 
The low-dimensional configuration of the wines resulting from B-PCA is represented in Figure 2.  
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Figure 2. Low dimensional representation from B-PCA (Left side: Components 1 and 2; Right side: 
Components 2 and 3)  
 
4

 
 

       Note:  x-axes: Component 1; y-axes: Component 2        Note:  x-axes: Component 1; y-axes: Component 3 

 
In Kallithraka et al. (2001) the variety and the geographical origin of the wines are also given as 
external information. The low-dimensional plots is not able to clearly distinguish the wines with 
respect to their variety. With geographical origin, however, there is a clear relation: the wines from 
Southern Greece (24, 25 and 28) are easily distinguished from the others. In fact, these are 
characterized by the highest first component scores. All the wines from the Greek islands (29-33) 
have low first component scores. 
All in all, differently from PCA, once more the use of the B-PCA method provides a feasible low-
dimensional approximation of the data set without affecting the interpretability of the obtained 
solution if compared with that resulting from PCA. 
 
 
 
6. Conclusion 
 
In this paper, a constrained generalization of PCA, called Bounded Principal Component Analysis 
(B-PCA) has been proposed. The need for B-PCA arises when the observed data are lower and/or 
upper bounded. In fact, a possible limit resulting from performing classical PCA is the risk of 
extracting meaningless components in the sense that the reconstructed data are out of the observed 
bounds. In order to determine the optimal component matrices from B-PCA a constrained (row-
wise) ALS algorithm has been proposed. This is based on the iterative solution of ad-hoc LSI 
problems (Lawson, Hanson, 1995). A comparison between B-PCA and ordinary PCA in recovering 
the underlying structure of the data has been done and the performance of the B-PCA algorithm in 
terms of the frequency of hitting global optima and of the computation time has been tested by 
means of a simulation experiment. The results are satisfactory and encourage new lines of research. 
Among them, it will be interesting to deal with three-way bounded data by suitably developing 
constrained generalizations of the Tucker3 [19] and Candecomp/Parafac [20-21] models. These 
could be found as straightforward generalizations of (8) in which B is replaced by (C⊗B)Ga´ for the 
Tucker3 model (symbol ⊗ denotes the Kronecker product) and (C B) for the Candecomp/Parafac 
model (symbol  denotes the Khatri-Rao product). Here A, B and C denote the component 
matrices for the observation unit, variable and occasion modes and, in Tucker3, Ga is the 
observation unit mode matricized version of the so-called core matrix (see, for more details, Tucker, 
1966). The optimal solution could be found by iteratively solving LSI algorithms with respect to the 
rows of the component matrices for the observation unit, variable and occasion modes and, in the 
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Tucker3 case, of the core matrix. Unfortunately, prior analyses of such a three-way B-PCA 
algorithm showed a very strong tendency of the algorithm to hit local optima. It is clear that specific 
tools for managing this drawback should be found. 
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