
Two- and three-way component models for

LR fuzzy data in a possibilistic framework

Paolo Giordani

Department of Statistics, Probability and Applied Statistics
University of Rome “La Sapienza”

P.le Aldo Moro, 5, 00185 Rome, Italy
paolo.giordani@uniroma1.it

Abstract

In this work we address the data reduction problem for fuzzy data. In particular,
following a possibilistic approach, several component models for handling two- and
three-way fuzzy data sets are introduced. The two-way models are based on clas-
sical Principal Component Analysis (PCA), whereas the three-way ones on three-
way generalizations of PCA, as Tucker3 and CANDECOMP/PARAFAC. The here-
proposed models exploit the potentiality of the possibilistic regression. In fact, the
component models for fuzzy data can be seen as particular regression analyses be-
tween a set of observed fuzzy variables (response variables) and a set of unobservable
crisp variables (explanatory variables). In order to show how the models work, the
results of an application to a three-way fuzzy data set are illustrated.

Key words: Two- and three-way fuzzy data sets, Principal Component Analysis,
Tucker3, CANDECOMP/PARAFAC, Possibilistic approach

1 Introduction

During the last years, several scientific studies have dealt with topics from both
Statistics and Fuzzy Set Theory. Among the statistical methods for fuzzy ex-
perimental data, Principal Component Analysis (PCA) has received a lot of
attention. In general, the basic aim of PCA is to synthesize huge amounts of
data (a collection of I observation units on which J quantitative variables are
registered) by finding a low number of unobserved variables, called compo-
nents. These components are constructed from the observed variables in such
a way that they maintain most of the information contained in the observed
variables. In the literature, several generalizations of PCA for fuzzy exper-
imental data are available. The first work is proposed in [13]. Later, a few



papers devoted to PCA for fuzzy data following a least-squares approach can
be found in [3,4,8]. Finally, just one paper [5] attempts to handle the data
reduction problem for fuzzy data in a possibilistic setting.
In Statistics, PCA has been generalized in a three-way perspective. Three-way
data usually refer to measurements related to three modes 1 . For instance,
one may think about I observation units on which J (quantitative) variables
are measured at K occasions. The occasions can be different points in time or,
in general different measurable conditions. It should be noted that methods
for two-way data (I observation units × J variables) may be used to manage
three-way data. This can be done either by analyzing all the two-way data
sets contained in the three-way data set separately (different PCA’s for each
occasion) and by aggregating two of the three modes. In the latter case, for in-
stance, one may perform a PCA on the two-way data set with I objects and JK
‘variables’. Here, the JK new variables refer to all the possible combinations
of the J variables at the K occasions. Unfortunately, these approaches do not
offer a deep and complete analysis of the three-way data set because they do
not capture relevant information connected with the three-way interactions in
the data. To this purpose, diverse methods for managing multi-way data have
been proposed, among which the Tucker3 [12] and CANDECOMP/PARAFAC
(independently proposed in [1] and in [6]) models. Their peculiarity is the
capability of finding different components for each mode and analyzing the
interrelations among them.
As far as the author knows, the extension of three-way models for handling
fuzzy experimental data still remain to be done. In this paper, we aim at
generalizing the Tucker3 and CANDECOMP/PARAFAC models for dealing
with fuzzy data following the possibilistic approach. In this respect, we will
extend the work in [5]. The three-way models will be set-up by formulat-
ing non-linear programming problems in which the fuzziness of the models is
minimized. However, we first develop suitable generalizations of the two-way
problem for all the possible families of LR fuzzy numbers.
The paper is organized as follows. In the next section classical PCA and the
Tucker3 and CANDECOMP/PARAFAC models for crisp (non-fuzzy) data are
illustrated. In Section 3, first we recall the possibilistic approach to PCA in
[5]. Since this paper deals with (two-way) symmetric fuzzy data, we then gen-
eralize it to asymmetric LR1 and LR2 fuzzy data. Section 4 is devoted to the
three-way extensions of the models described in Section 3. Finally, in Section
5, the results of an application of the proposed models to a three-way fuzzy
data set are discussed.

1 In three-way analysis, it is standard to use the term ‘mode’ to refer to a set of
entities. Unfortunately, in fuzzy analysis, the same term refers to the point(s) of the
fuzzy number with maximal membership function. Even if this could be confusing,
we decided to ignore it. In fact, the meaning of the term can be easily depicted from
the context.
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2 Two- and three-way component models

PCA is a well-known statistical tool for analyzing a two-way crisp data set,
say X, of order I × J where I and J denote the numbers of observation units
and variables, respectively. PCA aims at summarizing X by extracting S (<J )
components, which are linear combinations of the observed variables. From a
mathematical point of view, this consists of approximating the data matrix
by means of two matrices A (I ×S) and F (J ×S) of rank S. The matrices A
and F are usually referred to as the component score matrix and component
loading matrix, respectively. The component score matrix gives the scores of
the observation units on the components, whereas the component loading ma-
trix is fruitful in order to interpret the components: high component loadings
express that the observed variables are strictly related to the components. In
scalar notation, PCA can be formulated as

xij
∼=

S∑

s=1

aisfjs, (1)

i = 1, . . . , I; j = 1, . . . , J ; where xij is the generic element of X and ais and
fjs are the generic elements of A and F, respectively. In matrix notation, we
have

X ∼= AF′. (2)

The optimal component matrices are obtained by minimizing

‖X−AF‖F , (3)

where ‖·‖F denotes the Frobenius norm.
In the three-way framework, suppose to deal with a crisp data set concerning
I observation units on which J variables at K occasions have been collected.
We thus have a three-way data matrix X of order I × J ×K. The three-way
data matrix X can be seen as the collection of all the K two-way matrices
(frontal slices) of order I × J corresponding to entities k = 1, . . . , K, of the
occasion mode. In PCA, X is summarized by means of the matrices A and F.
The matrix A summarizes the observation units and F the variables. In the
three-way models, the matrix A, now of order I×P , still aims at summarizing
the individuals, whereas the matrix F is suitably replaced by two component
matrices for summarizing the variables (B of order J ×Q) and the occasions
(C of order K × R), where P, Q and R are the numbers of components
for the observation unit, variable and occasion mode, respectively. Differently
from PCA in which each component summarizing the observation units is
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uniquely related to a component summarizing the variables, in the three-
way context the components summarizing each mode are related to all the
components summarizing the remaining two modes. Such interactions among
all the components of the modes are stored in the so-called ‘core’ matrix G of
order P ×Q×R.
The scalar formulation of the Tucker3 model is as follows:

xijk
∼=

P∑

p=1

Q∑

q=1

R∑

r=1

aipbjqckrgpqr, (4)

i = 1, . . . , I; j = 1, . . . , J ; k = 1, . . . , K; where xijk, aip, bjq, ckr and gpqr are
the generic elements of X, A, B, C and G, respectively. In matrix notation,
we get:

Xa
∼= AGa (C′ ⊗B′) , (5)

where the symbol ⊗ denotes the Kronecker product and Xa of order I × JK
and Ga of order P×QR are two-way matrices obtained by ‘matricizing’ X and
G, respectively. This consists of rearranging a three-way matrix into a two-
way one. Specifically, we set up Xa by arranging the frontal slices X··k, k =
1, . . . , K, next to each other:

Xa =
[
X··1 · · · X··k · · · X··K

]
. (6)

Analogously, using the R frontal slices of G, for the core we have:

Ga =
[
G··1 · · · G··r · · · G··R

]
. (7)

Further details can be found in [9].
The optimal component matrices of the Tucker3 model are obtained by mini-
mizing

‖Xa −AGa (C′ ⊗B′)‖F . (8)

See, for more details, [10].
The CANDECOMP/PARAFAC model represents a generalization of classical
PCA by adding the component matrix for the occasions:

xijk
∼=

S∑

s=1

aisbjscks, . (9)
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It is important to observe that the CANDECOMP/PARAFAC model can be
seen as a constrained version of the Tucker3 model imposing the core to be
superdiagonal (gpqr = 1 if p = q = r, gpqr = 0 otherwise). As a consequence, a
matrix formulation of CANDECOMP/PARAFAC is

Xa
∼= AIa (C′ ⊗B′) , (10)

where Ia is the matrix of order S × S2 obtained by juxtaposing the S frontal
slices of the unit superdiagonal array. For a deeper insight on three-way meth-
ods, see [11]
In choosing between CANDECOMP/PARAFAC and Tucker3, one should ob-
serve that the former is more parsimonious but less general than the latter.
Therefore, a researcher may act as follows. After choosing the number of com-
ponents, one can perform CANDECOMP/PARAFAC. If the solution does not
capture the relevant information, which relies in the data, one should try to
further increase the number of components. However, it may happen that the
CANDECOMP/PARAFAC model is too restrictive and, thus, it should be
replaced by the Tucker3 model.

Remark 1: Three-way methods as constrained PCA’s
The three-way methods, such as Tucker3 and CANDECOMP/PARAFAC, can
be seen as a classical PCA on the data matrix Xa with constrained loadings.
Specifically, after imposing that

F = (C⊗B)G′
a, (11)

and substituting (11) in (5), we get

Xa
∼= AF′, (12)

in which Xa is decomposed into the matrices of the component scores and
loadings as X in (2). Therefore, the Tucker3 model can be seen as a PCA with
component loadings constrained to be equal to (C⊗B)G′

a. Such a constraint
is fruitful in order to capture the three-way interactions in the data. Also
CANDECOMP/PARAFAC is a constrained PCA on Xa. Taking into account
that the core matrix reduces to an identity matrix, the constraint on the
component loadings given in (11) is replaced by

F = (C⊗B) I′a = (C¯B) , (13)

where the symbol ¯ denotes the so-called Khatri-Rao product (columnwise
Kronecker product).
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In this paper, we shall extend Tucker3 (and, indeed, CANDECOMP/PARAFAC)
to fuzzy data following a possibilistic point of view by using the PCA exten-
sion for fuzzy data proposed in [5], which will be briefly described in the next
section.

3 Two-way Possibilistic PCA for fuzzy data

3.1 Fuzzy data

The two-way possibilistic PCA for fuzzy data as proposed in [5] limits its
attention to the class of symmetric LR1 fuzzy numbers. In general, an LR1

fuzzy number is recognized by the triple X̃ = (m, l, r)LR where m denotes the
mode and l and r the left and right spreads, respectively, with the following
membership function:

µX̃(x) =





L
(

m−x
l

)
x ≤ m (l > 0)

R
(

x−m
r

)
x ≥ m (r > 0),

(14)

where L and R are continuous strictly decreasing functions on [0, 1] called
shape functions, which must fulfil additional requirements. For instance, with
respect to L (z), z = m−x

l
: L (0) = 1, 0 < L (z) < 1 for 0 < z < 1, L (1) = 0.

A particular case of LR1 fuzzy numbers is the triangular one (with triangular
membership function). In fact, if L and R are of the form

L (z) = R (z) =





1− z 0 ≤ z ≤ 1

0 otherwise,
(15)

then X̃ = (m, l, r)LR is a triangular fuzzy number, with membership function:

µX̃ (x) =





1− m−x
l

x ≤ m (l > 0)

1− x−m
r

x ≥ m (r > 0).
(16)

A symmetric fuzzy number (L1) is a particular LR1 fuzzy number for which
L = R and l = r and is denoted as X̃ = (m, l)L . Therefore, (14) is replaced
by

µX̃(x) = L
(

m− x

l

)
m− l ≤ x ≤ m + l (l > 0). (17)
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with L (z) = L (−z). Moreover, a symmetric triangular fuzzy number can be
defined by replacing (16) with

µX̃ (x) = 1− m− x

l
(l > 0). (18)

The so-called LR2 fuzzy number can also be introduced. It is recognized by
the quadruple X̃ = (m1,m2, l, r)LR where m1 and m2 denote the left and right
modes, respectively, and l and r the left and right spreads, respectively, with
the following membership function:

µX̃(x) =





L
(

m1−x
l

)
x ≤ m1 (l > 0)

1 m1 ≤ x ≤ m2

R
(

x−m2

r

)
x ≥ m2 (r > 0),

(19)

If L and R are of the form given in (15) then, by substituting them in (19),
we get the so-called trapezoidal fuzzy number.

3.2 The PCA model for L1 data

In [5], the available fuzzy data are stored into the fuzzy data matrix X̃ =
(M,L)L of order I ×J where M and L are the matrices of the modes and the

spreads, respectively. Each row of X̃ (x̃i = (x̃i1, . . . , x̃iJ) , i = 1, . . . , I) corre-
sponds to an observation unit. Note that, as each observation unit is charac-
terized by J non-interactive ([7]) fuzzy variables, it can be represented by a
hyperrectangle in <J . The membership function of x̃i is given by µX̃i

(ui) =
min

j=1,...,J
µX̃ij

(uij).

The possibilistic PCA can be seen as a regression analysis with fuzzy coef-
ficients between J observed fuzzy variables (the dependent variables) and S
unobservable crisp variables (the explanatory variables), which are the com-
ponents resulting from PCA:

X̃ = ÃF′, (20)

where Ã is the fuzzy component score matrix of order I × S whose generic
element is a symmetric fuzzy number denoted as

(
aM

is , aL
is

)
L
, i = 1, ..., I;

s = 1, ..., S; (let AM and AL be, respectively, the matrices of the modes
and of the spreads for the component scores) and F is the crisp component
loading matrix of order J × S. Therefore, as a natural extension of classi-
cal PCA, it is assumed that the (fuzzy) component score matrix takes into
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account the fuzziness of the observed data involved. Note that in PCA the
extracted components are uncorrelated. The same holds in the possibilistic
PCA after imposing the columnwise orthonormality of F. As a consequence,
the obtained possibility distributions of the component scores (the coefficients
of the regression model) are non-interactive.

The membership function of the generic estimated datum x̃∗ij =
(
aM

i f ′j, a
L
i

∣∣∣f ′j
∣∣∣
)

L
is

µX̃∗
ij

(uij) = L


uij − aM

i f ′j
aL

i

∣∣∣f ′j
∣∣∣


 , (21)

for fj 6= 0 where aM
i , aL

i , i = 1, ..., I, and fj, j = 1, ..., J , are the generic rows
of AM , AL and F, respectively. If fj = 0 and uij = 0, then µX̃∗

ij
(uij) = 1 and,

if fj = 0 and uij 6= 0, then µX̃∗
ij

(uij) = 0. The h-level set can then be obtained
as

[
x̃∗ij

]
h

=
[
aM

i f ′j −
∣∣∣L−1

ij (h)
∣∣∣ aL

i

∣∣∣f ′j
∣∣∣ , aM

i f ′j +
∣∣∣L−1

ij (h)
∣∣∣ aL

i

∣∣∣f ′j
∣∣∣
]
, (22)

i = 1, ..., I, j = 1, ..., J . Taking into account the non-interactivity assumption,
the estimated vectors pertaining to the observation units have membership
functions given by µX̃∗

i
(ui) = min

j=1,...,J
µX̃∗

ij
(uij), i = 1, ..., I.

In order to formulate the principal component model, it is also assumed that:
- the observed data x̃i = (x̃i1, . . . , x̃iJ) , i = 1, . . . , I, can be represented by
model (20);
- given a threshold value h, the observed data x̃i = (x̃i1, . . . , x̃iJ) , are included
in the h-level set of the estimated data, x̃∗i = (x̃∗i1, . . . , x̃

∗
iJ) , i = 1, . . . , I;

- the sum of spreads of the estimated data is considered as an objective func-
tion:

J2L =
I∑

i=1

J∑

j=1

aL
i

∣∣∣f ′j
∣∣∣ . (23)

The possibilistic PCA for symmetric fuzzy data is then formulated as

min J2L

s.t. M + L ∗HL ≤ AMF′ +
(
AL |F′|

)
∗HL,

M− L ∗HL ≥ AMF′ −
(
AL |F′|

)
∗HL,

F′F = I,

AL ≥ Ψ,

(24)
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where HL is the (I×J) matrix with generic element
∣∣∣L−1

ij (h)
∣∣∣, i = 1, ..., I, j =

1, ..., J and ∗ denotes the Hadamard product (elementwise matrix product).
In (24) we impose that the component loading matrix is columnwise orthonor-
mal and that AL is greater than a pre-specified matrix Ψ with non-negative
elements. The elements of Ã are the coordinates of the low-dimensional (S -
dimensional) hyperrectangles (with edges parallel to the new axes) associated
to the observation units in the subspace spanned by the component loadings.
If one does not want low dimensional hyperrectangles having S -dimensional
volume equal to 0 because of at least one component score spread being equal
to 0, it is fruitful to set some elements of Ψ strictly greater than zero.

3.3 The PCA model for LR1 fuzzy data

Based on the previous results, we now extend the possibilistic PCA to the
wider class of LR1 fuzzy data. Thus, let us suppose that the observed fuzzy
data matrix of order I×J is now X̃ = (M,L,R)LR, where R is the additional
matrix of the right spreads (L is the left spread matrix). The I observation
units (x̃i, i = 1, . . . , I) are now characterized by J non-interactive asymmetric
fuzzy numbers (x̃i1, . . . , x̃iJ) , i = 1, . . . , I.
In this case, the PCA model can be formalized as

X̃ = ÃF′ (25)

where Ã is the component score matrix the generic element of which is
(
aM

is , aL
is, a

R
is

)
,

where aM
is , aL

is and aR
is are the generic elements of the component score matrices

for, respectively, the modes, the left spreads and the right spreads, i = 1, ..., I;
s = 1, ..., S. It follows that now the elements of Ã are asymmetric fuzzy
numbers. As for the previous model, F is the crisp matrix of the component
loadings. The membership function of the generic estimated datum is

µX̃∗
ij

(x) =





L
((

aM
i f ′j − x

)/
aL

i

∣∣∣f ′j
∣∣∣
)
, x ≤ aM

i f ′j,

R
((

x− aM
i f ′j

)/
aR

i

∣∣∣f ′j
∣∣∣
)
, x ≥ aM

i f ′j,
(26)

for fj 6= 0 where aM
i , aL

i and aR
i are the i -th rows of AM , AL and AR,

respectively. If fj = 0 and x = 0, we set µx̃∗ij (x) = 1 and, if fj = 0 and x 6= 0,

µx̃∗ij (x) = 0.

Note that (26) represents the asymmetric generalization of (21). The h-level
set can then be easily obtained as

[
x̃∗ij

]
h

=
[
aM

i f ′j −
∣∣∣L−1

ij (h)
∣∣∣ aL

i

∣∣∣f ′j
∣∣∣ , aM

i f ′j +
∣∣∣R−1

ij (h)
∣∣∣ aR

i

∣∣∣f ′j
∣∣∣
]
, (27)
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i = 1, ..., I; j = 1, ..., J . As for the symmetric case, we get that the estimated
vectors pertaining to the observation units have membership functions given
by µX̃∗

i
(ui) = min

j=1,...,J
µX̃∗

ij
(uij), i = 1, ..., I. Once more, in order to formulate

the principal component model, it is also assumed that:
- the observed data x̃i = (x̃i1, . . . , x̃iJ) , i = 1, . . . , I, can be represented by
model (25);
- given a threshold value h, the observed data x̃i = (x̃i1, . . . , x̃iJ) , are included
in the h-level set of the estimated data, x̃∗i = (x̃∗i1, . . . , x̃

∗
iJ) , i = 1, . . . , I;

- the sum of spreads of the estimated data is considered as an objective func-
tion:

J2LR =
I∑

i=1

J∑

j=1

(
aL

i + aR
i

) ∣∣∣f ′j
∣∣∣. (28)

Therefore, the optimal matrices Ã and F should be constructed in such a way
that

[x̃i]h ⊆ [x̃∗i ]h , (29)

i = 1, . . . , I. We already pointed out that each observation unit can be rep-
resented as a hyperrectangle with Z = 2J vertices. The inclusion constraints
in (29) hold whenever the inclusion constraints at the h-level hold for all the
vertices associated to the observed and estimated hyperrectangles. It follow
that

mij + rijq
R
zj

∣∣∣R−1
ij (h)

∣∣∣ ≤ aM
i f ′j + aR

i |f ′j| qzj

∣∣∣R−1
ij (h)

∣∣∣ if qR
zj = 1,

mij − lijq
L
zj

∣∣∣L−1
ij (h)

∣∣∣ ≥ aM
i f ′j − aL

i |f ′j| qzj

∣∣∣L−1
ij (h)

∣∣∣ if qL
zj = 1,

(30)

i = 1, . . . , I; j = 1, . . . , J ; z = 1, . . . , Z. Note that qL
zj and qR

zj are the generic
elements of the matrices QL and QR. In the general case of J variables, the
rows of QL contain all the possible J -dimensional vectors of 0 and 1. The
number of rows of QL is equal to that of the vertices of a J -dimensional
hyperrectangle, which is Z. QR has the same structure of QL but the elements
equal to 0 and 1 have switched places. Every pair of rows of QL and QR allows
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us to describe a given vertex. For instance, if J = 3, we have

QL =




1 1 1

1 1 0

1 0 1

0 1 1

0 0 0

0 0 1

0 1 0

1 0 0




(31)

and the first row refers to the vertex of all the lower bounds.
Now, we can simplify the inclusion constraints in (30). To do so, we observe
that, among the 2J inclusions (one for each vertex), the attention has to be
paid only to the vertices of the lower and upper bounds. In fact,

M−
(
LQL

1

)
∗HL = M− L ∗HL ≤ M−

(
LQL

z

)
∗HL,

M +
(
RQR

2J−1+1

)
∗HR = M + R ∗HR ≥ M +

(
RQR

z

)
∗HR,

(32)

where QL
z and QR

z are diagonal matrices whose non-zero elements are those
of the z -th rows of QL and QR, respectively, z = 1, . . . , Z. It follows that the
inclusion constraints in (32) hold if Ã and F are such that the observed lower
bounds are higher than the estimated ones and the observed upper bounds
are lower than the estimated ones because

M∗ − L∗ ∗HL ≤ M− L ∗HL ≤ M−
(
LQL

z

)
∗HL,

M∗ + R∗ ∗HR ≥ M + R ∗HR ≥ M +
(
RQR

z

)
∗HR,

(33)

z = 1, . . . , Z. Taking into account that M∗ = AMF′, L∗ = ALF′ and R∗ =
ARF′, it follows that (33) can be rewritten as

AMF′ −
(
ALF′

)
∗HL ≤ M− L ∗HL,

AMF′ +
(
ARF′

)
∗HR ≤ M + R ∗HR.

(34)

So far, we have shown that the inclusion constraints in (29) can be simpli-
fied by means of (34). In addition, we impose that the component loadings
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are columnwise orthonormal (F′F = I) and that the spreads of the compo-
nent scores are greater than pre-specified matrices with non-negative elements
(AL ≥ ΨL and AR ≥ ΨR ).
By considering all the above constraints, we then get the following minimiza-
tion problem:

min J2LR

s.t. M + R ∗HR ≤ AMF′ +
(
AR |F′|

)
∗HR,

M− L ∗HL ≥ AMF′ −
(
AL |F′|

)
∗HL,

F′F = I,

AL ≥ ΨL,

AR ≥ ΨR.

(35)

It is fruitful to observe that, as for the symmetric case, the low dimensional
plot of the observation units (as low dimensional hyperrectangles) provide
information about the position of the observation units and the associated
uncertainty. More specifically, the modes can be plotted onto the subspace
spanned by the (columnwise orthonormal) matrix F using AM as coordinates,
whereas the bounds of the low dimensional hyperrectangles can be attained
using the spreads of the component scores, leading to the interval aM

is − aL
is

and aM
is + aR

is, i = 1, . . . , I; s = 1, . . . , S. For each axis (component) and each
observation unit, the width of the S -dimensional hyperrectangle, can be inter-
preted as a measure of uncertainty of the position of the observation unit for
the axis (component) involved. If one is interested in observing the configura-
tion of the observation units onto the obtained subspace, one should observe
the position of the modes. In fact, in the asymmetric case, by observing the
configuration of the hyperrectangles, one may find misleading results. In fact,
it may happen that, for some observation units, one spread of the component
scores is high and the other one is very near to zero. With respect to the first
component, this may cause that, for instance, some (low dimensional) hyper-
rectangles move to the left side when the left and right spreads of the involved
component scores are, respectively, high and very near to zero. It follows that,
as aM

i1 can be found near to the upper bound aM
i1 +aR

i1, i = 1, ..., I, the position
of the (low dimensional) hyperrectangles gives misleading information about
the low dimensional configuration of observations. Therefore, the size of the
low dimensional hyperrectangles is useful in order to analyze the uncertainty
associated to the observation units, whereas the position of the modes is rel-
evant in order to analyze the configuration of the observation units.
Note that this ambiguity does not occur in the symmetric case because the
bounds for the s-th component, s = 1, . . . , S, are aM

is − aL
is and aM

is + aL
is,

i = 1, . . . , I. Thus, with respect to the i -th observation unit, i = 1, . . . , I, and
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the s-th component, s = 1, . . . , S, the mode is located in the middle point of
the interval

(
aM

is − aL
is, a

M
is + aL

is

)
. Therefore, in the symmetric case, the con-

figuration of the observation units can be analyzed by means of the position
of both the modes and the hyperrectangles.

Proposition 1: There always exists a solution of the NLP problem in (35).

Proof: Given a feasible solution for F such that the loadings are columnwise
orthonormal, we can find a feasible solution for Ã according to the constraints
in (35) by taking sufficiently large positive matrices for AL and AR.

q.e.d.

Remark 2: Triangular membership function
When a triangular fuzzy number is used, |L−1 (h)| = 1 − h and |R−1 (h)| =
1− h.

Remark 3: Number of extracted components
In order to detect the optimal number of extracted components, we suggest to
choose S such that it can be considered optimal in performing classical PCA
on the (crisp) mode matrix.

Remark 4: Preprocessing
If necessary, it is advisable to preprocess the modes by subtracting the mean
and dividing by the standard deviation of the variable at hand, whereas the
spreads can be preprocessed by dividing them by the standard deviation of
the related mode.

Remark 5: Lower problem
The problem (35) is usually referred to as the Upper Problem. As for the
symmetric case, the Lower PCA Model can also be formulated as

max J2LR

s.t. M + R ∗HR ≥ AMF′ +
(
AR |F′|

)
∗HR,

M− L ∗HL ≤ AMF′ −
(
AL |F′|

)
∗HL,

F′F = I,

AL ≥ ΨL,

AR ≥ ΨR,

(36)

in which one aims at finding the largest fuzzy set which satisfies
[
xij

]
h
⊇

[
x∗ij

]
h
, (37)
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i = 1, ..., I; j = 1, ..., J . Note that the NLP problem in (36) may not have any
optimal solution.

3.4 The PCA model for LR2 fuzzy data

For the sake of completeness, we briefly propose the PCA model for LR2

fuzzy data. Now, the available data are stored in the fuzzy data matrix X̃ =
(M1,M2,L,R)LR of order I × J , where M1 and M2 are the matrices of the
left and right modes, respectively. In this case, the I observation units (x̃i, i =
1, . . . , I) are characterized by J non-interactive LR2 fuzzy numbers.
It follows that the PCA model can be formalized as

X̃ = ÃF′ (38)

where Ã is the component score matrix the generic element of which is
(
aM1

is , aM2
is , aL

is, a
R
is

)
,

where aM1
is , aM2

is , aL
is and aR

is are the generic elements of the component score
matrices for, respectively, the left modes, the right modes, the left spreads and
the right spreads, i = 1, ..., I; s = 1, ..., S. Therefore, as a natural extension of
the previous cases, the elements of Ã are LR2 fuzzy numbers, while F is still
the crisp matrix of the component loadings.
Similarly to the previous section, by introducing the same assumptions and
constraints, it is easy to show that the PCA problem consists of extending
(35) as

min J2LR

s.t. M2 + R ∗HR ≤ AM2F′ +
(
AR |F′|

)
∗HR,

M1 − L ∗HL ≥ AM1F′ −
(
AL |F′|

)
∗HL,

F′F = I,

AL ≥ ΨL,

AR ≥ ΨR.

(39)

4 Three-way Possibilistic PCA for fuzzy data

This section is devoted to suitable extensions of Tucker3 and CANDECOMP/PARAFAC
for handling fuzzy data following a possibilistic approach. In particular, three
different analyses will be proposed according to the type of fuzzy data involved
(L1, LR1 and LR2 fuzzy numbers).
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4.1 Fuzzy data

Let us suppose that the available data pertain to I observation units on which
J non-interactive fuzzy variables are collected at K occasions. Each observa-
tion unit is thus recognized by JK fuzzy scores (the scores of all the variables
at all the occasions): x̃i = (x̃i11, . . . , x̃iJ1, . . . , x̃i1K , . . . , x̃iJK) , i = 1, . . . , I.
From a geometrical point of view, each observation can be represented as a
hyperrectangle in <JK identified by 2JK vertices. Therefore, all the assump-
tions which were used in the two-way cases still hold since the main difference
only relies in the number of vertices of the hyperrectangles.

4.2 The Three-way PCA model for L1 fuzzy data

The first three-way extension of PCA in a possibilistic setting concerns the
case in which the fuzzy variables are of L1 type. Thus, we assume that the
data are stored in the three-way fuzzy data matrix X̃ = (M,L)L of order
I × J ×K, where M and L are the three-way matrices of the modes and the
spreads, respectively. Following (6), the two-way supermatrices of the data X̃a,
and, indeed, of the modes, Ma, and the spreads, La, can be defined. Using the
Tucker3 model, the three-way PCA model can be expressed as

X̃a = ÃGa (C′ ⊗B′) = ÃF
′
, (40)

where B, C are the crisp component matrices for the variables and occasions,
respectively, and Ga is the observation unit mode matricized version of the
crisp core matrix G. Finally, Ã is the fuzzy component matrix for the observa-
tion units. In particular, each element of Ã is an L1 fuzzy number. Thus, the
component matrix Ã captures the uncertainty associated with the observed
data. In particular the generic element of Ã is the symmetric fuzzy number(
aM

ip , aL
ip

)
L
, i = 1, ..., I; p = 1, ..., P ; where aM

ip and aL
ip are the generic elements

of the matrices of the modes (AM) and of the spreads (AL), respectively. If
the CANDECOMP/PARAFAC model is performed, (40) is replaced by

X̃a = ÃIa (C′ ⊗B′) = Ã (C′ ¯B′) = ÃF
′
. (41)

The matrix F is the constrained component loading matrix defined in (11)
and, implicitly, in (40) for the Tucker3 model; and in (13) and, implicitly,
in (41) for the CANDECOMP/PARAFAC model. As for the two-way case,
we impose that the constrained component loadings F are columnwise or-
thonormal (F’F=I). It follows that, the obtained possibility distributions of
the component scores are non-interactive.
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Let x̃∗ijk =
(
aM

i f ′jk, aL
i |f ′jk|

)
L

be the generic estimated datum, where fjk is

the jk -row of F. Its membership function is

µX̃∗
ijk

(uijk) = L


uijk − aM

i f ′jk
aL

i

∣∣∣f ′jk
∣∣∣


 , (42)

for fjk 6= 0 where aM
i , aL

i , i = 1, ..., I, and fjk, j = 1, ..., J , k = 1, ..., K, are
the generic rows of AM , AL and F, respectively. If fjk = 0 and uijk = 0,
then µX̃∗

ijk
(uijk) = 1 and, if fjk = 0 and uijk 6= 0, then µX̃∗

ijk
(uijk) = 0.

Starting from the membership function in (42), the associated h-level set is
then computed as

[
x̃∗ijk

]
h

=
[
aM

i f ′jk −
∣∣∣L−1

ijk (h)
∣∣∣ aL

i

∣∣∣f ′jk
∣∣∣ , aM

i f ′jk +
∣∣∣L−1

ijk (h)
∣∣∣ aL

i

∣∣∣f ′jk
∣∣∣
]
. (43)

In order to formulate the possibilistic Tucker3 model (and similarly the CAN-
DECOMP/PARAFAC model) we also assume that:
- the observed data x̃i = (x̃i11, . . . , x̃iJ1, . . . , x̃i1K , . . . , x̃iJK) , i = 1, . . . , I, can
be represented by model (40) (or (41));
- given a threshold value h, the observed data x̃i = (x̃i11, . . . , x̃iJ1, . . . , x̃i1K , . . . , x̃iJK),
i = 1, . . . , I, are included in the h-level set of the estimated data, x̃∗i =
(x̃∗i11, . . . , x̃

∗
iJ1, . . . , x̃

∗
i1K , . . . , x̃∗iJK), i = 1, . . . , I;

- the sum of spreads of the estimated data is considered as an objective func-
tion:

J3L =
I∑

i=1

J∑

j=1

K∑

k=1

aL
i

∣∣∣f ′jk
∣∣∣ . (44)

Once more, the optimal component matrices are determined in such a way
that (44) is minimized and the h-level of the estimated data contains the
corresponding h-level of the observed data:

[x̃i]h ⊆ [x̃∗i ]h , i = 1, . . . , I, (45)

with

µX̃∗i
(ui) = min

j=1,...,J
µX̃∗

ij
(uij), i = 1, . . . , I. (46)

It should be clear that, in the three-way framework, we deal with a mini-
mization problem similar to the two-way one. In fact, we only need to add
that the component loadings are constrained according to (11) or (13). More
specifically, we can observe that the function to be minimized in (44) coincides
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with that in (23). As for the two-way case, the inclusion constraints between
observed and estimated fuzzy data can be exploited by considering all the 2JK

vertices of the hyperrectangles associated to the observed and estimated data.
Using the same manipulations as adopted for the two-way case, the inclusion
constraints can be reduced to considering the constraints between observed
and estimated upper and lower bounds. We then get

Ma + La ∗HL ≤ AMF′ +
(
AL |F′|

)
∗HL,

Ma − La ∗HL ≥ AMF′ −
(
AL |F′|

)
∗HL.

(47)

After imposing the non-negativity of the spreads of the component scores for
the observation units (AL ≥ Ψ), we then obtain the following problem for the
Tucker3 model:

min J3L

s.t. Ma + La ∗HL ≤ AMF′ +
(
AL |F′|

)
∗HL,

Ma − La ∗HL ≥ AMF′ −
(
AL |F′|

)
∗HL,

F = (C⊗B)G′
a,

F′F = I,

AL ≥ Ψ.

(48)

Note that the requirement that F is columnwise orthonormal can be replaced
by the constraints that the component matrices B and C are columnwise
orthonormal and the core matrix is rowwise orthonormal. This increases the
function to be minimized, but it helps in order to interpret the extracted
components. If the CANDECOMP/PARAFAC model is performed, the third
constraint should be replaced by (13).

Proposition 2: There always exists a solution of the NLP problem in (48).

Proof: A feasible solution for F such that the constraints in (48) are sat-
isfied can be found, for instance in the Tucker3 case, by choosing columnwise
orthonormal matrices B and C and a rowwise orthonormal matrix Ga. In
fact, we have that F′F = Ga (C′ ⊗B′) (C⊗B)G′

a = Ga (C′C⊗B′B)G′
a =

GaG
′
a = I. Now, given a feasible solution for F, we can find a feasible solution

for Ã according to the constraints in (48) by taking a sufficiently large positive
matrix for AL.

q.e.d.
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Remark 6: Numbers of extracted components
The choice of the number of extracted components is a complex issue in the
three-way framework. See, for more details, [10]. However, a plausible sugges-
tion is to perform the classical three-way model on the (crisp) mode matrix
and to consider optimal, in the possibilistic case, the same numbers of ex-
tracted components chosen in the crisp case.

Remark 7: Preprocessing
Also the preprocessing step is rather complex in the three-way case. In fact, for
three-way data, it is not obvious how each of the modes (the sets of entities)
should be dealt with in centering and/or scaling the data. See, for further de-
tails, [9]. If necessary, we suggest to preprocess the modes by centering and/or
scaling them. Then, if the modes are scaled, the spreads can be scaled by using
the same scaling factor adopted for the modes.

Remark 8: Lower problem
The problem (48) is usually referred to as the Upper Problem. The Lower
Tucker3 Model can also be formulated as the solution of

max J3L

s.t. Ma + La ∗HL ≥ AMF′ +
(
AL |F′|

)
∗HL,

Ma − La ∗HL ≤ AMF′ −
(
AL |F′|

)
∗HL,

F = (C⊗B)G′
a,

F′F = I,

AL ≥ Ψ,

(49)

in which one aims at finding the largest fuzzy set which satisfies

[
xijk

]
h
⊇

[
x∗ijk

]
h
, (50)

i = 1, ..., I; j = 1, ..., J ; k = 1, ..., K. Note that the NLP problem in (49) may
not have any optimal solution.

4.3 The Three-way PCA model for LR1 fuzzy data

The generalization of the three-way models for LR1 fuzzy data following a
possibilistic approach is easily obtained taking into account (11) or (13) and
the results introduced in Section 3.3. The observed data are stored in the three-
way matrix X̃ = (M,L,R)LR of order I × J × K with LR1 fuzzy numbers.
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The possibilistic Tucker3 model can be expressed as

X̃a = ÃGa (C′ ⊗B′) = ÃF
′
, (51)

and the possibilistic CANDECOMP/PARAFAC model as

X̃a = ÃIa (C′ ⊗B′) = Ã (C′ ¯B′) = ÃF
′
, (52)

where, of course, Ã is the LR1 fuzzy component matrix for the observation
units.
The aim is to determine component matrices such that the observed data are
included in the estimated ones. In particular, we assume that:
- the observed data x̃i, i = 1, . . . , I, can be represented by model (51) or (52);
- given a threshold value h, the observed data x̃i are included in the h-level
set of the estimated data, x̃∗i , i = 1, . . . , I;
- the sum of spreads of the estimated data is considered as an objective func-
tion:

J3LR =
I∑

i=1

J∑

j=1

K∑

k=1

(
aL

i + aR
i

) ∣∣∣f ′jk
∣∣∣ . (53)

The estimated datum has the following membership function:

µX̃∗
ijk

(x) =





L
((

aM
i f ′jk − x

)/
aL

i |f ′jk|
)
, x ≤ aM

i f ′jk,

R
((

x− aM
i f ′jk

)/
aR

i |f ′jk|
)
, x ≥ aM

i f ′jk,
(54)

for fjk 6= 0. If fjk = 0 and x = 0, we set µx̃∗
ijk

(x) = 1 and, if fjk = 0 and x 6= 0,

µx̃∗
ijk

(x) = 0.

From (54), the h-level can be computed as

[
x̃∗ijk

]
h

=
[
aM

i f ′jk −
∣∣∣L−1

ijk (h)
∣∣∣ aL

i

∣∣∣f ′jk
∣∣∣ , aM

i f ′jk +
∣∣∣R−1

ijk (h)
∣∣∣ aR

i

∣∣∣f ′jk
∣∣∣
]
, (55)

i = 1, ..., I; j = 1, ..., J ; k = 1, ..., K. In the Tucker3 case, by imposing that
the component loadings are columnwise orthonormal (F′F = I) and satisfy
(11), that the spreads of the component scores are greater than pre-specified
matrices with non-negative elements (AL ≥ ΨL and AR ≥ ΨR ) and taking
into account the inclusion constraints between observed and estimated data,
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with obvious notation, we then get the following minimization problem:

min J3LR

s.t. Ma + Ra ∗HR ≤ AMF′ +
(
AR |F′|

)
∗HR,

Ma − La ∗HL ≥ AMF′ −
(
AL |F′|

)
∗HL,

F = (C⊗B)G′
a,

F′F = I,

AL ≥ ΨL,

AR ≥ ΨR.

(56)

Again, the orthonormality of F can be replaced by imposing the orthonormal-
ity of B, C and G. Obviously, in the CANDECOMP/PARAFAC case, one
should replace (11) by (13). It is fruitful to observe that the three-way PCA
for LR1 fuzzy data may lead to ambiguous low dimensional plots of the obser-
vation units, as it happened for the two-way case. Thus, in order to study the
configuration of the observation units in the obtained low dimensional space,
one should study the position of the modes (nor of the hyperrectangles).

Proposition 3: There always exists a solution of the NLP problem in (56).

Proof: Given a feasible solution for F such that the constraints in (56) are
satisfied (see Proposition 2), we can find a feasible solution for Ã according
to the constraints in (56) by taking sufficiently large positive matrices for AL

and AR.

q.e.d.

Remark 9: Numbers of extracted components
As for the symmetric three-way case, the optimal numbers of components can
be found by performing the classical Tucker3 or CANDECOMP/PARAFAC
model on the modes.

Remark 10: Preprocessing
The preprocessing procedure described in Remark 7 can be adopted (obvi-
ously scaling both the left and right spreads).

Remark 11: Lower problem
Together with the Upper Problem in (56), the Lower problem for Tucker3 can
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be formulated as

max J3L

s.t. Ma + Ra ∗HR ≥ AMF′ +
(
AR |F′|

)
∗HR,

Ma − La ∗HL ≤ AMF′ −
(
AL |F′|

)
∗HL,

F = (C⊗B)G′
a,

F′F = I,

AL ≥ ΨL,

AR ≥ ΨR.

(57)

4.4 The Three-way PCA model for LR2 fuzzy data

To conclude, we also propose the three-way possibilistic component model for
LR2 fuzzy data, which is able to synthesize the three-way fuzzy data matrix
X̃ = (M1,M2,L,R)LR. Thus, each observation unit is now characterized by
JK non-interactive LR2 fuzzy numbers (J fuzzy variables collected at K oc-
casions).
As for the previous models, we have (performing the Tucker3 model)

X̃a = ÃGa (C′ ⊗B′) = ÃF′, (58)

but, of course, Ã is the component score matrix with LR2 fuzzy numbers.
Under the same assumptions and constraints utilized in the previous sections,
we get the following problem:

min J3LR

s.t. M2a + Ra ∗HR ≤ AM2F′ +
(
AR |F′|

)
∗HR,

M1a − La ∗HL ≥ AM1F′ −
(
AL |F′|

)
∗HL,

F = (C⊗B)G′
a,

F′F = I,

AL ≥ ΨL,

AR ≥ ΨR.

(59)

Similarly, the CANDECOMP/PARAFAC problem can be easily formulated.

21



5 Application

The data examined in this application refer to advertising on Internet [2].
This is usually done by means of banners. In particular, we can distinguish
three types of banners: ‘static’ (a single image), ‘dynamic’ (a dynamic gif
image) and ‘interactive’ (inducing the surfers to participate in polls, games,
etc.). The collected data contain a subset of the “Web Advertising” data
[2] in which twenty surfers express their judgments on the (static, dynamic
and interactive) banners of a set of Web sites during six fortnights. For each
combination of Web site, type of banner and fortnight, the median judgement
among the twenty surfers is considered. Note that the surfers express their
opinion according to five linguistic labels (Worst, Poor, Fair, Good, Best)
which are fuzzified as in [2]. The adopted process of fuzzification is described
in Table 1.

Table 1
Fuzzification of the linguistic labels (triangular fuzzy numbers)

Linguistic label Fuzzy number

Worst (W) (3, 3, 1)LR

Poor (P) (4, 1.5, 1.5)LR

Fair (F) (6, 1, 0.5)LR

Good (G) (8, 1.75, 0.25)LR

Best (B) (10, 2, 0)LR

We then get a three-way LR1 fuzzy data set where the observation units are
I = 9 Web sites, the variables are J = 3 types of banners and the occasions
are K = 6 fortnights. The data set is given in Table 2.
After running several Tucker3 and CANDECOMP/PARAFAC analyses, we

decided to choose the CANDECOMP/PARAFAC model using S = 2 com-
ponents because of its parsimony and, in the current data set, its capability
to capture (with S = 2 components) the essential information underlying the
observed data. We thus performed the three-way possibilistic PCA for LR1 in
(56) considering the appropriate modification for CANDECOMP/PARAFAC.
Note that we imposed the columnwinse orthonormality of the component ma-
trices B and C from which F′F = I and we set h = 0.5.
The optimal component matrices are given in Tables 3, 4 and 5. The extracted
components can be interpreted as follows. By observing the component ma-
trix for the variables, we can see that the first component is strictly related to
the static and dynamic banners (scores equal to 0.73 and -0.67, respectively),
whereas the role of the interactive banner is negligible (-0.12). Instead, the
second component mainly reflects the interactive banners (0.99), while negli-
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Table 2
Web Advertising Data (subset of I = 9 Web sites)

Fortnight 1 Fortnight 2 Fortnight 3

Web site Sta Dyn Int Sta Dyn Int Sta Dyn Int

Iol.it W G B G P G F G G

Kataweb.it F W F P B F G F W

Yahoo.it B B B P B G F W B

Altavista.com B P F F F G G G F

Inwind.it G P F G F B F B P

iBazar.it G W G P B P G P P

Repubblica.it G P P W F W F F G

Mediasetonline.it P F G B W F B G F

Yahoo.com F G B F F G P B F

Fortnight 4 Fortnight 5 Fortnight 6

Web site Sta Dyn Int Sta Dyn Int Sta Dyn Int

Iol.it P W P F B F F F F

Kataweb.it F P F P G W G P B

Yahoo.it W B G B P G G F F

Altavista.com B F F B P W F G B

Inwind.it F B P P F P P F G

iBazar.it P B B G F B P F F

Repubblica.it P B F B W G F F G

Mediasetonline.it F W G P F P G P P

Yahoo.com G F F G G G G F F

gible scores pertain to the static and dynamic banners. The component scores
for the occasions (in Table 5) show that all the six fortnights affect both com-
ponents. In fact, all the scores are noticeably different from zero (with positive
or negative sign). It follows that the Web sites having high first component
scores are those with high ratings for the static banners and low ratings for
the dynamic banners at fortnights n.2, n.3 and n.4 (component scores for the
occasion mode with positive sign) and with low ratings for the static banners
and high ratings for the dynamic banners at fortnights n.1, n.5 and n.6 (com-
ponent scores for the occasion mode with negative sign). In this respect, Iol.it,
Mediasetonline.it and Yahoo.it have high first component scores. Conversely,
Repubblica.it is characterized by a very low first component score. These re-
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Table 3
Component matrix for the observation unit mode

Web site Component 1 Component 2

Iol.it (5.44, 25.88, 15.14)LR (0.88, 8.80, 12.42)LR

Kataweb.it (−0.63, 27.70, 25.09)LR (3.92, 10.87, 5.48)LR

Yahoo.it (2.87, 31.62, 25.79)LR (−2.96, 0.00, 10.14)LR

Altavista.com (−2.98, 14.96, 32.87)LR (4.12, 9.95, 4.37)LR

Inwind.it (−0.93, 28.32, 15.71)LR (4.33, 5.50, 5.38)LR

iBazar.it (−0.01, 26.46, 18.01)LR (−0.99, 12.44, 14.23)LR

Repubblica.it (−4.58, 18.00, 10.63)LR (−1.06, 23.48, 7.35)LR

Mediasetonline.it (2.88, 27.57, 19.68)LR (−2.03, 2.14, 12.42)LR

Yahoo.com (−0.53, 22.49, 18.18)LR (−1.08, 4.01, 9.74)LR

Table 4
Component matrix for the variable mode

Banner Component 1 Component 2

Static 0.73 -0.00

Dynamic -0.67 -0.17

Interactive -0.12 0.99

Table 5
Component matrix for the occasion mode

Fortnight Component 1 Component 2

Fortnight 1 -0.41 -0.35

Fortnight 2 0.44 0.40

Fortnight 3 0.42 -0.43

Fortnight 4 0.44 -0.43

Fortnight 5 -0.40 -0.45

Fortnight 6 -0.33 0.38

sults are consistent to the original data set given in 2. For instance, the score
of Iol.it is mainly influenced by the ratings for both the static and dynamic
banners at fortnight n.1, for the static banners at fortnight n.2 and for the
dynamic banners at fortnights n.4 and n.6. Instead, the score pertaining to
Repubblica.it can be explained observing the ratings for the static banners at
fortnight n.2, for the dynamic banners at fortnight n.4, and for both the static
and dynamic banners at fortnight n.5.
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In a similar way, the second component discriminates the Web sites with
respect to the ratings of the interactive banners. In particular, high second
component scores for the Web sites can be found in case of high ratings for
the interactive banners at fortnights n.2 and n.6 and low ratings at fortnights
n.1, n.3, n.4 and n.5. In this case, the Web sites with high second component
scores are Altavista.com, Inwind.it and Kataweb.it, whereas the lowest scores
pertain to Mediasetonline.it and Yahoo.it.
Starting from the the component score matrix for the Web sites given in Table
3 and taking into account that F is columnwise orthonormal, we provide the
low dimensional configuration of the Web sites given in Figure 1. In particular,

Fig. 1. Low dimensional representation of the Web sites
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on the upper side, we plotted the Web sites as a cloud of points, using the
modes of the component scores for the Web sites as coordinates. This gives
useful information in order to distinguish the Web sites according to their dis-
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tance in the obtained low dimensional space. The farther two points are, the
more the ratings of the two Web sites involved are different. Moreover, on the
lower side of Figure 1, we plotted the Web sites as a cloud of low dimensional
hyperrectangles (rectangles since S = 2) using AM − AL and AM + AR as
coordinates. Such a plot is helpful in order to evaluate the uncertainty asso-
ciated to every Web site. We can observe that, except for Repubblica.it, the
first component scores are more uncertain than the second ones. This can be
explained by taking into account the scores in matrix B. Specifically, the first
component mainly depends on the ratings (and the associated fuzziness) for
two types of banners, while the second component on the ratings (and the
associated fuzziness) for only one type. The sizes of the rectangles show which
are the Web sites with (dis)-similar ratings. In particular, the bigger (smaller)
a rectangle is, the more (less) the ratings vary among the types of banners
and the fortnights. In this respect, Yahoo.com is represented by one of the
smallest rectangles (in particular, by the rectangle with the smallest perime-
ter). By inspecting the original data pertaining to Yahoo.com, it is interesting
to observe that 15 times (out of 18), the ratings are ’Good’ or ’Fair’.

6 Conclusion

In this work, following a possibilistic approach, diverse component models for
handling two- and three-way LR fuzzy data have been proposed. The two-
way models are based on suitable extensions of classical PCA, whereas the
three-way ones exploit the potentiality of the widely used Tucker3 and CAN-
DECONP/PARAFAC models. The need for three-way methods arises in the
attempt of comprehending the triple interactions among the modes that char-
acterize the (three-way) data at hand.
In a fuzzy framework, the generalizations of the previous tools are attained by
developing regression problems between a set of observed fuzzy variables (the
data at hand) and a set of unobserved crisp variables (the components). We
then get multivariate possibilistic regression analyses in which the observed
data are the dependent variables and the components are the independent
ones. The optimal component matrices can be obtained by solving classical
nonlinear programming problems.
A nice property of two- and three-way component models is that they yield
a low-dimensional representation of the observed data. In case of fuzzy data,
this consists of plotting the observed hyperrectangles (associated to the obser-
vation units) as low-dimensional hyperrectangles in the given subspace. The
hyperrectangles provide a double source of information: the location of the
modes gives a configuration of the observation units onto the obtained sub-
space, whereas the spreads (the widths of the hyperrectangles) are a measure
of the uncertainty associated to each observation.
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The application to three-way fuzzy data has shown that the model works well
in recovering the underlying structure of the three-way data involved. In the
future, it will be interesting to develop three-way methods for (three-way)
fuzzy data according to a least-squares point of view. This will be the main
research issue in the near future.
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