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Abstract 

We explore the  concept of tonal signatures developed and put into musical practice by one of us (Mezzadri).  A tonal 
signature of a scale S is a minimal subset of notes within S that is not contained in any scale S' different from S. We 
present a set covering model to find a smallest signature. We also show that the signatures of a scale are the prime 
implicants of a suitable monotone Boolean function represented by a CNF. On this ground, we introduce a more general 
notion of Boolean signature, depending on a Boolean operator. The computational machinery for generating Boolean 
signatures  remains essentially the same. The richness and variety of Boolean signatures has a great potential for the 
development of new paradigms in polytonal harmony. 

1. Basic definitions and notation 

Let us denote by N = {C, C#, …, B , B} the set of the 12 notes, ordered  in the stated order. A 
musical scale will always be regarded as a subset of N . All musical scales consist of 7 notes. Every 
scale S can be represented by a binary vector with 12 components, the characteristic vector ch(S) of 
S, defined as follows: 
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The characteristic vectors of the three scales in C (major, minor, (minor) harmonic) are displayed in 
Table 1. Those of the other major, minor, harmonic scales may be obtained from the characteristic 
vectors of the C, Cm, Ch scale, respectively, by cyclic permutations of their components. Thus, all 
in all, there are 36 scales. 

Ital Engl Do Major Do minor Do (minor) 
harmonic 

  C C m C h 
Do C 1 1 1 

Do # C # 0 0 0 
Re D 1 1 1 

Mi  E  0 1 1 
Mi E 1 0 0 
Fa F 1 1 1 

Fa # F # 0 0 0 
Sol G 1 1 1 

La  A  0 0 1 
La A 1 1 0 
Si  B  0 0 0 
Si B 1 1 1 

Table 1 
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The scale-note  matrix is the 36×12  binary matrix A = [aij ], whose columns correspond to the 12 
notes (in the above order) and whose rows correspond to the 36 scales, in the order C, C# , … , B , 
B; C m, C# m , … , B  m, B m; C h, C# h, … , B  h, B h. Let Sj be the j-th scale in this order. By 
definition, 
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Thus the rows of A are the characteristic vectors of the corresponding scales.  

Now let Sr be any given reference scale. A typical set T for  Sr  is any subset of Sr that is not 
contained in any scale  Sj ≠ Sr . Clearly, any set T’ such that  T ⊂ T’  ⊆ Sr is also typical. So, it 
makes sense to look for minimal typical sets. Such sets are called (tonal) signatures, and they are 
the main notion explored in these notes.  

2. Finding a smallest signature: a set covering model 

The (standard) product matrix P = [pij ] is the 35×12 binary matrix defined as follows:  for each       
i = 1, …., 12;  j≠r,  j =1, …, 36, let 
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So, in the matrix P ≡ Pr  there is one row for each scale Si ,  i≠r.  In our notation, the row retains the 
same index i as  Si . So, for instance, if the reference scale is the C major one (row 1 in A), the rows 
of P are labelled 2, 3, … , 36, in this order. 

Tables 2 and 3 show the two product matrices relative to the C major and the C# major scales, resp. 

The set covering  problem SC(r) associated with the reference scale Sr is defined as follows: 
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Do major product matrix 

  Note Do Do# Re Mi  Mi Fa Fa# Sol La    La Si   Si  
 Scale              
M Do              
A Do#  0 0 1 0 1 0 0 1 0 1 0 1 
J Re  1 0 0 0 0 1 0 0 0 0 0 0 
O Mi   0 0 0 0 1 0 0 0 0 1 0 1 
R Mi  1 0 1 0 0 1 0 1 0 0 0 0 
 Fa  0 0 0 0 0 0 0 0 0 0 0 1 
 Fa#  1 0 1 0 1 0 0 1 0 1 0 0 
 Sol  0 0 0 0 0 1 0 0 0 0 0 0 
 La   0 0 1 0 1 0 0 0 0 1 0 1 
 La  1 0 0 0 0 1 0 1 0 0 0 0 
 Si    0 0 0 0 1 0 0 0 0 0 0 1 
 Si   1 0 1 0 0 1 0 1 0 1 0 0 
M Do  0 0 0 0 1 0 0 0 0 0 0 0 
I Do#  0 0 1 0 0 1 0 1 0 1 0 1 
N Re  1 0 0 0 0 0 0 0 0 0 0 0 
O Mi   0 0 0 0 1 0 0 1 0 1 0 1 
R Mi  1 0 1 0 0 1 0 0 0 0 0 0 
 Fa  0 0 0 0 0 0 0 0 0 1 0 1 
 Fa#  1 0 1 0 1 0 0 1 0 0 0 0 
 Sol  0 0 0 0 0 1 0 0 0 0 0 1 
 La   1 0 1 0 1 0 0 0 0 1 0 0 
 La  0 0 0 0 0 1 0 1 0 0 0 0 
 Si    0 0 1 0 1 0 0 0 0 0 0 1 
 Si   1 0 0 0 0 1 0 1 0 1 0 0 
H Do  0 0 0 0 1 0 0 0 0 1 0 0 
A Do#  0 0 1 0 0 1 0 1 0 0 0 1 
R Re  1 0 0 0 0 0 0 0 0 0 0 1 
M Mi   1 0 0 0 1 0 0 1 0 1 0 0 
O Mi  0 0 1 0 0 1 0 0 0 0 0 0 
N Fa  0 0 1 0 0 0 0 0 0 1 0 1 
I Fa#  1 0 0 0 1 0 0 1 0 0 0 0 
C Sol  0 0 0 0 1 1 0 0 0 0 0 1 
 La   1 0 1 0 0 1 0 0 0 1 0 0 
 La  0 0 0 0 0 0 0 1 0 0 0 0 
 Si    0 0 1 0 1 0 0 1 0 0 0 1 
 Si   1 0 0 0 0 1 0 0 0 1 0 0 

Table 2 
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Do # major product matrix 

  Note   Do Do# Re Mi  Mi Fa Fa# Sol La  La Si  Si 
 Scale              
M Do  0 1 0 1 0 0 1 0 1 0 1 0 
A Do#              
J Re  1 0 0 1 0 1 0 0 1 0 1 0 
O Mi   0 1 0 0 0 0 1 0 0 0 0 0 
R Mi  1 0 0 0 0 1 0 0 0 0 1 0 
 Fa  0 1 0 1 0 0 1 0 1 0 0 0 
 Fa#  1 0 0 0 0 0 0 0 0 0 0 0 
 Sol  0 1 0 1 0 1 0 0 1 0 1 0 
 La   0 0 0 0 0 0 1 0 0 0 0 0 
 La  1 0 0 1 0 1 0 0 0 0 1 0 
 Si    0 1 0 0 0 0 1 0 1 0 0 0 
 Si   1 0 0 0 0 1 0 0 0 0 0 0 
M Do  0 1 0 0 0 0 1 0 1 0 1 0 
I Do#  0 0 0 0 0 1 0 0 0 0 0 0 
N Re  1 0 0 1 0 0 1 0 1 0 1 0 
O Mi   0 1 0 0 0 0 0 0 0 0 0 0 
R Mi  1 0 0 0 0 1 0 0 1 0 1 0 
 Fa  0 1 0 1 0 0 1 0 0 0 0 0 
 Fa#  1 0 0 0 0 0 0 0 0 0 1 0 
 Sol  0 1 0 1 0 1 0 0 1 0 0 0 
 La   1 0 0 0 0 0 1 0 0 0 0 0 
 La  0 1 0 1 0 1 0 0 0 0 1 0 
 Si    0 0 0 0 0 0 1 0 1 0 0 0 
 Si   1 0 0 1 0 1 0 0 0 0 0 0 
H Do  0 1 0 0 0 0 1 0 0 0 1 0 
A Do#  0 0 0 0 0 1 0 0 0 0 1 0 
R Re  1 0 0 1 0 0 1 0 1 0 0 0 
M Mi   1 1 0 0 0 0 0 0 0 0 0 0 
O Mi  0 1 0 0 0 1 0 0 1 0 1 0 
N Fa  0 0 0 1 0 0 1 0 0 0 0 0 
I Fa#  1 0 0 1 0 0 0 0 0 0 1 0 
C Sol  0 1 0 0 0 1 0 0 1 0 0 0 
 La   1 0 0 0 0 1 1 0 0 0 0 0 
 La  0 1 0 1 0 0 1 0 0 0 1 0 
 Si    0 0 0 0 0 0 0 0 1 0 0 0 
 Si   1 0 0 1 0 1 0 0 1 0 0 0 

Table 3 



5 
 

The set covering problem SC(r) belongs to the class of  integer linear programming problems, and 
thus it may be solved by any specialized software for such class, e.g. CPLEX. It has 12 binary 
variables xi  and 35 set covering constraints. 

The interpretation of SC(r) is as follows. In the optimal solution x = (x1  ,…, x12 ) to SC(r),  each 
binary variable xi takes the value 1 if the corresponding note i belongs to the smallest signature 
sought for, and 0 else; that is, the optimal solution x  to  SC(r) is the characteristic vector of a 
smallest signature of  Sr . 

For any given i, by the definition of the product matrix, the variables that appear on the l.h.s. of 
(1.2) are associated to those notes that are present in Sr but are absent from Si. The constraint then 
has the form “the sum of a bunch of variables is at least 1”. Since the variables are binary, an 
equivalent formulation is “at least one variable in the bunch takes the value 1”. Summing up, the 
constraint (1.2) expresses the requirement that at least one note present in  Sr must be absent from  
Si . Since this requirement must hold for each i≠r, we conclude that x must be the characteristic 
vector of some typical set. Furthermore, the objective function (1.1) is equal to the number of 
variables that take the value 1, that is, to the cardinality of the typical set. Since such objective 
function is minimized, the optimal solution to SC(r) provides a smallest typical set. Such set must 
be a minimal typical set, for otherwise by deleting some note from it we would get a smaller typical 
set, contradicting the optimality of the set. Hence the optimal solution to SC(r)  is indeed the 
characteristic vector of a smallest signature. 

3. A Boolean method for finding all signatures 

In this section we describe a method for finding all the signatures of a given reference scale Sr . 

For the explanation of the Boolean elementary notions dealt with here, the reader may consult 
wikipedia items such as ‘Boolean Algebras’, ‘Boolean Functions’, ‘Truth Tables’, ‘Logic Gates’, 
or, for details, [2].  

Given a binary variable x, its negation or complement is defined to be x = 1 – x. If x, y are two 
binary variables their product (or conjunction) is the ordinary product xy (also written x ∧ y), and 
their union is x ∨ y = max {x,y} = x+y – xy. Both the union and the product are associative, 
commutative, and idempotent operations; they are also distributive w.r.t. each other and satisfy the 
absorption laws:  

  x(x ∨ y) = x,    x ∨ xy = x. 

More generally, if A and B are products of variables, one has  

  A  ∨   AB = A,  

and one says that A absorbs AB (a special case occurs when B = 1). 

A literal is either a variable or its negation. A term is a product of literals; a clause is a union of 
literals.  

We may notice that the constraint (1.2) in the set covering model SC(r) may be re-written as 
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In fact, both (1.2) and (2) express the requirement that at least one of the variables surviving on 
their l.h.s. must take the value 1.  

The system of equations (2) is equivalent to the single equation 
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Let us denote by ϕr(x) the Boolean function defined by the conjunctive normal form (CNF) on the 
l.h.s. of (3). That is,  ϕr(x) is written as a product of clauses. Since no variable in this CNF is 
negated,  the Boolean function ϕr(x)  is monotone: x  ≤  y  ⇒ ϕr(x) ≤ ϕr(y). This function will be 
called the signature function of  Sr . 

Equation (3) is also called a Satisfiability (SAT) problem. Any binary vector x such that ϕr(x) = 1, 
that is,  any solution to the SAT problem (3), is called a true point (or a truth assignment) for ϕr(x). 
If, instead,  ϕr(x) = 0 then x is called a false point. From the above discussion,  one sees that the true 
points of ϕr(x) are the characteristic vectors of the typical sets of the scale Sr .  A true point is said 
to be minimal if it becomes a false point whenever any of its components  with value 1 is decreased 
to 0. Hence the characteristic vectors of the signatures of  Sr  are precisely the minimal true points 
of  ϕr(x).  

From a well-known theorem on Boolean functions, it follows that there is a one-to-one 
correspondence between the  minimal true points of  ϕr(x) and the prime implicants of such 
function. The prime implicants are actually the terms of the (unique) irredundant disjunctive  
normal form (DNF) of ϕr(x). While a CNF is a product of unions, a DNF is a union of products, and 
“irredundant” means that no term in the DNF is absorbed by some other term. The one-to-one 
correspondence is such that, if the variable xi  appears in a prime implicant, then it must be equal to 
1 in the associated minimal true point, else it must be equal to 0 in that point.  

Thus, finding all signatures of the reference scale Sr amounts to re-writing the Boolean function  
ϕr(x),  naturally represented by a CNF, as a DNF, and “cleaning up” in the resulting expression all 
terms that are absorbed by some other term.  

A small artificial example will illustrate the above procedure. Let ϕr(x) be given by the CNF  
(x1 ∨ x2)(x1 ∨  x3  ∨  x4)(x2 ∨ x4). Then 

 ϕr(x) = x1 x2 ∨ x1 x4  ∨ x1 x2 x3 ∨ x1 x3 x4 ∨ x1 x2 x4  
    ∨  x1 x4 ∨  x1 x2 ∨ x1 x2 x4 ∨ x2 x3 ∨x2x3 x4  ∨ x2 x4 ∨ x2 x4 

 = x1 x2 ∨ x1 x4  ∨ x2 x3 ∨ x2 x4 
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- the irredundant DNF of ϕr(x) - the latter identity following from absorption. Hence the minimal 
true points of ϕr(x) are the 4 binary vectors (1,1,0,0), (1,0,0,1), (0,1,1,0), (0,1,0,1). 

4. Boolean signatures 

Let us go back to the definition of product matrix. An equivalent way to define such matrix is the 
following:  

  pij  =  arj  ∗  aij ,  i ≠ r;  j = 1, …, 12,                             (4)  

where  ∗  is the Boolean operator defined by the truth table 

x y x  ∗  y 
0 0 0 
0 1 0 
1 0 1 
1 1 0 

 

That is,  x  ∗ y = x y  = x AND (NOT y).  

Relation (4) suggests the following generalization of signatures. Just replace in (4) the above  x y  
operator by an arbitrary Boolean operator *. The product matrix now depends both on the reference 
scale Sr and on the operator *:  P = P(r,*).  The rest of the procedures defined in the previous 
sections is unchanged: from such product matrix P(r,*) one builds the set covering problem SC(r, *) 
given by (1.1), (1.2), (1.3) and the signature function ϕ(x; r, *)  given by the l.h.s.  of (2).  

Let x be any minimal true point of   ϕ(x; r, *)   (in particular, any optimal solution to  SC(r, *)). 

With the binary vector x we associate two subsets of N, namely,  

 T+ = {j:  xj = 1,  j ∈ Sr} ,    T− = {j:  xj = 1,  j ∉ Sr}.               (5)  

The sets  T+  and  T− are called the positive and the negative signature, respectively, and the pair  
(T+ , T−)  the Boolean signature, of the scale Sr w.r.t. the Boolean operator  *.  The musical 
interpretation is as follows:  T+  is the set of notes inside  Sr that must be played, while T−  is the set 
of notes outside Sr that must not be played; all the remaining notes might or might not be played,  
preference being given to the notes in  Sr\T+.  When there exist, for a given reference scale, several 
signaures, all or some of them may be sequentially performed, in a suitable order, during the 
execution of the piece.  

The following diagram summarizes the overall procedure.  
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All in all, there are 16 different truth tables, giving rise to 16 different Boolean operators; of course, 
some of them are musically more interesting than others. 

Solve set covering problem   SC(r, *). Let 
x be any optimal solution to SC(r, *) 

 

 

Choose reference scale Sr 

Choose Boolean Operator * 

Generate set covering 
problem  SC(r, *) 

Generate signature function ϕ(x; r, *)  in CNF 

   Compute product matrix P(r, *) 

Get a DNF of ϕ(x; r, *) . Let x be any 
minimal true point of  ϕ(x; r, *)   

 

minimal true point of  ϕ(x; r, *)   

Associate with x the 
Boolean   signature         
(T+  , T−)  of  Sr  w.r.t.   * 
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Examples 

1) The 0-constant and the 1-constant operators, defined by the truth tables 

x y x  ∗  y 
0 0 0 
0 1 0 
1 0 0 
1 1 0 

 
and 
 

x y x  ∗  y 
0 0 1 
0 1 1 
1 0 1 
1 1 1 

 

respectively, give rise to product matrices consisting of all 0’s and all 1’s, respectively.  

In the former case, the associated set covering problem has no solution; in the latter case, 
any single note corresponds to an optimal solution. Hence, these two Boolean operators are 
trivial and they may be ignored.  

2) When * is the NAND operator,  

 
x y x  ∗  y 
0 0 1 
0 1 0 
1 0 0 
1 1 0 

 

and the reference scale is either major or minor, the set covering problem has no feasible 
solution. Thus also the NAND operator may be discarded unless the reference scale is 
harmonic.  

3) When x ∗ y = x y  , the set T− is empty and T+ is an ordinary signature.  
4) Vice versa, when x ∗ y = x y = (NOT x) AND y, the set T+  is empty and T−  is the set of 

notes outside Sr  that must not be played; in this case T−  will be called an antisignature. 
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5) When x ∗ y = x ⊕ y = x XOR y, the truth table is 

 
x y x  ∗  y 
0 0 0 
0 1 1 
1 0 1 
1 1 0 

 
In this case, any Boolean signature  (T+, T−)  has the following property: for any scale Sj  
different from Sr , there exists some note that either belongs to T+  (and hence is present in 
Sr), but is absent from  Sj;  or belongs to T−  (and hence is absent from  Sr ) but is present in  
Sj .  Such  (T+, T−)  is called a conflict signature. 

The meaning of the Boolean signatures for the different 13 nontrivial Boolean operators is explicitly 
given below. Each such operator is labelled  f1  f2  f3   f4 ,  where f1 , f2 , f3 , f4  are the values of p*q  
for (p,q) = (0,0), (0,1), (1,0) and (1,1), respectively; and the 13 operators are sorted in reverse 
lexicographic order: F1 = 0001, F2 =0010, F3 = 0011, ...  Thus, e.g.,  F6 =0110 is the XOR 
operator. The following short-hand notation is used:  R denotes the reference scale; S denotes any 
other scale.  

F1: 0001 −  R AND S;  (shared signature) 

For each S, the signature contains at least one note shared by R and S; 

F2: 0010  −  R AND (NOT S) ;  (ordinary signature) 

For each S, the signature contains at least one note present in R and absent from S; 

F3: 0011  −  R 

The signature contains (at least) one note of R; 

F4: 0100  −  (NOT R) AND S  (antisignature) 

For each S, the signature contains at least one note absent from R and present in S; 

F5: 0101  −  S   (universal signature) 

For each S, the signature contains at least one note of S; 

F6: 0110  −  R XOR S (conflict signature) 

For each S, the signature contains at least one note present either in R or in  S, but not in both; 

F7: 0111  −  R OR S 
For each S, the signature contains at least one note present either in R, or in  S,  or in both;  
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F8: 1000  −  R  NOR S  (possible only when the reference scale is harmonic) 

For each S, the signature contains at least one note absent from both R and S; 

F9: 1001  −   R  XNOR S 

For each S, the signature contains at least one note that is present both in R and S, or absent from 
both R and S; 

F10: 1010   −  NOT (S)         (defective signature) 

For each S, the signature contains at least one note that is absent from S; 

F11:  1011  −  S IMPLIES R   

For each S, the signature contains one note that cannot be absent from R when it is present in S (i.e., 
the note is either present both in R and S or absent from S); 

F12:  1100  −  NOT (R) 

The signature contains (at least) one note absent from R; 

F13:  1101  −   R  IMPLIES S   (induced signature) 

For each S, the signature contains one note that cannot be absent from S when it is present in R (i.e., 
the note is either present both in R and S or absent from R); 

F14: 1110  − R NAND S 

For each S, the signature contains at least one note that is not shared by R and S; 

In any case, the signature must be minimal with respect to the stated property, i.e., it looses such 
property whenever an arbitrary note is taken off from the signature.  

Remark 1. The interest of a Boolean operator depends not only on its meaning, but also on the 
richness of the corresponding signatures (see Catalogue in the Appendix). For example, the 
signatures for F3 and F12 depend on R, but not on S,  and they consist of single notes, so they look 
uninteresting; also the signatures for F11 consist of single notes for all major and minor scales, so 
their possible use is confined to harmonic ones.  

5. Invariance 

Let us compare the two product matrices P and P’ given in Tables 2 and 3, respectively. 

A careful look at them shows that, once P is at hand, P’ can be easily computed  from P according 
to the following simple rule:  

 p’t+[h+1],[j+1] = pt+1, j ,  t = 0 (major scales), 12 (minor scales), 24 (harmonic scales),
     h = 2, …,12;  , j = 1, …12 ;    ( 6 ) 
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where [p+q] is equal to (p+q) mod 12. 

For example, consider the entries p3,6 = pRe, Fa  in Table 2  and  p’4,7 = p’Mib, Fa#    in Table 3: both are 
equal to 1. Or, consider the entries p18,5 = pFa m, Mi  in Table 2  and  p’19,6 = p’Fa# m,Fa    in Table 3: 
both are equal to 0.  Or, consider the entries p27,12 = pRe h, Si  in Table 2  and  p’28,1 = p’Mib h,Do    in 
Table 3: both are equal to 1.   
Identity (6) is but a special case of a much more general identity. 
 
Theorem 1: For any given Boolean operator *,  all the product matrices relative to a major (minor, 
harmonic) scale can be obtained from those relative to the C major (minor, harmonic, resp.) scale 
through cyclic permutations of the rows and of the columns.  
More precisely, if  P(t,k)  is the product matrix relative to the scale Sr  ≡  St+k  (t =0, 12, 24 ;  
k= 2, …,12)  and to the  Boolean operator *, the following identity holds: 

)1,(
,

),(
]1[],1[

t
jhs

kt
kjkhs pp +!+!++ =  ,   s = 0, 12, 24 ;  h , j =1, …,12;  (s,h) ≠ (t,k)      (7) 

 
 
Proof.   Setting r ≡  t+k  and  i ≡ s + h, let us re-write the definition (4) under the equivalent form 

         jhsjkt
kt
jhs aap ,,
),(
, * +++ = ,  s = 0, 12, 24 ;  h , j =1, …,12; (s,h) ≠ (t,k).             (8) 

The cyclicity of all major (minor, harmonic) scales implies that, for each d = 1, …, 12  one has 
as+h, j = as+[h+d],[j+d]    .  Hence, by (8), 

)1,(
,,,1

]1[],1[]1[,
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kjkhskjkt

kt
kjkhs

paa

aa

p

+++
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Identity (7)  says the following: if the product matrix P relative to the C major (minor, harmonic) 
scale is at hand, in order to get the product matrix P’ relative to any other  major (minor, harmonic) 
scale whose tonic is k-1 notes (semitones) higher than C, simply copy each entry of P into the cell 
of P’ lying k -1 positions to the right and k-1 positions below, where the positions are counted 
modulo 12. 
 
Corollary 1 (Invariance) :  The set covering problem and the signature function are the same for all 
major (minor, harmonic)  scales, up to cyclic variable renaming. 

The above Invariance property implies that, in order to get a full catalogue of all boolean signatures, 
it is enough to find the prime implicants of 40 (13×2+14, since F8 makes sense only for harmonic 
scales) Boolean functions with 12 variables and 35 clauses, that is, to find the irredundant DNF’s of 
such functions.  In order to get these DNF’s, a variety of dualization algorithms is available in the 
literature (see [2] ). The one we have chosen to implement is conceptually very simple, but it has a 
good performance in practice (0.08 seconds on a  2.8 GHz processor were enough to compute the 
full catalogue of Boolean signatures). Here is a formal description. 
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Write the input CNF as 

   
i

ri

Crx
!
"=,*),(#  

where Ci  is the l.h.s. of  (2). 

D := 1; 

for each i = 1, …, 36,  i≠r 

   Fi := D ∧ Ci ; 

  Use, if needed, distributivity and absorption to write Fi  in DNF. 

 Let D be the resulting DNF; 

Throughout the ‘for’ loop the current D maintains the property of being a DNF. At the end of the 
loop D yields the required DNF of ϕ(x; r, *) . 

Along the same lines, in order to get smallest signatures for all tonal scales and all Boolean 
operators, it is enough to solve 40 set covering problems with 12 variables and 35 constraints each.  

What is even nicer, whereas arbitrary set covering problems are NP-complete [1], and hence 
computationally hard to solve, all such 40 set covering problems are easily solvable by a 
combination of standard preprocessing rules and small-size linear programs, without any need of 
enumeration at all. This issue is discussed at length in a companion paper [3], where actually the 
following results are reported: 
 
1) For all the 13 Boolean operators but F1, F5, F9, and F10, four simple preprocessing rules are 

enough to fully solve the set covering problems. 
2) For the remaining four operators, (with the single exception of F5 when the reference scale is 

harmonic) a smallest signature can be obtained through the solution of a small-size linear 
program, obtained from the set covering problem by the addition of the single constraint ‘sum 
of all variables ≥ 3’; moreover, the restriction that the variables must take the values 0 or 1 is 
relaxed into the requirement that their value must lie in the interval [0,1]. It turns out that, 
although the resulting linear program may admit fractional optimal solutions, the widely used 
CPLEX 10.0 LP solver always finds a binary optimal solution, thus yielding a smallest 
signature.  

3) The exceptional case when the operator is F5 and the scale is harmonic is the only one where a 
smallest signature consists only of two notes. In this case it is easy to explicitly pinpoint the 
unique smallest signature – e.g., A  and B  – for the C h scale. 
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6. The inverse problem 

We have seen that with any reference scale Sr  and any Boolean operator  *  (except when * is the 
operator F8 and Sr is a major or minor scale) one can associate one or more signatures. One may 
also look at the inverse problem: given any Boolean operator * and a binary vector s = (s1, …, s12), 
find all scales  Sr , if any, such that s is (the characteristic vector of) one of the signatures associated 
with *  and Sr . 

We are going to describe a very simple procedure for solving the above inverse problem. First of 
all, we need to extend to arbitrary Boolean operators, in a straightforward way, the notion of 
ordinary typical set, given in Sec. 1.  

Def. : A typical vector w.r.t. the reference scale Sr  and the Boolean operator * is any binary 
feasible solution to the set covering problem  SC(Sr, *)  (see Sec. 2); or, equivalently, any true point 
of the signature function ϕ(x; r, *)   (see  Sec. 4). 

When  * is F2, a typical vector is but the characteristic vector of a typical set, as defined in Sec. 1. 

Let 

A = [aij] , i = 1, … , 36; j = 1, …, 12;   be the scale-node matrix defined in Sec. 1; 

W = [whij], where whij = ahj   *  aij ,  h = 1, … , 36; i = 1, … , 36; j = 1, …, 12; 

Q = [qhi] ,   h = 1, … , 36; i = 1, … , 36,  where 

,
12

1
j

j
hijhi swq !

=

=  

m = [mi] where  mi is the smallest off-diagonal entry of the i-th column of Q, i = 1, … , 36. Notice 
that each mi is a nonnegative integer. 

Lemma 1:  Vector s is a typical vector w.r.t. the reference scale  Sr  and the Boolean operator  *  if 
and only if  mr  is strictly positive. 

Proof.  Let us set, for each i ≠ r, and for all j = 1, …, 12,     

pij ≡ wrij .                        (9) 

Then  P = [pij] coincides with the product matrix P(r,*) w.r.t. the reference scale Sr  and the Boolean 
operator *.  Hence the  condition mr > 0 is equivalent to the system of inequalities 

      ,1
12

1

risp
j

jij !"#
=

 .                (10)   

  

As a consequence, the condition mr = 0  characterizes those binary vectors  s  that are not  typical 
vectors w.r.t. the reference scale  Sr  and the Boolean operator  *. 
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An inequality (10) will be said to be active if it holds as an equality. 

Lemma 2: For each i ≠r, the following three statements are equivalent: 
      −   the i-th inequality (10) is active; 

−    there exists a unique index j such that      pij  = sj = 1; 
−    the i-th  inequality (10) holds, but there exists an index j such that if sj  is decreased from  
     1 to 0, then  such inequality no longer holds. 

Proof. The equivalence of the above three statements is a direct consequence of the fact that both 
the pij’s  and the sj’s are binary.  
 
Theorem 5:  Vector s is  a signature w.r.t. the reference scale  Sr  and the Boolean operator *  if and 
only if  the following two conditions hold: 

(i)   mr = 1 (that is, at least one of the inequalities (10) is active) ; 
(ii)   Let P = [pij] be the matrix defined by (9); and let H be the submatrix of P formed by the 

rows i ≠ r such that  qir   = 1 and by the columns j such that sj  = 1. Then (a) each column of 
H must contain at least one 1, and (b) each row of H must contain exactly one 1. 

 
Proof. If) If mr = 1  then all the inequalities (10) hold.  By Lemma 1,  vector s is  a typical vector 
w.r.t. the reference scale  Sr and the Boolean operator  *. Consider now the submatrix H in (ii). Such 
submatrix must have at least one row since mr = 1  and at least one column since s cannot be the 
null vector. Now let j be any index such that sj  = 1. By condition (ii) – (a) there is a row i ≠ r such 
that  pij   = 1.  By (ii) – (b) all the other entries of this row are 0.  Hence by Lemma 2 when sj is 
decreased from 1 to 0 the i-th inequality (10) no longer holds. This implies that s is a minimal 
typical vector, i.e., a signature.  
 
Only if)  Conversely, if s is a signature, the inequalities (10) must hold and at least one of them must 
be active, else s would not be a minimal typical vector.   Hence one must have  mr = 1. Consider the 
submatrix H  defined in (ii). Again H must have at least one row and at least column. For each row i 
of H, one has qir   = 1 and thus the corresponding inequality (10) is active. Hence by Lemma 2 row i 
has exactly one 1 and (ii) – (b) holds. On the other hand, for all the rows i of P, but not of H, one 
has qir   > 1 and thus the corresponding inequalities (10) are not active. Therefore H cannot have a 
column j entirely made of 0’s, since then one could decrease sj from 1 to 0 without violating any 
inequality (10), against the minimality of  s. Hence also (ii) – (a) must hold.   

The above Theorem 5 yields the following simple direct procedure for the solution of the inverse 
problem: 

Compute the 3-dimensional array W = [whij]; 
Compute the square matrix Q = [qhi]; 
Compute the vector m = [mi]; 
Let U be the set of those i  for which mi = 1  (the scales i in U are candidates for being the reference 
scales sought for); 
For each r in U, check whether conditions  (ii) – (a) and (ii) – (b)  of  Theorem. 5 apply; if so, r is 
one of the required reference scales. 
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Appendix 
 
A full catalogue of Boolean signatures for the C major scale and the 13 nontrivial Boolean 
operators 
 
F1: 0001 
1- CDB 
2- CEB 
3- CFB 
4- CGB 
5- CAB 
6- CEF 
7- DEF 
8- EFG 
9- EFA 
 
F2: 0010 
1- CEFGB 
 
F3: 0011 
1- C 
2- D 
3- E 
4- F 
5- G 
6- A 
7- B 
 
F4: 0100 
1- C#D#F#G#A# 
 
F5: 0101 
1- CDB 
2- CEB 
3- CFB 
4- CGB 
5- CAB 
6- CA#B 
7- CC#D# 
8- CC#F 
9- CC#F# 
10- CC#G# 
11- CC#A# 
12- CC#B 
13- CC#D 
14- C#DE 
15- C#DF# 
16- C#DG 
17- C#DA 
18- C#DB 
19- C#FGB 
20- C#EGA# 
21- CDD# 
22- C#DD# 
23- DD#F 
24- DD#G 
25- DD#G# 
26- DD#A# 
27- C#D#E 
28- DD#E 

29- D#EF# 
30- D#EG# 
31- D#EA 
32- D#EB 
33- D#GB 
34- CD#F#A 
35- D#FAB 
36- C#D#GA 
37- CEF 
38- DEF 
39- D#EF 
40- EFG 
41- EFA 
42- EFA# 
43- C#FA 
44- CEF#A# 
45- C#FF# 
46- D#FF# 
47- EFF# 
48- FF#G# 
49- FF#A# 
50- FF#B 
51- CF#G 
52- DF#G 
53- EF#G 
54- FF#G 
55- F#GA 
56- F#GB 
57- DF#A# 
58- C#D#F#G#A# 
59- DEG#A# 
60- CDF#G# 
61- DFG#B 
62- CEG# 
63- CGG# 
64- C#GG# 
65- D#GG# 
66- FGG# 
67- F#GG# 
68- GG#A# 
69- C#G#A 
70- DG#A 
71- EG#A 
72- F#G#A 
73- GG#A 
74- G#AA# 
75- G#AB 
76- CAA# 
77- DAA# 
78- D#AA# 
79- FAA# 
80- GAA# 
81- C#A#B 
82- D#A#B 
83- EA#B 

84- F#A#B 
85- G#A#B 
86- AA#B 
 
F6: 0110 
1- CD#F#GA# 
2- CD#F#G#A# 
3- C#D#F#GA# 
4- C#D#F#G#A# 
5- CEF#GA# 
6- CEF#G#A# 
7- C#EF#GA# 
8- C#EF#G#A# 
9- CD#F#GB 
10- CD#F#G#B 
11- C#D#F#GB 
12- C#D#F#G#B 
13- CEF#GB 
14- CEF#G#B 
15- C#EF#GB 
16- C#EF#G#B 
17- CD#FGA# 
18- CD#FG#A# 
19- C#D#FGA# 
20- C#D#FG#A# 
21- CEFGA# 
22- CEFG#A# 
23- C#EFGA# 
24- C#EFG#A# 
25- CD#FGB 
26- CD#FG#B 
27- C#D#FGB 
28- C#D#FG#B 
29- CEFGB 
30- CEFG#B 
31- C#EFGB 
32- C#EFG#B 
 
F7: 0111 
1- C 
2- D 
3- E 
4- F 
5- C#D#F#G#A# 
6- G 
7- A 
8- B 
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F9: 1001 
1- CDB 
2- CD#B 
3- CEB 
4- CFB 
5- CF#B 
6- CGB 
7- CG#B 
8- CAB 
9- CEF 
10- C#EF 
11- DEF 
12- EFG 
13- EFG# 
14- EFA 
 
F10: 1010 
1- CC#D 
2- C#DD# 
3- DD#FF#A 
4- DD#F#AB 
5- C#DEFG# 
6- C#DFG#A# 
7- C#DFF#A# 
8- C#DGG# 
9- CDEF#G#A# 
10- CC#D#EG 
11- CC#EGA 
12- CD#EG#B 
13- DD#E 
14- CD#EGA# 
15- D#EF#GA# 
16- CC#EFA 
17- D#EF 
18- EFF# 
19- C#EFG#B 
20- EFGG#B 
21- CD#EGG# 
22- D#EAA# 
23- CC#F#G 
24- DD#F#GB 
25- FF#G 
26- F#GG# 
27- C#D#F#GA# 
28- C#F#GAA# 
29- CD#G#AB 
30- CC#FG#A 
31- CD#FG#A 
32- DD#G#A 
33- C#D#FGAB 
34- CDFF#A 
35- CFF#G#A 
36- C#EFG#A 
37- GG#A 
38- CC#EAA# 
39- C#DF#AA# 
40- C#EF#AA# 
41- DFF#AA# 
42- G#AA# 
43- CC#B 
44- CDD#F#B 

45- CD#F#G#B 
46- CFF#B 
47- CA#B 
48- CEFGB 
49- EFA#B 
50- CEGG#B 
51- DEGG#B 
52- C#DFA#B 
53- DD#GA#B 
54- DFGA#B 
55- DGG#A#B 
56- D#F#GA#B 
57- AA#B 
 
F11: 1011 
1- C 
2- D 
3- E 
4- F 
5- G 
6- A 
7- B 
 
F12: 1100 
1- C# 
2- D# 
3- F# 
4- G# 
5- A# 
 
F13: 1101 
1- CDB 
2- CEB 
3- CFB 
4- CGB 
5- CAB 
6- C# 
7- D# 
8- CEF 
9- DEF 
10- EFG 
11- EFA 
12- F# 
13- G# 
14- A# 
 
F14: 1110 
1- C# 
2- D# 
3- F# 
4- G# 
5- A# 
6- CEFGB 
 
 


