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Summary 

In this paper a robust fuzzy k-means clustering model for interval valued data is 
introduced. The peculiarity of the proposed model is the capability to manage 
anomalous interval valued data by reducing the effect of such outliers in the 
clustering model. In the interval case, the concept of anomalous data involves both 
the center and the width (the radius) of an interval. In order to show how our 
model works, the results of some applications to synthetic and real interval valued 
data are discussed. 
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1 Introduction 
 In the recent literature, several references on statistical analysis of data with 
complex structure (complex data) (data of possibly different nature, i.e. interval 
valued data, symbolic data, fuzzy data, mixed feature data) may be found (see, for 
instance, Bock & Diday, 2000). In particular, focusing on the principal 
multivariate exploratory statistical analyses, we have the following references: 
- Cluster Analysis (Auephanwiriyakul & Keller, 2002; Chavent, 2000; Chavent 

& Lechevallier, 2002; Coppi & D�Urso, 2002, 2003b; D�Urso & Giordani, 
2005b; de Carvalho, 1994; de Carvalho et al., 2004; de Souza & de Carvalho, 
2004; Diday, 1988; El-Sonbaty & Ismail, 1998a,b; Gowda & Diday, 1991, 
1992; Gowda & Ravi, 1995a,b; 1999a,b; Guru et al., 2004; Hathaway et al., 
1996; Hwang, 1989; Ichino & Yaguchi, 1994; Mali & Mitra, 2003; Masson & 
Den�ux, 2004; Pedrycz et al., 1998; Yang & Ko, 1996; Yang & Liu, 1999; 
Yang et al., 2004;). 

- Principal Component Methods (see, e.g., Cazes et al., 1997; Coppi et al., 
2005; D�Urso & Giordani, 2004, 2005a; Den�ux & Masson, 2004; Giordani 
& Kiers, 2004; Lauro & Palumbo, 2000, 2005; Lauro et al., 2000; Palumbo & 
Lauro, 2003, Watada & Yabuuchi, 1997). 

- Multidimensional Scaling (see, e.g., Den�ux & Masson, 2000; Masson & 
Den�ux, 2002). 

- Regression Analysis (see, e.g., Billard & Diday, 2000; Coppi & D�Urso, 
2003a; D�Urso & Gastaldi, 2000; 2002; D�Urso, 2003; D�Urso & Giordani, 
2003; Hong & Hwang, 2005; Körner & Näther, 1998; Yang & Liu, 2002; 
Näther, 2000).  

 
Specifically, by considering the cluster analysis framework, there are different 
studies regarding partitioning of complex-structured data (i.e. interval valued, 
symbolic, fuzzy and mixed data).  
Different authors suggested conceptual hierarchical and non hierarchical 
clustering for symbolic data. Michalski & Stepp (1983) developed the algorithm 
CLUSTER/2, a conjunctive conceptual clustering where descriptive concepts are 
conjunctive statements involving relations on selected objects features and 
optimized according to the certain criterion of clustering quality. Chen & Fu 
(1985) introduced the procedure called HUATUO which produced intermediate 
conceptual structures for rule-based systems. Fisher (1987), by considering a 
category utility metric called COBWEB, proposed a top-down incremental 
conceptual clustering. Ralambondrainy (1995) proposed a conceptual k-means 
clustering method for mixed data (with numerical and symbolic features) based on 
coding symbolic data numerically and using a mix of Euclidean and Chi-square 
distances to compute the distance between the hybrid types of data that are 
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represented by considering predicates as groups of attribute-value tuples joined 
by logical operators. 
Diday & Brito (1989) utilized a transfer algorithm for partitioning a set of 
symbolic data into clusters described by weight distribution vectors. Concerning 
hierarchical methods, Gowda & Diday (1991, 1992) suggested an agglomerative 
approach which forms composite symbolic objects utilizing a joint operator 
whenever mutual pairs of symbolic objects are selected for agglomeration based 
on minimum dissimilarity (Gowda & Diday, 1991) or maximum similarity 
(Gowda & Diday, 1992). Gowda & Ravi (1995a,b) introduced, respectively, 
divisive and agglomerative techniques for symbolic data based on the combined 
usage of similarity and dissimilarity measures that are defined on the basis of the 
position, span and content of symbolic objects. Successively, the same authors 
presented a hierarchical clustering method for symbolic data based on the 
gravitational approach, which is inspired on the movement of particles in space 
due to their mutual gravitational attraction (Gowda & Ravi, 1999a) and an 
ISODATA clustering algorithm for symbolic data using distributed genetic 
algorithms (Gowda & Ravi, 1999b). 
Ichino & Yaguchi (1994) defined generalized Minkowski metrics for mixed 
feature variables based on the so-called Cartesian space model and presented 
dendrograms obtained from the application of standard linkage methods for 
datasets containing numerical and symbolic feature values.  
Hathaway et al. (1996) and Pedrycz et al. (1998) introduced models that converted 
a parametric or nonparametric linguistic variable to generalized coordinates (a 
vector of numbers) before doing fuzzy k-means clustering. Yang & Ko (1996) 
proposed a class of fuzzy k-number clustering procedures for clustering fuzzy 
data. These procedures have been used to handle certain special types of LR-type 
fuzzy numbers and also for fuzzy regression analysis (Yang & Ko, 1997). 
Successively, Yang & Liu (1999) extended the previous work to high-dimensional 
fuzzy vectors. A fuzzy k-means clustering model for symbolic data has been 
proposed by El-Sonbaty & Ismail (1998a). They computed the distance between 
the objects from summation of the dissimilarity due to the position, span and 
content of every attribute. Furthermore, the authors modified the membership and 
cluster center update equations of the fuzzy k-means algorithm to incorporate this 
dissimilarity measure. Notice that, these authors also suggested an on-line 
agglomerative hierarchical technique (the single linkage method) for clustering 
both symbolic and numerical data (El-Sonbaty & Ismail, 1998b). Chavent (2000) 
proposed a hierarchical divisive clustering method for symbolic data based on a 
generalized within-cluster inertia criterion. Chavent & Lechevallier (2002) also 
suggested a k-means algorithm for interval valued data. In particular, they 
proposed a dynamic cluster algorithm for interval valued data where the prototype 
is defined by the optimization of a criterion based on the Hausdorff distance. 
Gordon (2000) suggested an iterative relocation algorithm for partitioning 
symbolic data into classes so as to minimize the sum of the description potentials 
of the classes. Auephanwiriyakul & Keller (2002) presented in their work a 
linguistic version of the fuzzy k-means method suggested by Bezdek (1981). The 
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suggested algorithm is based on the extension principle and the 
decomposition theorem. Coppi & D�Urso (2002, 2003) proposed, in a three-way 
framework, different fuzzy k-means clustering models for fuzzy time trajectories 
that are a particular geometrical representation of the fuzzy data time array. Mali 
& Mitra (2003) suggested clustering of symbolic data, using different validity 
indices, for determining the optimal number of meaningful clusters. The novelty 
of the proposed method lies in transforming the different clustering validity 
indices, like Normalized Modified Hubert�s statistic, Davies-Bouldin index and 
Dunn�s index, from the numerical domain to the symbolic framework. Masson & 
Den�ux (2004) suggested a procedure that generalizes a clustering algorithm 
based on the belief functions theory introduced by Den�ux & Masson (2002) for 
crisp (non fuzzy) relational data. 
Yang et al. (2004) proposed a fuzzy clustering algorithms for mixed features of 
symbolic and fuzzy data, by modifying Gowda-Diday�s dissimilarity measure for 
symbolic data (Gowda & Diday, 1991, 1992) and also changing the parametric 
approach for fuzzy data suggested by Hathaway et al. (1996). de Souza & de 
Carvalho (2004) introduced adaptive and non-adaptive clustering methods for 
interval valued data based on city-block distances. They suggested two dynamic 
clustering methods for partitioning a set of symbolic objects where each object is 
represented by a vector of intervals. The first method utilizes a suitable extension 
of the city-block distance which compares a pair of vector of intervals. The latter 
method uses two adaptive versions of this extended city-block distance for interval 
valued data. In the first version, the adaptive distance has only a single 
component, whereas it has two components in the second version. In both 
methods, the prototype of each cluster is also represented by a vector of intervals 
whose bounds, for each interval, are the median of the set of lower bounds and the 
median of the set of upper bounds of the intervals of the objects belonging to the 
cluster (de Souza & de Carvalho, 2004). Guru et al. (2004) suggested a novel 
similarity measure for estimating the degree of similarity between two patterns, 
described by interval type data. In particular, this measure computes the degree of 
similarity between two patterns and approximated the calculated similarity value 
by a multi-valued type data. Then, based on this similarity, the authors modified 
the agglomerative method by proposing the concept of mutual similarity value for 
clustering symbolic pattern. De Carvalho et al. (2004)  proposed a dynamic 
clustering technique for interval valued data based on L2 distance. 
Analogously to non complex datasets, in many real applications, the complex data, 
i.e. interval valued data, are bound to have noise and outliers. However, in the 
extensive robust literature (see Section 3), we have not found clustering models 
for interval valued data that take into account the presence of possible anomalous 
interval valued data (�noise interval valued data� or �outlier interval valued data�), 
i.e. interval valued data with anomalous position (location) and/or anomalous 
shape in the observational space. 
In this paper, by considering the fuzzy approach, we suggest a robust k-means 
clustering model for classifying interval valued data. In particular, in Section 2, 
we introduce briefly the concept of interval valued data and consider a suitable 
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distance measure between interval valued data. In Section 3, we propose a 
new robust fuzzy clustering model for interval valued data and, successively, in 
Sections 4 and 5, we show simulative and applicative examples. 

2 Distance for interval valued data 
In this section we introduce a suitable distance measure between observation units 
characterized by p intervals. Let us indicate the generic interval valued datum 
pertaining to the i-th observation unit with respect to the j-th interval valued 
variable as the couple (cij,rij), where cij denotes the center and rij the radius. The 
lower and upper bounds of the interval are then obtained as cij-rij and cij+rij, 
respectively. If we deal with p standard numerical variables, each observation unit 
is represented as a point in the reference space pℜ . Instead, in case of interval 
valued data, each observation unit is represented as a hyperrectangle (in pℜ ) 
having p2  vertices (a rectangle with p2 =4 vertices if p=2). 
Several authors propose suitable distances for interval valued data (and, in 
general, for symbolic data). See, for instance, Gowda & Diday (1991,1992), de 
Carvalho (1994), Ichino & Yaguchi (1994), Gowda & Ravi (1995a, b), de 
Carvalho & de Souza (1998) and Chavent & Lechevallier (2002). In this paper, we 
adopt the distance proposed by D�Urso & Giordani (2004). In order to compare 
two observation units characterized by p interval valued variables, we compare all 
the vertices of the hyperrectangles pertaining to the observation units involved. 
We then have: 
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where ic  and ir  are, respectively, the vectors of the centers and radii of order p 
pertaining to the i-th observation unit. The vectors ic  and ir  are, respectively, the 
i-th row of C (the centers matrix of order n×p, where n denotes the number of 
observatio units) and R (the radii matrix of order n×p). In (1), the symbol ∗  is the 
Hadamard product, that is the elementwise product of two matrices (vectors) of 
the same order. Moreover, the vectors, sh , ps 2,,1 K= , have elements equal to 1 
and �1 and their role is to consider every vertex of the hyperrectangles associated 
to the observation units. See, for further details, D�Urso & Giordani (2004). It can 
be shown that the distance in (1) can be simplified as 
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It is fruitful to remark that the distance measure in (2) is the same distance used in 
de Carvalho et al. (2004), which is a special case of the one in de Carvalho & de 
Souza (1998). The robust fuzzy k-means model introduced in the next section 
aims at clustering observation units described by interval valued variables 
considering a suitable loss function, which involves the distance in (2). 

3 Robust fuzzy clustering for interval valued 
data set with outliers 

In the fuzzy clustering of non interval valued data, the study on the treatment of 
anomalous data (outlier or noise data) has been widely analyzed (see, for instance, 
Beni & Liu, 1994; Davè, 1991; Davè & Fu, 1994; Davè & Krishnapuram, 1997; 
Davè & Sen, 2002; Frigui & Krishnapuram, 1999; Keller, 2000; Kim et al., 1996; 
Krishnapuram & Keller, 1993, 1996; Ohashi, 1984). In particular, in order to 
reduce the effect of outliers in the fuzzy clustering, we can consider the following 
approaches (D�Urso, 2005): metric approach (the clustering models belonging to 
this approach neutralize the disruptive effects of outliers by incorporating, in the 
objective functions of the clustering models, metrics with robust properties 
(Kersten, 1999; Hathaway et al., 2000; Leşki, 2003)); possibilistic approach (for 
avoiding the drawback of outliers, the clustering model belonging to this approach 
considers outliers with small membership degrees to all groups of data 
(Krishnapuram & Keller, 1993, 1996)); noise approach (the models belonging to 
this approach assign outliers to a special cluster of data (the noise cluster) and 
reduce the influence of this class on the whole partition (e.g., Davè, 1991; Davè & 
Krishnapuram, 1997; Davè & Sen, 2002)); semi-fuzzy approach (Selim & Ismail 
(1984) suggest an approach to avoid the inconvenience of outliers in the clustering 
process, to let a datum belong to a maximum number of clusters, to set the 
membership degrees to zero if a predefined maximal distance is exceeded, or to 
define a minimum threshold for the membership degrees); influence weighting 
approach (in the clustering model suggested by Keller (2000) weights for each 
datum are adapted during the clustering in order to detect whether single data 
points can be seen as outliers. Also the dynamic fuzzy clustering models with 
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influence weighting system, proposed by D�Urso (2005) for classifying time 
trajectories in a three-way framework, belong to this approach). 
 
2.1 The model 
In this section, following the noise approach, we propose a robust fuzzy k-means 
clustering model for interval valued data. Our model represents an extension of 
Davè�s procedure (1991) -which uses a criterion similar to Ohashi�s (1984)- for 
interval valued data set. 
Following the ideas of Ohashi and Davè, by means of the suggested robust fuzzy 
k-means clustering model for interval valued data, we introduce a special cluster, 
the noise cluster, whose role is to localize the noise and place it in a single 
auxiliary class. By assigning patterns to the noise class, we declare them to be 
outliers in the interval valued data set. 
Taking into account (2), the suggested robust fuzzy clustering model can be 
formalized in the following way: 
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where { }kqIiu iq ,,1;,,1: KK ===U  is the membership degrees matrix 
whose generic element iqu ( ≥ 0) indicates the membership degree of the i-th 

object to the q-th cluster; { }kqq ,,1: K== cC  is the center-prototype matrix 

with generic row qc (the q-th center prototype); { }kqq ,,1: K== rR =radius-

prototype matrix with generic row qr  (the q-th radius prototype); δ2>0 is a 
suitable scale parameter to be chosen in advance. Such a parameter plays the role 
to increase (for high values of δ) or to decrease (for low values of δ) the emphasis 
of the �noise component� of the minimization function in (3). 
Notice that, we end up with k+1 clusters, with the extra cluster serving as the noise 
cluster. The difference in the second term of the objective function 

),,;,,( kJm RCRCU  expresses the degree membership of each pattern to the noise 
cluster and the sum over the first k is lower than or equal to 1. In particular, let the 
membership degrees ∗ iu  of the i-th object to the noise cluster be defined as 

∑
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  1 . Here, k is the number of good clusters and qiu   denotes the 

membership degree of the i-th observation to the k-th fuzzy cluster. Since 
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  1  is used to define the membership ∗ iu  to the noise cluster, the 
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usual constraint of the fuzzy k-means clustering model ( 1
1

 =∑
=

k

q
qiu ) is not 

required. Thus, the membership constraint for the good clusters is effectively 

relaxed to 1
1

 ≤∑
=

k

q
qiu . This allows noise data to have arbitrarily small 

membership values in good clusters. 
The objective function ),,;,,( kJm RCRCU  can be optimized (minimized) with 
respect to the center-prototypes, radius-prototypes and membership degrees in a 
similar manner to the fuzzy k-means clustering model proposed by Dunn (1974) 
and Bezdek (1974, 1981) and then to the noise clustering model suggested by 
Davè (1991). In particular, the membership degrees are: 
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The center-prototypes and the radius-prototypes are, respectively: 
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For the sake of completeness, notice that, analogously to the non interval case, the 
selection of δ is a complex issue. After several simulation studies, we observed 
that, in the interval case, the following value can be chosen : 
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The suggested model is introduced to make the fuzzy k-means clustering model 
less sensitive to noise and outlier interval valued data  by relaxing the constraint 
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on the membership degrees so that the sum of membership degrees of a noise 
object to all the good classes is not forced to be equal to 1; for this reason it 
represents a robustified version of the fuzzy k-means model for interval valued 
data and can be easily utilized instead of the fuzzy k-means clustering model. 
 

4 Simulative examples 
We now propose two applications of our robust fuzzy k-means model on 
simulated data in order to show how the model is able to detect anomalous interval 
valued data. The two simulated data sets are displayed in Figures 1 and 2. In both 
cases, n=12 observations are described by p=2 intervals. Two clusters can be 
easily distinguished. Each cluster is formed by five observations. In particular, the 
first five observation units pertain to one cluster and the latter five to the other 
cluster. For their features, two observations (n. 6 and n.7) are anomalous. In the 
first data set, as one can see from Figure 1, their locations are quite far from both 
clusters, whereas their shapes are consistent to those of the remaining observation 
units. In the second data set (given in Figure 2), the shapes corresponding to 
observation units n.6 and n.7 are bigger than those of the other rectangles, 
whereas, in this case, the positions of rectangles n.6 and n.7 are not anomalous. In 
particular, their locations are consistent to observation units n.1-n.5 for 
observation unit n.6 and to n.8-n.12 for observation unit n.7. 
 
Figure 1: Simulated data set n.1 



 10

-10 -5 0 5 10

-10

-5

0

5

10

n.1 

n.1 n.2 
n.3 

n.4 n.5 

n.6 

n.7 

n.8 n.9 
n.10 

n.11 n.12 

Figure 2: Simulated data set n.2 

  
By setting m=2 and k=2, we get the optimal membership degree matrices given in 
Table 1. 
 
Table 1: Membership degree matrices using the robust fuzzy k-means model 
 

Simulated Data Set n.1  Simulated Data Set n.2 
Obs.  Cluster 1 Cluster 2 Noise Cl.  Obs. Cluster 1 Cluster 2 Noise Cl. 
n.1 0.96  0.01 0.03  n.1 0.96 0.01 0.03 
n.2 0.95 0.01 0.04  n.2 0.96 0.01 0.03 
n.3 1.00 0.00 0.00  n.3 1.00 0.00 0.00 
n.4 0.95 0.01 0.04  n.4 0.96 0.01 0.03 
n.5 0.94 0.01 0.05  n.5 0.96 0.01 0.03 
n.6 0.19 0.19 0.62  n.6 0.53 0.08 0.39 
n.7 0.19 0.19 0.62  n.7 0.08 0.53 0.39 
n.8 0.01 0.96 0.03  n.8 0.01 0.96 0.03 
n.9 0.01 0.95 0.04  n.9 0.01 0.96 0.03 

n.10 0.00 1.00 0.00  n.10 0.00 1.00 0.00 
n.11 0.01 0.95 0.04  n.11 0.01 0.96 0.03 
n.12 0.01 0.94 0.05  n.12 0.01 0.96 0.03 
 
As one may expect, for both data sets, the model correctly detects the membership 
of the observation units to the clusters. In fact, the first five observations are 
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assigned to the first cluster and the latter five to the second cluster. With 
regard to the first data set, we can observe that observation units n.6 and n.7 
slightly belong to both clusters (membership degree equal to 0.19). Therefore, the 
robust approach to the clustering problem emphasizes that these two observations 
�pertain� to what we may call the �noise cluster� (with membership degree equal to 
0.62). On the contrary, in the second data set, we can see that observation unit n.6 
is partially near to Cluster 1 and observation unit n.7 to Cluster 2. Thus, from 
Table 1, we can see that observation n.6 is partially assigned to the first cluster 
(0.53), but the observation also belongs to the �noise cluster�, even if to a lesser 
extent (0.39). The same comment holds with respect to observation unit n.7 and 
the second cluster. 

5 Application 
In this section, we provide the results of our robust fuzzy k-means model for 
interval valued data applied to the well-known �Fats and Oils� data set (Ichino & 
Yabuuchi, 1994). The available data refer to n=8 oils described by p=4 interval 
valued variables. For the sake of completeness, we notice that there is also a 
qualitative variable, which is not considered here. Among the eight fats and oils, 
six of them are vegetal, whereas two of them (Beef Tallow and Hog Fat) are 
animal. Among the vegetal oils, it is interesting to notice that two oils are used for 
paint (Linseed Oil and Perilla Oil), two for foods (Olive Oil and Sesame Oil) and 
two for cosmetics (Camellia Oil and Cottonseed Oil). It is important to remark that 
one of the vegetal oils (Linseed Oil) is characterized by anomalous features 
(especially for the Saponification). We thus expect that our model assigns the 
Linseed Oil to both the vegetal cluster and to the �noise cluster�. Therefore, we 
decide to apply our model considering k=2 clusters. We also set m=2. Before 
performing the model, we preprocess the data by standardizing the centers using 
the mean and the standard deviation of the original centers and by dividing the 
radii by the standard deviation of the centers. This way of preprocessing the data 
helps us to eliminate unwanted differences among the variables, without losing 
relevant information concerning the width of the intervals.  
The membership degree matrix and the centroids (by applying the inverse 
preprocessing procedure) are given in Tables 2 and 3. 
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Table 2: Membership degree matrix using the robust fuzzy k-means model 
Fats and Oils Cluster 1 Cluster 2 Noise Cluster 
Linseed Oil 0.06 0.11 0.83 
Perilla Oil 0.08 0.38 0.54 
Cottonseed Oil 0.01 0.97 0.02 
Sesame Oil 0.01 0.97 0.02 
Camellia Oil 0.05 0.75 0.20 
Olive Oil 0.04 0.85 0.11 
Beef Tallow 0.95 0.01 0.04 
Hog Fat 0.96 0.01 0.03 
 
Table 3: Centroids matrix using the robust fuzzy k-means model 
Centroids Specific Gravity Freezing Point Iodine Value Saponification 
Cluster 1 (0.919,0.002) (-5.07,2.19) (102.46,5.45) (191.49,3.77) 
Cluster 2 (0.864,0.004) (30.17,4.49) (55.38,8.04) (195.17,5.31) 
 
The animal fats are assigned to the first cluster with membership degrees equal to 
0.95 (Beef Tallow) and 0.96 (Hog Fat). Instead, the vegetal oils pertain to the 
second cluster. In particular, Cottonseed Oil, Sesame Oil and Olive Oil strongly 
belong to such a cluster. To a lesser extent, the same comment holds for Camelia 
Oil (with membership degrees equal to 0.75). Thus, as their membership degrees 
are rather high, we can conclude that the oils used for foods and cosmetics have 
almost similar features. Instead, two vegetal oils (Perilla Oil and, especially, 
Linseed Oil) are assigned to the �noise cluster�. However, Perilla Oil partially 
pertains to the second cluster (with membership degree equal to 0.38). By 
comparing the centroids in Table 3 and the original features of Camellia, we can 
see similar scores with regard to the Freezing Point and the Saponification Value, 
whereas the Specific Gravity and the Iodine Value are rather different. The 
features of Linseed Oil are very different from those, which characterize the two 
obtained clusters. In fact, all the centers of the four interval valued features are 
sensibly far from those of the centroids given in Table 3. Moreover, a peculiarity 
of the Linseed Oil is the anomalous width of the Saponification value: the radius is 
39, whereas the radii of the centroids for Saponification are 3.77 (for Cluster 1) 
and 5.31 (for Cluster 2). 
Finally, by observing Table 3, it is interesting to observe that the interval valued 
centroid pertaining to Cluster 1 is characterized by smaller radii with respect to 
those of the centroid of the second cluster. The centers of the first centroid are 
higher than those of the second centroid with regard to the Specific Gravity and 
the Iodine Value. The opposite comment holds for the Freezing Point and the 
Saponification. 
The obtained clusters are compared to those resulting from the application of the 
classical fuzzy k-means model for interval valued data, as proposed by D�Urso & 
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Giordani (2005b) 1. By setting m=2 and adopting the same preprocessing 
procedure, we get the membership degree matrices for k=2 and k=3 given in Table 
4.  
 
Table 4: Membership degree matrix using the classical fuzzy k-means model 

k=2 clusters  k=3 clusters Fats and Oils Cluster 1 Cluster 2  Cluster 1 Cluster 2 Cluster 3 
Linseed Oil 0.99 0.01  1.00 0.00 0.00 
Perilla Oil 0.27 0.73  0.13 0.13 0.73 
Cottonseed Oil 0.02 0.98  0.00 0.01 0.99 
Sesame Oil 0.05 0.95  0.00 0.00 1.00 
Camellia Oil 0.09 0.91  0.03 0.07 0.90 
Olive Oil 0.01 0.99  0.02 0.07 0.91 
Beef Tallow 0.14 0.86  0.00 0.99 0.01 
Hog Fat 0.13 0.87  0.00 0.99 0.01 

 
In the case k=2, we obtain that only the Linseed oil belongs to the first cluster 
(with membership degree equal to 0.99) and the remaining fats and oils belong to 
the latter cluster (with membership degrees ranging from 0.73 for the Perilla Oil to 
0.99 for the Olive Oil). Thus, in this case, the fat and the oil cannot be 
distinguished. In case of k=3 clusters, we still find that one cluster has only one 
element (still the Linseed Oil with membership degree equal to 1.00), whereas the 
remaining two clusters well distinguish the fats and the oils. The Perilla Oil 
pertains to the cluster of oils with membership degree equal to 0.73. Therefore, the 
use of the classical fuzzy k-means model for interval valued data seems to be 
inappropriate in the sense that the Perilla Oil and the Linseed Oil are characterized 
by anomalous features and should not pertain to any of the clusters. In particular, 
it is strongly inappropriate that Linseed Oil is exactly assigned to one cluster. 
Moreover, only when k=3, the classical fuzzy k-means model distinguishes the 
animal fats and the vegetal oils. 

6 Conclusion 
In this paper, we have suggested a robust version of the fuzzy k-means clustering 
model for classifying objects with respect to a set of interval valued variables. In 

                                                           
1 D�Urso & Giordani (2005b) propose a fuzzy k-means clustering model for symmetric fuzzy data by 
introducing a suitable dissimilarity measure for fuzzy data. The dissimilarity measure involved 
considers the sum of the distance for the centers and the distance for the spreads (the information about 
the width of a fuzzy datum). These two distance components are differently weighted by means of two 
weights constructed in such a way that the weight for the centers distance is equal or higher than that 
for the spreads distance. Such a dissimilarity measure can be also adapted to interval valued data by 
imposing that the weight for the centers distance is equal to the one for the spreads (radii) distance 
since the membership function is uniform. 
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case of interval valued data, the concept of outliers is related to the values of the 
centers, the radii or both.  
We have mathematically formalized the model. Moreover, some illustrative 
examples, based on synthetic and real data, are considered to show how the 
suggested model behaves. The clustering model is constructed in such a way that 
anomalous observation units are assigned to the so-called �noise cluster�.  
On the basis of the good results of the application of our model to synthetic and 
real data, we indicate some possible future perspectives of research in the robust 
fuzzy clustering framework for interval valued data. 
1. Simulation studies for analyzing the computational performances of our 
clustering model. 
2. Cluster-validity criteria for selecting suitably m and k in the suggested robust 
fuzzy clustering model. 
3. Interval versions of the fuzzy clustering model belonging to other robust 
approaches (metric, possibilistic, semi-fuzzy and influence weighting approach). 
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