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ABSTRACT:  
Rocci and Vichi (2006) have recently introduced the two-mode multi-partitioning model 

with the aim to cluster both objects (rows) and variables (columns) of a two-way data 

matrix. The new methodology allows to partition the set of objects and to obtain a partition 

of the variables for each class of the partitions of the objects. In this paper a model-based 

approach in the field of the maximum likelihood clustering is proposed. The model is 

extended to the supervised classification framework. A specific algorithm is introduced and 

its performances are discussed by means of a simulation study. Finally, the new 

methodology is applied to  data sets to show its features. 
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1. INTRODUCTION 

 
In the last years increasing attention has been paid to new methodologies for clustering both 

objects and variables of a two-way two mode (objects, variables) data matrix. There are 

several situations where such methodologies can be applied. In general when a very large 

data set is observed it would be very useful to identify disjoint classes of objects which are 

perceived as similar to one another within each class. However, clusters of objects would 

be very likely similar only according to some subsets of observed variables that can vary 

passing from one cluster of objects to another. In other terms, different variable partitions 

for each set of the partition of the objects would be very likely expected. This clustering 

setting is called two-mode multi-partitioning (Rocci & Vichi, 2006).   

For example, in marketing research customers are segmented according to the preference 
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on products, but also products are partitioned according to preferences of customers. 

Therefore, a partition of the customers and a simultaneous partition of the products is very 

useful. In particular a different partition of the products would be likely to be found for 

each class of the partition of the customers, because it is very easy that groups of people 

with different tastes would specify different clustering preferences of products. 

In DNA Microarrays studies, researchers are interested in clustering tissue samples into 

homogeneous clusters according to the similarly expressed genes; however, researchers are 

also interested in finding partitions of genes that possibly can vary for each class of the 

partition of the tissue samples.      

In this paper we introduce a new model-based multi-partitioning methodology for a two-

way data matrix. The model is defined both in the supervised and unsupervised 

classification framework. It is known or to be assumed that the population of interest from 

which the data are observed consists of P different subpopulations. Conditionally on each 

class, variables are partitioned into Qp independent possibly different blocks, i.e., there is a 

between block independence, which induces a possible different partition of the variables 

for each class of objects.  Furthermore, assuming class conditional Gaussian distribution it 

is possible to define the complete log-likelihood of the double classification/clustering 

problems which can be maximized using a coordinate ascent algorithm of the type ECM 

(Expectation conditional maximization, (Meng and Rubin, 1993)). 

To give an idea, Figure 1 shows the reordering of a DNA microarray experiment. The 

experiment will be described in Section 8. It can be seen nevertheless that genes (on the 

columns, here) are partitioned into 5 blocks; and that each block is divided into a different 

number of groups of slides (on the rows, here). For instance, the second group of genes is 

divided in two groups of slides, of which one is composed by only a single outlier.  
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Figure 1: A DNA Microarray slide doubly partitioned 

 

The rest of the paper is organized as follows. In section 2 notation and terminology used in 

this paper are listed for convenience of the reader. In section 3 the two mode multi-

partitioning model under fixed and random effect formulations is introduced. Section 4 is 

devoted to the Maximum Likelihood (ML) estimation of the parameters via a coordinate 

ascent algorithm of ECM type. A general parameterization of the class-conditional 

covariance matrix is given in section 5. In section 6 a simulation study illustrates the 

performances of the new methodology; while other simulations in section 7 show the 

possible performance of information criteria for model selection. An application of the 

technique is given in section 8, and a final discussion follows in section 9.  

  

 
2. NOTATION 
 
For the convenience of the reader, the terminology used in this paper is listed here: 
 
I, J  number of units, variables, respectively; 

P, Q number of classes of the partition for units and variables; 

C1,C2,…,CP partition in P clusters of units; 

V1p,V2p,…,VQp,p partition of the variables for the pth cluster of units; 

X= [xij]  (I × J)  data matrix; where xij is the value of the jth variable observed on the 

ith object. Variables are supposed to be commensurable in order to avoid 

clustering of the units depending on the variables unit of measurements. If 

this is not the case variables are supposed appropriately standardized; 

U = [uip] (I × P) membership function matrix defining a partition of units, into P 

classes, where uip = 1 if the ith object belongs to class p, uip = 0 otherwise. 
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Matrix U is constrained to have only one nonzero element per row; 

Ip   cardinality of cluster Cp, i.e. ∑
=

==
I

i
ippp uCI

1
; 

Jpq   cardinality of cluster Vqp; 

xi, ui, ei, column vectors representing the ith row of X and U, respectively; 

x.j column vector representing the jth variable of X. 
 
 

3. THE MODEL 
 

Let the population, from which the data are observed, be structured into P homogeneous 
subpopulations with elements in proportions  
 

 Pπππ ,...,, 21 , 1
1

=π∑
=

P

i
i ,         (1) 

 
and let x = (x1,…,xJ)′ be a multivariate variable characterizing the populations. The 
complete data is given by the (J+P)-dimensional vector ( ix′ , iu′ )′, where the P-dimensional 
vector ui is binary and has a unique non null element, (denoting whether unit i belongs to 
subpopulation p, (i=1,…,I, p=1,…,P)); it identifies the value of categorical non observable 
variables specifying the membership of the unit to a subpopulation. 
The first classification/clustering assumption in P subpopulations can be formalized 
modeling data conditionally on class p, (p=1,…,P), by requiring that  
 

ipi eµx +=  (i = 1,…,I)  (2) 
 
where ei is the random error with  
 
 (i) E(ei)=0,          (3) 
 (ii) Cov(ei)=Σp          (4) 
 (iii) Cov(xi, xl) = 0,   for all i,l=1,…,I, (i≠l),      (5) 
 
Thus: 1. the J-column vector µp is the expected value of the random vector xi; 2. 
heteroskedastic subpopulations are assumed (from condition (ii)); 3. a random sample from 
x is drawn. 
The second assumption we make is on within-cluster distribution of the objects xi. 
Conditionally on class p, (p=1,…,P), the  density  distribution of xi is 

 
  xi ∼ fp(x;θp) = MVNJ(µp, Σp).       (6) 
 

The third assumption models the membership of the objects to subpopulations identified by 
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ui. Two cases can be distinguished whether a fixed or a random effect assumption on the 
clustering model is supposed.  
 
In general, variable ui can be:  

1. a fixed effect in the clustering problem, where for any random sample of I units, 
respectively PIπIπIπ ,...,, 21  units are always supposed to belong to the P 
subpopulations; in other terms the number of objects belonging to each population is 
fixed from sample to sample and thus ui cannot be considered as a random variable.  

2. a random effect in the clustering problem, where for any random sample of I units a 
random number of objects belongs to the P classes of the partition, i.e. 

 

  ui∼∏
=

π
P

P

u
p

ip

1
         (7) 

  
 has a Multinomial distribution of one draw on P categories with probabilities  
 π = (π1, π2, …, πP). Therefore, in this case, ui has to be considered as a random 
 variable. 
 
The fourth assumption models the dependence structure within row clusters. Thus, 
conditionally on class p, (p=1,…,P), variables are partitioned into Qp independent blocks, 
i.e., there is a between blocks independence.  
Recall that the row cluster specific mean is partitioned as: pµ =[ 1pµ′ , ..., pqµ′ , ..., 

ppQµ′ ]′. 

Formally, for each unit ith belonging to pth class, xi =[
pi1x′ ,  ..., 

piQx′ ]′,  
 
 cov(

piqx ,
pirx ) = 0, (q,r = 1, ...,Qp  for r≠q),     (8) 

 
therefore, the covariance structure of the matrix Σp is 
 
 Σp = diag(Σp1, Σp2, ..., Σpq,...,Σp Qp).        (9) 
 
where, Σpq is the covariance matrix of order Jpq of the random vector 

piqx  and diag(.) 
specifies a block diagonal matrix. The between blocks independence could be relaxed 
without problems. We keep it here because it is sensible in some applications. For instance, 
in DNA Microarrays genes are thought to be dependent in blocks (the so called clumpy 
dependence); and in local inference approximate independence of submatrices may be 
desirable. Moreover, between-block independence avoids some numerical instability 
problems and allows for a fast and efficient algorithm for maximizing the likelihood. For 
further discussion on covariance modeling see Section 5.  
 
3.1 Fixed Effect Multi-Partitioning Model 
 
For a fixed effect classification model it is assumed that the sample is drawn from the 
population and the P clusters have cardinality equal to Ip=Iπp, (p=1,…,P) from sample to 
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sample. This assumption is realistic for large data sets.  
Let (x1, u1; x2, u2; …; xI, uI) be a random sample of I multivariate units drawn from the 
population under the above specified scheme.  
The classification (supervised) problem here considered, (i.e., supposing each couple (xi, 
ui) is completely observed) is characterized by the complete-data likelihood 
 

 ( ) ( )[ ]∏∏
= =

=
I

i

P

p

u
piipPC

ipfL
1 1

1 ;,,..., θuxθθ .                (10) 

 
With the assumption (6) and supposing a fixed model effect for the ui, the complete data 
likelihood can be written:  
 

 ( ) ( ) ( ) ( )∏∏
= =

−−−















 −′−−Σπ=

I

i

P

p

u

pippip
J

PPC

ip

L
1 1

12/12/
11 2

1exp2,;...;, µxΣµxΣµΣµ       (11) 

  
 
Now, without loss of generality let pµ  be partitioned accordingly to xi, that is  

pµ =[ 1pµ′ , ..., pqµ′ , ..., 
ppQµ′ ]′. Therefore, the likelihood (11) can be written  

 

( ) ( ) ( ) ( )∏∏
= = =

−−−















 −′−−Σπ=

I

i

P

p

uQ

q
pqiqpqpqiqpq

J
PPC

ip
p

pp

pqL
1 1 1

12/12/
11 2

1exp2,;...;, C µxΣµxΣµΣµ      (12) 

 
where Jpq is the number of variables in the qth block for the pth cluster of units.  
When there is a clustering problem, i.e., values ui, (i=1,…,I) are not observed, it is assumed 
that they are “missing” in the observed sample and they have to be estimated. Passing to the 
complete log-likelihood we have 
 

( ) ( ) ( ) ( )



 −′−+Σ+π=− ∑∑∑∑

=

−

== =

pp Q

q
pqiqpqpqiq

Q

q
pq

I

i

P

p
ipipPPC Juul

1

1

11 1
11 log2log,,;...;,2 µxΣµxΣµΣµ  (13) 

 
Thus, our task is to partition the observed data matrix in p clusters of units (row groups); 
each class of objects is characterized by a possibly different partition of the variables in Qp 
classes (column groups), and variables do not necessarily belong to the same column 
groups across row groups.   
 
3.2 Random Effect Multi-Partitioning Model 

 
Again let (x1, u1; x2, u2; …; xI, uI) be a random sample of I multivariate units drawn from 
the population under the mixture sampling scheme, corresponding to drawing for each unit 
first its class value ui, from the population with p.d.f. (7) and second drawing values of xi 
from the population with c.p.d.f. (6).  
The supervised classification  problem here considered is characterized by the complete-
data likelihood 



 7

 

 ( ) ( )[ ]∏∏
= =

π=
I

i

P

p

u
ppipPM

ipfL
1 1

1 ;,..., θxθθ .                (14) 

 
With the assumption (6) and (9) the complete data likelihood can be written:  
 
 

( ) ( ) ( ) ( )∏∏
= = =

−−−















 −′−−Σππ=π

I

i

P

p

uQ

q
pqiqpqpqiqpq

J
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p

pp
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1exp2,,;.;, C µxΣµxΣµΣµ (15) 

 
Passing to the complete data log-likelihood we have 
 

( ) ( ) ( ) ( )



 −′−+Σ+π=π− ∑∑∑∑

=

−

== =

p

pp

p Q

q
pqiqpqpqiq

Q

q
pq

I

i

P

p
ippPPM Jul

1

1

11 1
11 log2log,,;...;,2 µxΣµxΣµΣµ + 

 

   + ∑∑
= =

π
I

i

P

p
pipu

1 1
log ,                          (16) 

 
which corresponds to the complete data log-likelihood of a mixture model with observed 
log-likelihood  
 

( ) ( ) ( ) ( ) 













 −′−−Σππ=π

=

−−−

==
∑∑ C

p

pp

pq

Q

q
pqiqpqpqiqpq

J
P

p
p

I

i
pPPOl

1

12/12/

11
11 2

1exp2ln,,;.;, µxΣµxΣµΣµ (17) 

Also in this case if there is a clustering problem, i.e., values ui, (i=1,…,I) are not observed, 
it is assumed that they are “missing” in the observed sample and they have to be estimated; 
therefore, in this case (16) is also function of  ui, (i=1,…,I).  
 
 
4. MODEL FIT 
 
For the fixed effect multi-partitioning model, the maximization of the likelihood 
corresponds to the minimization of ( )ipPPC ul ,,;...;,2 11 ΣµΣµ−  that can be conveniently 
performed via a coordinate descent algorithm. At each step of the algorithm, each 
parameter vector or matrix is to be updated in turn by maximizing (12) or equivalently 
minimizing (13) with respect to one of the parameter matrices conditionally upon the 
others. The loss function -2lC decreases at each step, or at least never increases, and the 
algorithm stops when the loss decrement is less than a arbitrary small positive threshold. 
Since -2lC is bounded below, the monotonicity property of the algorithm guarantees that the 
sequence of function values converges to a stationary point, which usually turns out to be, 
at least, a local minimum.  
 
4.1. The Clustering Algorithm in the Fixed Effect Case.  
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In the case of the fixed effect model, the basic steps of the previously introduced algorithm 
can be described as follows. 
 
Step 1) Update PQPQpp ΣµΣµ ,;...;, 11 for fixed Û =[ ipû ]  
The estimation of the parameters PQPQpp ΣµΣµ ,;...;, 11  are obtained simply by using the 
sample mean and covariance of the entries of the matrix belonging to each block,  
 
  

 pqµ̂  = ∑
∑ =

=

I

i
iqipI

i
ip

u
u 1

1

ˆ
ˆ

1 x ,                  (18) 

 

 pqΣ̂  = ( )( )∑
∑ =

=

′−−
I

i
pqiqpqiqipI

i
ip

u
u 1

1

ˆˆˆ
ˆ

1 µxµx .               (19) 

 
 
Step 2) Update U=[uip] for fixed PQPQpp ΣµΣµ ˆ,ˆ;...;ˆ,ˆ 11  (the partition of the rows) 
Function (13) can be rewritten 
 

 ( ) [ ]ip

I

i

P

p
ipipPPC fuul ∑∑

= =

=−
1 1

11 ,ˆ,ˆ;...;ˆ,ˆ2 ΣµΣµ                (20) 

 

where fip= ( ) ( ) ( )∑∑
=

−

=

−′−++π
p

pp

p Q

q
pqiqpqpqiq

Q

q
pqJ

1

1

1
ˆˆˆˆlog2log µxΣµxΣ  is constant, when function 

(13) is minimized with respect to uip. To minimize function (13), we can observe that I 
independent assignment problems in the binary variables uip are at stake; whose solution is 
given by setting, for each v=1,..,P, 
 

 { }


 ==

=
otherwise.0

,...,2,1;min if1 Ppff
u ipiv

iv
               (21) 

 
Note that the minimization of  fip is equivalent to minimizing the weighted norm  
 

 ∑
=

−
−

Qp

q
pqiqp

1

2

1
ˆ

Σ
µx ,                  (22) 

 
that corresponds to the sum of the squared Mahalanobis distances between the row profile 

piqx  and the corresponding centroid pqµ̂ . Therefore, the ith  unit is assigned to the closest 
cluster in terms of Mahalanobis distance, and each column to the group leading to 
maximization of the likelihood.  
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Step 3) Update xi =[
pi1x′ ,  ..., 

piQx′ ]′, the partition of the columns for a fixed row-partition  
 To mimimize function (13) for the partition of the columns we have to minimize (20) 
for each xij (i=1,…,I), that is, for each variable jth 
 

x.j∈
piqx  if ∑∑∑

== =
−

−
p

p

Q

q
pqiq

I

i

P

p
ipu

1

2

1 1
1

ˆˆ
Σ

µx  = min{ ∑∑∑
== =

−
−

p

p

Q

v
pqiv

I

i

P

p
ipu

1

2

1 1
1

ˆˆ
Σ

µx : x.j∈
pivx ,v=1,…,Qp (v≠q)}. 

 
Now it is well known that the estimation procedures may encounter problems when the 
number of parameters increases indefinitely with the sample size, and therefore it is 
necessary to check for consistency of this procedure in the fixed effects case.  
The parameters of each normal distribution are in this case estimated on a single truncated 
distribution adding the tails of the other P-1 distributions (mainly, all those objects which 
are closer to the distribution of interest according to (22)). This biases the estimates 
inducing inconsistent estimators. 
The classification parameter is based on the Mahalanobis distance, which is based on the 
not consistent covariance matrix. Hence, also the classification parameter is not consistent.  
Consistency of the previous estimators is guaranteed only when all the normal distributions 
have equal proportions (see next section).   
Therefore, it is necessary to properly estimate the proportions and consistently estimate the 
vector means and covariance matrices of the mixture of normal distributions. 
In practice this corresponds to replacing step 1 with  
 
Step 1a) Update PQPQpp ΣµΣµ ,;...;, 11  (p=1,…,P), V̂ =[ ipv̂ ] and  
 

 ( )
( )∑ =

= P

j jij

pip
ip

f

f
v

1
;

;
ˆ

θx

θx ,                  (23) 

 

 pqµ̂  = ∑
∑ =

=

I

i
iqipI

i
ip

v
v 1

1

ˆ
ˆ

1 x ,                  (24) 

 pqΣ̂  = ( )( )∑
∑ =

=

′−−
I

i
pqiqpqiqipI

i
ip

v
v 1

1

ˆˆˆ
ˆ

1 µxµx .               (25) 

 
 
With (23), we take the expectation of uip conditionally on the observed data, thus having a  
formal E-step. In (24) and (25) we have a closed form solution for the formal M-step.  
After convergence, the last estimates in step 1 give the optimal clustering.  
Now, the mean vectors and the covariance matrices of the normal distributions are 
consistently estimated, so as the final assignment of the function (21) since the 
Mahalanobis distance is consistently estimated.  
Updating the parameters of the multinormals distributions according to step 1a the loss  
(13) still decreases at each step, or at least never increases. 
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4.2. The Clustering Algorithm in the Random Effect Case. 
 
In the case of a random effect model, the algorithm is based on the steps 1a and 3 only, 
which decrease the loss function (17) (replacing in it uip with vip) if one replaces (23) with:  
 

 ( )
( )∑ = π

π
= P

j jijp

pipp
ip f

f
v

1 ;ˆ
;ˆ

ˆ
θx

θx                   (26) 

 
 
and estimate 
 

 ∑
=

=
I

i
ipp v

I 1

ˆ1π̂ .                   (27) 

 
Once again, we are using an expectation-maximization algorithm. 
At the end if we need a row-partition (since a fuzzy partitioning is obtained) we then have 
to assigning objects to clusters with a maximum a-posteriori strategy. Conditional 
expectation (26) comes from the complete data log-likelihood for the random effect case. 
As noted, if we assume πp=1/P, (16) comes back to (13) and (26) to (23).  
 
4.3 The Classification Algorithm 
 
In the classification case the partition of the rows is known a priori, thus the multi-
partitioning problem simplifies to the problem of finding the best partition of the columns 
of the data matrix for each class of the rows. This corresponds to fixing ui according to the 
observed data (step 2) and to iterate steps 1a and 3 until convergence. 
 
A new object can be assigned to a row group by minimizing the distance from the estimated 
centroid, that is, by applying “step 2” after convergence.  
 
4.4 Starting Solutions and Model Choice  
 
In both fixed and random cases the algorithm may stop at local minima of the -2log-
likelihood, therefore we suggest to use a classical multistart procedure to increase the 
chance to identify the global optimal solution. However, there are various possibilities for 
choosing the starting values. We compared a random assignment of rows and columns 
(pure random multistart), together with classical non-hierarchical clustering methods like k-
means and partitioning around medoids (PAM): the row-groups are assigned through any 
of these methods, then the matrix is transposed; and for each row cluster, column clusters 
are assigned via the same one-way clustering method. Simulations showed that PAM is 
more likely to initialize the algorithm with a solution close to the optimal, also giving a 
lower number of iterations.  
 
Another important problem is model choice.  

Formattato: Allineato a
sinistra
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While in usual non-hierarchical clustering methods a single choice (for the number of row 
groups) must be done, here there are many possibilities: after choosing the number of row 
groups P, a vector of size P is to be specified, in which each entry gives the number of 
column groups for each row group. Automatic model choice may be desirable. In our case, 
usual likelihood based methods can be suggested, like Akaike Information Criterion (AIC) 
or Bayesian Information Criterion (BIC). Such methods are based on comparing penalized 
log-likelihood for different models, and choosing the one performing better with the 
minimal amount of parameters.  
 
AIC is defined as -2log(L)+2Ip, where L is the maximized likelihood, and Ip is the number 
of parameters for  the given model. BIC is very similar, and defined as -2log(L)+log(I)Ip, 
where I is the number of observations. In all cases, the chosen model is the one achieving 
lowest index. It is intuitive the BIC in general performs a stronger penalization than AIC 
and so it will tend to favor more parsimonious models. As we will see in Section 7, both 
criteria seem to be likely to choose the right model with high  probability in our case.  
 
5. PARAMETERIZATIONS OF THE COVARIANCE MATRICES 
 
In our general approach we assumed a different covariance matrix for each block.  
This is quite flexible, but in many cases a reduction in the number of parameters can be 
achieved by separately describing size, shape and orientation of each covariance matrix 
(Banfield & Raftery, 1993; Celeux and Govaert, 1995; Bensmail & Celeux, 1996).  
 
Each covariance matrix can be decomposed, based on the spectral decomposition, as: 
 
 pqΣ̂  = apq pqB pqD pqB′ ,                  (27) 
 
where apq is the largest eigenvalue (size), 

pqD  contains the diagonal matrix of eigenvalues 
divided by the largest eigenvalue (shape), and 

pqB  is the matrix of eigenvectors 
(orientation). 
 
By assuming combinations of the described characteristics to be equal across blocks, one 
can achieve a suitable trade-off between number of parameters and fit.  
For instance one could assume equal size and shape across blocks, but different orientation.  
The special case in which the matrices have the same orientation 

pqB  =B leads to a 
particularly consistent and efficient reduction in the number of parameters, and is known as 
the common principal component model (see Flury, 1988; also for details on maximum 
likelihood estimation).  
 
There are now many possible models, and as usual information criteria like BIC and AIC 
can be used to choose one.  
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6. SIMULATION STUDY 
 
The design of the simulation is as follows. The number of clusters for rows is fixed as a 
small or large number, corresponding to P=4 and P=10 row-groups; the number of 
column-groups as Qp=3 and Qp=5. Furthermore, two data matrices sizes have been 
considered: 200 × 20 and   600 × 60.  
Data were generated according to the model described in section 3, from P multinormal 
distributions. Three different separations between clusters where allowed corresponding to 
three general situations: clusters of units well separated (difference in mean between closest 
groups equal to 6 + random standard normal value); clusters separated with few overlaps 
(difference in mean between closest groups equal to 3 + random standard normal value); 
clusters with moderate overlap (difference in mean between closest groups equal to 1,5 + 
random standard normal value). 
Finally, three different covariance matrices where considered, in which each entry is given 
by e-(1/τ) d((i,j),(i',j')), where τ is a parameter controlling the dependence (the higher, the 
stronger the dependence) and d(., .) is just the Euclidean distance, computed between the 
indices of the position in the (reduced) data matrix.  
For each cell of the simulation study, 1000 replications were computed. 
The algorithm for fixed effect was used in the simulation study including the consistent 
estimation of the parameters (step 2a). 
The results of the simulations were evaluated according to the average modified rand index 
(M-Rand), the proportion of times the algorithm manages to exactly find the correct 
clustering (Exact), and the proportion of times a Kruskal-Wallis test on the final clustering 
is significant at 5% level (Sig). In order to compute a single modified rand index we 
identified and vectorized the blocks given by the combination of the row and column 
partitions, and compared with the true vectorized blocks.  

Table 1 shows the results for a 200 × 20 data matrix, with difference in mean between 
closest groups given by 6 plus a random value generated from a standard normal.  

Table 2 shows the results for a 600 × 60 data matrix, with difference in mean between 
closest groups given by 6 plus a random value generated from a standard normal.  
 
 

τ  P M-Rand Exact Sig 

0  4  0.99  0.98 1  

5  4  0.99  0.99 1  

20 4  0.99 0.99 1  

0  10  0.99 0.55 1  

5  10  0.99  0.61 1  
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20 10 0.99  0.56 1  

Table1: Modified Rand Index, proportion of correct clustering and of significant clustering 
for 200 × 20 data matrix with separation 6 plus a standard normal.  

 
τ  P  M-Rand Exact Sig 

0  4  1  1  1  

5  4  1  1  1  

20 4  1 1  1  

0  10  1 1  1  

5  10  1  1  1  

20 10 1  1  1  

Table2: Modified Rand Index, proportion of correct clustering and of significant clustering 
for 600 × 60 data matrix with separation 6 plus a standard normal.   

 
The tables show that when the separation between the groups is clear, a perfect clustering is 
very likely to occur. A lower proportion of perfect clustering is given in the 200 × 20 data 
matrix, when the number of row groups is 10. This happens because there can be very few 
observations in some blocks. 
It is interesting to note that in this case the modified algorithm (including step 2a) and the 
original algorithm found solutions that could often differ only on the third decimal of the 
results in the table 1 and 2. This is so because clusters are very well distinct and therefore 
the estimation of the parameters based on truncated multinormals are not significantly 
different from those consistently estimated. As major examples, by using the unmodified 
algorithm we could observe a Table 4 exactly as it is, only with 0.99 instead of 0.93 as 
proportion of exact classification for the case of strong dependence; and the same for Table 
5, only a 0.67 instead of 0.71 as  proportion of exact classification for the independence 
case with 4 row groups. 

Table 3 shows the results for a 200 × 20 data matrix, with difference in mean between 
closest groups given by 3 plus a random value generated from a standard normal, and Table 
4 the same for a difference in mean given by 1.5 plus a random value generated from a 
standard normal.  

Tables 5 and 6 show the same for the case of a 600 × 60 data matrix.  
  

τ  P  M-Rand Exact Sig 

0  4  0.97  0.54 1  
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5  4  1  1 1  

20 4  1 1  1 

Table 3: Modified Rand Index, proportion of correct clustering and of significant clustering 
for 200 × 20 data matrix with separation 3 plus a standard normal.  

  
τ  P  M-Rand Exact Sig 

0  4  0.83  0.03 1  

5  4  0.99  0.98 1  

20 4  0.99  0.93 1  

Table4: Modified Rand Index, proportion of correct clustering and of significant clustering 
for 200 × 20 data matrix with separation 1.5 plus a standard normal.  

 

τ  P  M-Rand Exact Sig 

0  4  0.97  0.71 1  

5  4  1  1  1  

20 4  1 1  1  

0  10  0.96  0.07 1  

5  10  1  1  1  

20 10 1  1  1  

Table 5: Modified Rand Index, proportion of correct clustering and of significant clustering 
for 600 × 60 data matrix with separation 3 plus a standard normal.  

 
τ  G  M-Rand Exact Sig 

0  4  0.87  0.09 1  

5  4  1  1  1  

20 4  1 1  1  

0  10  0.82  0.01 1  

5  10  1  1  1  

20 10 1  1  1  

Table 6: Modified Rand Index, proportion of correct clustering and of significant clustering 
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for 600 × 60 data matrix with separation 1.5 plus a standard normal.  
 
It can be seen that the model performance is very good also when the groups are not well 
separated; and that as the dependence within blocks increases, both the modified rand-index 
and the proportion of perfect clustering increase.  
 
 
7. MODEL CHOICE  
 
In order to evaluate the performance of AIC and BIC in the multi-partitioning model choice 
data matrices with size 200 × 20 were simulated. Different choices for the number of row 
and column groups, with the same setting as the previous section were considered.  
 
For each simulation, we iterated 100 times and gave the proportion of times the AIC and 
BIC manage to choose the correct model in the space of all possible models generated by 
3,4,5 row groups and 3,4,5 column groups for each row group.  
Table 7 shows the results when the difference in mean between closest groups is given by 6 
plus a random value generated from a standard normal, under independence.  
 

Column Groups  3  4  5  

Row Groups  (AIC, BIC)  (AIC, BIC) (AIC, BIC)

3  (0.89,0.92) (0.86,0.86) (1.00,1.00) 

4  (0.98,1.00) (0.97,0.98) (1.00,1.00) 

5  (0.81,0.81) (1.00,1.00) (1.00,1.00) 

Table 7: Proportion of times AIC and BIC manage to choose the correct model, for a 200 × 
20  data matrix with separation 6 plus a standard normal, under independence.  

 
Table 8 shows the results when the difference in mean between closest groups is given by 6 
plus a random value generated from a standard normal, with τ=5.  
 

Column Groups  3  4  5  

Row Groups  (AIC, BIC) (AIC, BIC) (AIC, BIC) 

3  (0.95,1.00) (0.97,1.00) (1.00,1.00) 

4  (0.95,1.00) (0.93,1.00) (1.00,1.00) 

5  (0.89,0.82) (0.95,1.00) (1.00,1.00) 

Table 8: Proportion of times AIC and BIC manage to choose the correct model, for a 200 × 
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20  data matrix with separation 6 plus a standard normal, with τ=5.  
Table 9 shows the results when the difference in mean between closest groups is given by 6 
plus a random value generated from a standard normal, with τ=20.  
 

Column Groups  3  4  5  

Row Groups  (AIC, BIC) (AIC, BIC) (AIC, BIC) 

3  (0.96,1.00) (0.91,1.00) (1.00,1.00) 

4  (0.96,1.00) (0.89,1.00) (1.00,1.00) 

5  (1.00,1.00) (1.00,1.00) (1.00,1.00) 

Table 9: Proportion of times AIC and BIC manage to choose the correct model, for a 200 × 
20  data matrix with separation 6 plus a standard normal, with τ=20.  

 
Table 10 shows the results when the difference in mean between closest groups is given by 
3 plus a random value generated from a standard normal, under independence.  
 

Column Groups  3  4  5  

Row Groups   (AIC, BIC) (AIC, BIC)  (AIC, BIC)

3  (0.84,1.00) (0.72,0.73) (0.71,0.71) 

4  (0.86,0.89) (0.74,0.79) (0.69,0.69) 

5  (0.70,0.70) (1.00,1.00) (1.00,1.00) 

Table 10: Proportion of times AIC and BIC manage to choose the correct model, for a 200 
× 20  data matrix with separation 3 plus a standard normal, under independence.  

 
Table 11 shows the results when the difference in mean between closest groups is given by 
3 plus a random value generated from a standard normal, with τ=5.  
 

Column Groups  3  4  5  

Row Groups   (AIC, BIC)  (AIC, BIC)  (AIC, BIC)

3  (0.72,1.00) (0.77,1.00) (0.80,0.93) 

4  (0.97,1.00) (0.82,1.00) (0.93,0.94) 

5  (1.00,0.54) (1.00,1.00) (0.96,0.96) 

Table 11: Proportion of times AIC and BIC manage to choose the correct model, for a 200 
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× 20  data matrix with separation 3 plus a standard normal, τ=5.  
Table 12 shows the results when the difference in mean between closest groups is given by 
3 plus a random value generated from a standard normal, with τ=20.  
 

Column Groups  3  4  5  

Row Groups  (AIC, BIC) (AIC, BIC) (AIC, BIC) 

3  (1.00,1.00) (1.00,1.00) (0.93,0.94) 

4  (0.92,1.00) (0.75,1.00) (0.81,0.81) 

5  (1.00,1.00) (1.00,1.00) (0.95,0.95) 

Table 12: Proportion of times AIC and BIC manage to choose the correct model, for a 200 
× 20 data matrix with separation 3 plus a standard normal, τ=20.  

 
Table 13 shows the results when the difference in mean between closest groups is given by 
1.5 plus a random value generated from a standard normal, under independence.  
 

Column Groups  3  4  5  

Row Groups   (AIC, BIC)  (AIC, BIC) (AIC, BIC) 

3  (0.74,1.00) (0.70,0.75) (0.64,0.68) 

4  (0.74,0.84) (0.70,0.75) (0.62,0.74) 

5  (0.67,0.60) (0.91,0.93) (0.84,0.84) 

Table 13: Proportion of times AIC and BIC manage to choose the correct model, for a 200 
× 20 data matrix with separation 1.5 plus a standard normal, under independence.  

 
Table 14 shows the results when the difference in mean between closest groups is given by 
1.5 plus a random value generated from a standard normal, τ=5.  
 
  

Column Groups  3  4  5  

Row Groups  (AIC, BIC) (AIC, BIC) (AIC, BIC) 

3  (0.86,1.00) (0.66,1.00) (0.73,0.77) 

4  (0.98,1.00) (0.89,1.00) (0.60,0.63) 

5  (0.61,0.68) (1.00,1.00) (0.68,0.66) 

Table 14: Proportion of times AIC and BIC manage to choose the correct model, for a 200 
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× 20  data matrix with separation 1.5 plus a standard normal, τ =5.  
 
Table 15 shows the results when the difference in mean between closest groups is given by 
1.5 plus a random value generated from a standard normal, τ =20.  
  

Column Groups  3  4  5  

Row Groups   (AIC, BIC)  (AIC, BIC) (AIC, BIC) 

3  (1.00,1.00) (0.76,1.00) (0.75,0.84) 

4  (0.93,1.00) (0.57,0.59) (0.53,0.57) 

5  (1.00,1.00) (1.00,1.00) (0.59,0.65) 

Table 15: Proportion of times AIC and BIC manage to choose the correct model, for a 200 
× 20 data matrix with separation 1.5 plus a standard normal, τ=20.  

 
Though no measure seems to dominate, BIC seems to choose the correct model more 
frequently than AIC.  
 
8. REAL DATA 
8.1 Clustering Genes and Tissues 
 
Clustering methods are one of the most frequently used tools in gene expression profiling, 
expecially for  cancer (Alon et.al. (1999), Golub et.al. (1999)). Patterns in gene expression 
may lead to early diagnosis, and to the identification of genes connected with the disease.  
We show an application of our methodology to the data from Alon et.al. (1999),  The 
dataset refers to 2000 genes recorded on 62 individuals, with 22 safe and 40 ill of colon 
cancer. 
 
After filtering, pre-processing, global normalization and computation of log-fold changes a 
data matrix of I=2000 genes by J=22 will be used for clustering.  
Both BIC and AIC choose a model with 5 row groups, and (2,3,3,3,2) column groups.  
 

1 2 3 4 5 

79 183 53 853 832 

Table 16: Number of genes for each row group. 
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Table 16 shows the number of genes for each row group. The column groups are illustrated 
in Figures 2 through 6, where expression for each gene at each slide are plot.  
 
In group 1 over expressed genes are detected. It can be seen that the sample (i.e., column) 
clustering sensibly divides genes that are seen to be always over expressed with genes that 
are only often over expressed. Candidate under expressed genes are seen in groups 2 and 3, 
where in group 2 we have a block of slides (number 5,14 and 10) that do not follow the 
general tendency. Note further that in group 5 there is a group made up of the single 
outlying slide 20, while all the other slides are put in the same column group.  

 
Figure 2. Gene expression data, first row cluster, split into 2 groups of samples. 
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Figure 3. Gene expression data, second row cluster, split into 2 groups of samples. 
 

 
Figure 4. Gene expression data, third row cluster, split into 3 groups of samples. 
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Figure 5. Gene expression data, fourth row cluster, split into 3 groups of samples. 
. 
 

 
Figure 6. Gene expression data, fifth row cluster, split into 2 groups of samples. 
 
8.2 Recognition of Glass and Ceramic Glass Fragments 
Data come from an original study on discrimination between glass and ceramic glass 
fragments in recycling plants. Glass ceramic is hard to be manually sorted from glass, and 
melts at a much higher temperature. Thus, it is desirable to build automatic methods for 
distinguishing between glass ceramic fragments and glass, in-line during the recycling 
process, to avoid negative effects on the quality of recycled glass.  
A detailed description of the study and the implications of the findings are illustrated in 
Farcomeni et. al. (2007).   
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The infrared spectra of 161 objects, of which 109 glass and 52 ceramic glass, was recorded  
at wavelengths intervals of 50 nm, from 1282 to 4482 nm.  
Figure 7 shows the average absorbance for each wavelength sampled for glass (red line) 
and glass ceramic (green line). The dotted lines give 95% bands for the estimated mean.   
 

 
Figure 7: average absorbance of glass (green) and glass ceramic (red) fragments, with 95% 
bands.  
 
Here we are interested both in clustering fragments, to check for separation between glass 
and ceramic glass (thus fixing P=2) and to identify which wavelengths better contribute to  
separation, thereby clustering also wavelengths. It is apparent in fact that certain  ranges of 
wavelengths may be more useful than others in separating between the two groups, and a 
reduction on the number of sampled wavelengths is desirable in order to speed up the  
classification algorithms, which work in-line.  
 
Both BIC and AIC lead us to choose Qp=2 column groups for each row cluster p=1, 2. 
First, we check the classification of fragments in Table 17. By comparing it with Table 18, 
where we performed a PAM with 2 groups, we can see that even if the groups are not well 
separated there is some improvement by using a double clustering method.  
 

 Glass 
Glass  

Ceramic 

Predicted Glass 79 40 
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Predicted Glass 
Ceramic 30 12 

Table 17: Classification of fragments using double clustering 
 

 Glass 
Glass  

Ceramic 

Predicted Glass 68 39 

Predicted Glass 
Ceramic 41 13 

                         Table 18: Classification of fragments using PAM 
 
Interestingly enough, neighboring wavelengths in each row group are assigned to the same  
column group up to a point, which was not imposed by the algorithm but obviously 
sensible (and useful).  
Further, Table 19 gives the difference between the estimated mean absorbance for each 
wavelength for each row cluster, allowing us to identify wavelengths between 3382 and 
4132 as the most important for cluster separation.  
These results are well in agreement with those obtained by Farcomeni et. al. (2007) with 
formal testing methods.  
 

Wavelength Difference 

[1282-2732] -0.14 

[2782-3332] -0.17 

[3382-4132] -0.27 

[4182-4482] -0.17 

Table 19: Difference in estimated centroid for each wavelength 
 
Table 19 illustrates well also the implications of the enhanced flexibility of our method: for 
each row group wavelengths are clustered differently. In fact, for the first row group we 
have wavelengths from 1282 to 2732 and from 3382 to 4132 in one column group and all 
the other wavelengths in the other column group. For the second row group we have 
wavelengths from 1282 to 2732 in one column group and all the following  
in the other column group.  
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In order to illustrate the classification version of the algorithm, we also provide results 
about the supervised partitioning. The observed data are randomly split into training and a 
test sets and the algorithm is run on the training set. After parameter estimation, the 
performance of the algorithm is measured on the remaining test set. We used a test set of 25 
objects, leaving the remaining for training of the model.  
 
The procedure is repeated 1000 times, and Table 20 gives the estimated probabilities of 
classification. These results are competitive and comparable to the best results obtained in 
Farcomeni et al. (2007) with formal signal processing and variable selection, and use of k-
nearest neighbors classifier. Finally, while the use of the supervised algorithm leads to 
identification of similar ranges of wavelenghts as most discriminant, now the column 
groups are not mostly made of neighboring wavelenghts.  
 
 

 Glass 
Glass  

Ceramic 

Predicted Glass 0.739 0.005 

Predicted Glass 
Ceramic 0.076 0.180 

Table 20: Estimated classification error with supervised algorithm 
 
 
 9. DISCUSSION 
In this paper a model based multi-partitioning methodology has been proposed. It allows to 
partition units of a multivariate data set and simultaneously to partition variables for each 
class of the partition of units. This model has been also studied by Rocci & Vichi, 2006 
using a semi-parametric approach. Here the multi-partitioning model is specified in a model 
based framework. The parametric assumption is that the population from which the data are 
observed structures into P homogeneous subpopulations in proportions Pπππ ,...,, 21 , each 
having multivariate normal distribution. If subpopulations are not expected to be well 
distinct, a fuzzy (overlapping) classification may be more useful to classify units (and a 
multi-covering problem methodology would be defined).  It is straightforward to use our 
algorithms for this case too.    
The unknown membership of units to the clusters can be specified to have a fixed or a 
random effect, which correspond to consider the membership as a fixed or a random 
variable. Maximum likelihood estimation has been used in both cases and the 
corresponding coordinate ascent algorithms of the EM type are given. 
The fixed effect model can be used when subpopulations are well represented in the sample 
and this is generally achieved for large samples. In this case the expected proportions can 
be considered fixed from sample to sample and therefore the membership are fixed 
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variables. For this case a quite fast algorithm is given which recovers with high probability 
the cluster membership of the units and variables in the generated data according to the 
simulations study given in section 6.    
We have observed that for the fixed effect case the parameters of the multivariate normal 
distributions may not be consistently estimated, because their direct estimation truncates the 
tails of the densities involved. In the case of well separated subpopulations this becomes an 
irrelevant problem. However, when multinormals heavily overlap a modified EM algorithm 
has been introduced to estimate consistently their parameters. It uses a complete step of a 
usual EM algorithm. The modified EM still increases the complete data likelihood of the 
fixed effect model.  
It is interesting to note that assignment of the units to the clusters specifies always an 
optimal partition of the units, as in the case of the CEM algorithm (Classification  EM 
Celeux and Goveart, 1992); however, the new algorithm for the fixed effect model differs 
from CEM for two points: (i) it maximizes a criterion (13) of maximum likelihood 
clustering type (Scott and Symons, 1971); (ii) it estimates consistently the parameters of the 
multinormal distributions. 
If a fuzzy partition of the units is required (the data show overlapping clusters) and/or a 
random (multinomial) effect is expected, i.e., a random effect from sample to sample is 
predictable, it is convenient to use the random effect model. In this case an EM algorithm is 
given; however, its convergence is more time-consuming, with respect to the algorithm for 
the fixed effect model. 
We suggested to parameterize the covariance matrices as indicated by Banfield & Raftery, 
(1993); Celeux and Govaert, (1995) in order to reduce the number of parameters to estimate 
and to choose the model according to a classification criterion such as AIC or BIC. In our 
simulation study emerged that BIC may outperform AIC in detecting the correct number of 
row and column clusters; however, this is not so often the case and therefore we suggest to 
examine different criteria and to choose the more parsimonious and interpretable solution.       
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