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Abstract

The topic of our research is unconstrained 0-1 quadratic programming.
We find some properties of the Boolean Quadric Polytope, which is ob-
tained from the standard linearization of the given 0-1 quadratic function.
By using a result obtained by Deza and Laurent on a class of hypermetric
inequalities for the Cut Polytope, we find a necessary and sufficient condi-
tion for a class of inequalities to be facet defining for the Boolean Quadric
Polytope. Furthermore we find a property characterizing the non integral
vertices of a class of relaxations of the Boolean Quadric Polytope.

1 Introduction

We present some properties of the Boolean Quadric Polytope which is obtained
from the standard linearization of a 0-1 quadratic programming problem

min f(x)
x ∈ {0, 1}n

where
f(x) = q0 +

∑
1≤j≤n

qjxj +
∑

1≤i<j≤n

qijxjxj .

The standard linearization of the given quadratic problem is obtained by in-
troducing new variables yij , 1 ≤ i < j ≤ n, and imposing the following linear
constraints (see, e.g., [7]):

−yij + xi + xj ≤ 1
yij − xi ≤ 1
yij − xj ≤ 1 1 ≤ i < j ≤ n
yij ≥ 0

(1)
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which, for all binary vectors x, enforce the identities yij = xixj , 1 ≤ i < j ≤ n.
The quadratic problem can then be formulated as a linear integer problem

min q0 +
∑

1≤j≤n qjxj +
∑

1≤i<j≤n qijyij

s.t. (1)
x ∈ {0, 1}n.

The Boolean Quadric Polytope is the convex hull of the feasible solutions to this
problem. In the following we will denote by BQV the Boolean Quadric Polytope
defined on the variables xi, i ∈ V = {1, . . . , n} and yij , i, j ∈ V, i < j.

The Boolean Quadric Polytope has been first studied by Padberg in 1989 [9],
and by Boros, Crama and Hammer [1], [2]. In his paper, Padberg, found many
properties of the Boolean Quadric Polytope. Among these we recall the following
ones: inequalities (1) are facets defining for the Boolean Quadric Polytope; if
n = 2 the above inequalities are enough to define the Boolean Quadric Polytope
so that it coincides with its continuous relaxation; for n = 3, the continuous
relaxation has four fractional vertices, where all the x variables are equal to
1/2 and these vertices are cut off by four facets defining inequalities which,
together with (1), define the Boolean Quadric Polytope; for arbitrary values of
n the components of the vertices of the continuous relaxation of the Boolean
Quadric Polytope are equal to 0, 1/2 or 1. Finally he found three classes of facet
defining inequalities called cut inequalities, clique inequalities and generalized
cut inequalities.

It has been proved by several authors that there exists a linear bijective
transformation mapping the Cut Polytope onto the Boolean Quadric Polytope
so that any result for the former one can be translated into a result for the latter
one and vice versa (see e.g. [4]).

In this paper we present a new result on the fractional vertices of a class of
relaxations of the Boolean Quadric Polytope (Section 3) and, using a result by
Deza and Laurent [5] for the Cut Polytope, we find a necessary and sufficient
condition for a class of inequalities to be facet defining for the Boolean Quadric
Polytope (Section 4). In Section 2 we describe some previous results necessary
in our exposition and we introduce some further definitions and notations.

2 Previous results, notations and definitions

Given a quadratic function

h(x) = a0 +
∑
j∈V

ajxj +
∑

i,j∈V :i<j

aijxixj

where V = {1, . . . , n}, we denote by

Lh(x, y) = a0 +
∑
j∈V

ajxj +
∑

i,j∈V :i<j

aijyij

the linear function obtained by substituting in h the quadratic terms xixj with
the variables yij .
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Let CV ⊂ Rn(n+1)/2 be the cone of nonnegative 0-1 quadratic functions of
the variables xi, i ∈ V , and for a given k ∈ {2, . . . , n}, let Ck

V ⊆ CV be the cone
of nonnegative 0-1 quadratic functions of k variables.

If constrains (1) hold, then Lh(x, y) ≥ 0 is valid for BQV if and only if
h(x) ≥ 0 for all binary vectors x ([1]). Based on this fact Boros, Crama and
Hammer ([1]) defined a hierarchy of relaxations of BQV :

Qk
V = {(x, y) ∈ Rn(n+1)/2 : Lh(x, y) ≥ 0, h ∈ Ck

V }, k = 2, . . . , n

such that Qn
V = BQV .

For any given set K ⊆ V , we define also the cone CV [K] ⊂ Rn(n+1)/2 of
nonnegative 0-1 quadratic functions of the variables in K and the relaxation of
BQV

QV [K] = {(x, y) ∈ Rn(n+1)/2 : Lg(x, y) ≥ 0, g ∈ CV [K]}.
Given a vector a ∈ Rn(n+1)/2, a = (a1, . . . , an, a12, . . . , an−1,n), and K ⊂ V
such that |K| = k, we define the canonical restriction of a to K as the vector
aK ∈ Rk(k+1)/2 obtained by discarding all components aj such that j ∈ V −K
and all components aij such that i ∈ V − K or j ∈ V − K. Based on the
definition of canonical restriction of a vector a, we can define:

• the canonical restriction bK(x, y)K ≥ 0 of an inequality b(x, y) ≥ 0;

• the canonical restriction PK of a polytope P .

Remark 2.1 The canonical restrictions to K of the elements in CV [K] are all
and only the elements of CK , i.e., they define the Boolean Quadric Polytope
BQK on the set K.

3 A property of the vertices of some relaxations
of the Boolean Quadric Polytope

In this section we prove a property of the non integral vertices of the relaxations
QV [K] and Qk

V .

Theorem 3.1 Let K be a subset of V having cardinality at least two and let
(x̄, ȳ) be a vertex of QV [K] such that x̄j is not integral for some j ∈ K. Then
∃s ∈ N −K such that x̄s is not integral.

Proof. By Remark 2.1, the canonical restriction to K of QV [K] is BQK and
then all its vertices are integral. It follows that the canonical restriction (x̄, ȳ)K

of (x̄, ȳ) is not a vertex of BQK since it is not integral. By the Caratheodory’s
theorem there exist the vertices (x1, y1), . . . , (xp, yp) of BQK such that (x̄, ȳ)K =∑

h=1,...,p αh(xh, yh), αh ≥ 0, h = 1, . . . , p and
∑

h=1,...,p αh = 1.
Suppose that x̄s is integral for each s ∈ V −K. For h = 1, . . . , p, define the

vectors (x̄h, ȳh) ∈ Rn(n+1)/2 as follows:

x̄h
j =

{
xh

j j ∈ K
x̄j j ∈ V −K
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ȳh
ij =


yh

ij i ∈ K, j ∈ K
ȳij i ∈ V −K, j ∈ V −K
min{xh

i , x̄j} i ∈ K, j ∈ V −K
min{x̄i, x

h
j } i ∈ V −K, j ∈ K

These vectors are integral and belong to BQV and to QV [K] (since BQV ⊆
QV [K]). Moreover:

(x̄, ȳ) =
∑

h=1,...,p

αh(x̄h, ȳh).

But this contradicts the hypothesis that (x̄, ȳ) is a vertex of QV [K]. Hence there
exists s ∈ N −K such that xs is not integral. 2

Corollary 3.2 For any non integral vertex (x̄, ȳ) of Qk
V , at least k + 1 among

the components x̄1, . . . , x̄n are non integral.

4 A Class of facets of the Boolean Quadric Poly-
tope

Let PC(KN ) be the cut polytope defined on a complete graph having N ver-
tices. It has been proved by several authors that there exists a linear bijective
transformation mapping the cut polytope PC(KN ) onto the Boolean Quadric
Polytope BQV , |V | = N − 1, so that any result for PC(KN ) can be translated
into a result for BQV and vice versa (see e.g. [4]). In particular the following
proposition holds.

Proposition 4.1 The inequality

N−1∑
i=1

N∑
j=i+1

cijzij ≤ d

is valid (facet defining) for PC(KN ) if and only if the inequality

N−1∑
i=1

aixi +
N−2∑
i=1

N−1∑
j=i+1

aijyij ≤ d

is valid (facet defining) for BQV , |V | = N − 1, where:

ciN = ai + 1
2

∑
j=1,...,N−1:i 6=j aij 1 ≤ i ≤ N − 1 (2)

and
cij = − 1

2aij 1 ≤ i < j < N. (3)
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The facets of the cut polytope have been extensively studied. Deza and Lau-
rent, 1992 [5], present some classes of facets defining inequalities: Hypermetric,
Cycle, Parachute, Grishukhin, Barahona-Grotschel-Mahajoub, Kelly, Poljak-
Turzik.

Given N integers b1, . . . , bN such that
∑N

i=1 bi = 1, the inequality

N−1∑
i=1

N∑
j=i+1

bibjxij ≤ 0 (4)

is an hypermetric inequality. All hypermetric inequalities are valid for the cut
polytope. If all negative bi are equal to −1, the hypermetric inequality is called
linear ; if at most one negative coefficient is different from −1 the hypermetric
inequality is called quasilinear. Deza and Laurent, 1992, proved the following
theorem.

Theorem 4.2 [5] We are give an hypermetric inequality such that:

b1 ≥ b2 ≥ . . . ≥ bf > 0 > bf+1 ≥ . . . ≥ bN .

1) If the inequality is linear, then it is facet defining if and only if, either b =
(1, 1,−1), or b = (1, 1, 1,−1,−1) or 3 ≤ f ≤ N − 3.
2) If the inequality is quasi-linear, then it is facet defining if and only if, either
b = (1, 1,−1), or b = (1, . . . , 1,−1,−N + 4) or 3 ≤ f ≤ N − 3 and b1 + b2 ≤
n− f − 1 + sign(b1 − bf ).

Given the set V = {1, . . . , n} and an integral vector ρ1, . . . , ρn, consider the
pseudo-Boolean quadratic function

g(x) = (
n∑

j=1

ρjxj)(
n∑

j=1

ρjxj − 1). (5)

Since g(x) ≥ 0 for all integral vectors x, the corresponding linear inequal-
ity Lg(x, y) ≥ 0 is valid for the Boolean Quadric Polytope. It can be shown
that these inequalities correspond precisely to hypermetric inequalities. In [3],
a more general class of facet defining inequalities for the Boolean Quadric Poly-
tope has been introduced and sufficient conditions for these inequalities to be
facet defining have been presented. The corresponding inequalities for the cut
polytope include hypermetric and cycle inequalities. In [6], a class of valid in-
equalities for the cut cone including hypermetric and cycle inequalities has been
introduced.

In the following we suppose:

ρ1 ≥ ρ2 ≥ . . . ≥ ρp > 0 > ρp+1 ≥ . . . ≥ ρn (6)

and
ρi = −1, i = p + 1, . . . , n. (7)

Boros, Crama and Hammer, 1990 [1], proved that for n ≥ 3, if ρ1 = 1 and
2 ≤ p ≤ n− 1 then Lg(x, y) ≥ 0 is facet defining.

5



Theorem 4.3 If the 0-1 quadratic function g(x) satisfies (5), (6) and (7), the
inequality Lg(x, y) ≥ 0 valid (facet defining) for BQV can be transformed into a
linear or quasilinear hypermetric inequality valid (facet defining) for PC(Kn+1).

Vice versa a linear or quasi linear hypermetric inequality valid (facet defin-
ing) for PC(Kn+1) can be transformed into the inequality Lg(x, y) ≥ 0 valid
(facet defining) for BQV , for some 0-1 quadratic function g(x) satisfying (5),
(6) and (7).

Proof. Using the bijection defined in (2) and (3) we obtain a linear or quasi
linear hypermetric inequality such that

bi = ρi i = 1, . . . , n
bn+1 = −

∑p
i=1 ρi + n− p + 1.

(8)

Notice that the number f of positive elements in vector b, depends on the value
of bn+1. In particular if bn+1 > 0 (i.e.

∑p
i=1 ρi ≤ n − p) then f = p + 1; if

bn+1 = 0 (i.e. if
∑p

i=1 ρi = n − p + 1), f = p and the obtained hypermetric
inequality is defined on n variables; if bn+1 < 0 (i.e. if

∑p
i=1 ρi ≥ n − p + 2),

f = p.
In a specular way, given a linear or quasilinear hypermetric inequality such

that:
b1 ≥ b2 ≥ . . . ≥ bf ≥ 0 > bf+1 ≥ . . . ≥ bN

by using the bijection defined in (2) and (3), we obtain the inequality Lg(x, y) ≥
0 such that relations (8) hold. 2

The following theorem is a consequence of Theorems (4.2) and (4.3).

Theorem 4.4 The inequality Lg(x, y) ≥ 0 is facet defining for BQV if and
only if one of the following conditions holds:

1. either n = 2, ρ1 = 1 and p = 1, 2;

2. or n = 3, 4, ρ1 = 1 and 2 ≤ p ≤ n− 1;

3. or n ≥ 5, ρ1 = 1 and p = n− 1;

4. or n ≥ 5, 2 + max{0, sign(
∑

i=1,...,p ρi −n + p} ≤ p ≤ n− 2 and ρ1 + ρ2 ≤
n− p + sign(ρ1 − ρp).

Proof. Transform Lg(x, y) ≥ 0 into an hypermetric inequality for PC(Kn+1)
as in the proof of Theorem 4.3 so that Lg(x, y) ≥ 0 is facet defining for BQV

if and only if the obtained linear or quasilinear hypermetric inequality is facet
defining for PC(Kn+1).

In order to apply Theorem 4.2 to the obtained hypermetric inequality, we
distinguish different cases.
a)

∑p
i=1 ρi ≤ n− p

In this case bn+1 ≥ 1, the hypermetric inequality is linear and f = p + 1, hence
it is facet defining if and only if:
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• n = 2, ρ1 = 1 and p = 1;

• n = 4, ρ1 = 1 and p = 2;

• n ≥ 5, 2 ≤ p ≤ n− 3.

b)
∑p

i=1 ρi = n− p + 1
In this case bn+1 = 0, the hypermetric inequality is linear and f = p and it is
facet defining if and only if:

• n = 3, ρ1 = 1 and p = 2;

• n = 5, ρ1 = 1 and p = 3;

• n ≥ 6, 3 ≤ p ≤ n− 3.

c)
∑p

i=1 ρi = n− p + 2
In this case bn+1 = −1, the hypermetric inequality is linear and f = p and it is
facet defining if and only if:

• n = 2, ρ1 = 1 and p = 2;

• n = 4, ρ1 = 1 and p = 3;

• n ≥ 5, 3 ≤ p ≤ n− 2.

d)
∑p

i=1 ρi ≥ n− p + 3
In this case bn+1 ≤ −2, the hypermetric inequality is quasi-linear, f = p and it
is facet defining if and only if:

• n ≥ 5, ρ1 = 1 and p = n− 1;

• n ≥ 5, 3 ≤ p ≤ n− 2 and (*) ρ1 + ρ2 ≤ n− p + sign(ρ1 − ρp).

Notice that condition (*) always holds for linear inequalities such that 3 ≤ f ≤
n− 3.

The above conditions can be summarized as follows:

1. either n = 2, ρ1 = 1 and p = 1, 2;

2. or n = 3, 4, ρ1 = 1 and 1 ≤ p ≤ n− 1;

3. or n ≥ 5, ρ1 = 1 and p = n− 1;

4. or n ≥ 5, 2 + max{0, sign(
∑

i=1,...,p ρi − n + p} ≤ p ≤ n− 2 and ρ1 + ρ2 ≤
n− p + sign(ρ1 − ρp).

By Theorem 4.3 Lg(x, y) ≥ 0 is facet defining if and only if one among cases
1., ..., 4. holds. 2
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