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Abstract

Given a graph G with a label (color) assigned to each edge (not necessarily prop-
erly) we look for an hamiltonian cycle of G with the minimum number of different
colors. The problem has several applications in telecommunication networks, elec-
tric networks, multimodal transportation networks, among others, where one aims
to ensure connectivity or other properties by means of limited number of different
connections. We analyze the complexity of the problem on special graph classes and
propose, for the general case, heuristic resolution algorithms. Performances of the
algorithms are experimentally evaluated on a set of instances and compared with
the exact solution value provided by a solver.
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1 Introduction

The minimum hamiltonian problem may be called one of the most important
combinatorial optimization problem, with application in many real world situ-
ations such as routing and ordering problems. In this paper we study a variant
of the hamiltonian cycle problem, namely, the Minimum Labelling Hamilto-
nian Cycle problem (MLHC). Given a graph G with a label (color) assigned to
each edge (not necessarily properly) we look for an hamiltonian cycle of G with

Email addresses: raffaele@unisa.it (R.Cerulli),
paolo.dellolmo@uniroma1.it (P.Dell’Olmo), mgentili@unisa.it (M.Gentili),
andrea.raiconi@uniroma1.it (A.Raiconi).

Preprint submitted to CTW 2006 27 February 2006



the minimum number of different colors. The problem belongs to a recently
studied class of problems defined on colored graphs having several applications
in telecommunication networks, electric networks, multimodal transportation
networks, among others, where one aims to ensure connectivity or other prop-
erties by means of a limited number of different connections. In particular,
problems belonging to this class already addressed in literature include the
Minimum Labelling Spanning Tree Problem (MLST) [2]-[5]-[7], the Minimum
Labelling Steiner Problem [4]-[6], the Minimum Labelling Generalized Forest
[3] and the Minimum Labelling Path Problem [9].

The sequel of the paper is organized as follows. Section 2 resumes the needed
notations and analyzes the complexity of the problem on general graph and
on special graph classes. In section 3 we propose two heuristic approaches. In
particular we present a fast heuristic algorithm, ColorHAM, and a tabu search
approach that massively uses ColorHAM either to find the initial solution and
to define neighborhoods. In the last part of the section some experimental re-
sults are presented. Conclusions and further research are discussed in section
4.

2 Problem description

In this section we formally describe the problem and study its complexity both
on general graphs and on special graph classes.

Notation
Given an undirected graph G = (V, E) with V being the set of nodes and
E denoting the set of edges, let ce be the color (label) associated with edge
e ∈ E and L = {c1, c2, . . . , cl} be the set of all the colors. We denote by
C(S) =

⋃
e∈S ce the set of colors assigned with edges in S ⊆ E. Any hamilto-

nian cycle H of G has associated the set of its colors C(H). We look for an
hamiltonian cycle of G such that the set of its colors C(H) has minimum size.

Looking for an hamiltonian cycle on general graph is an NP − complete prob-
lem [8], therefore looking for an hamiltonian cycle with the minimum number
of colors on general graphs is a difficult problem too. It is, then, of interest the
analysis of the complexity of the problem on graphs where the existence of an
hamiltonian cycle is known in advance (i.e., hamiltonian graphs). Hence, in
the sequel of this section, for sake of completeness, we give a formal proof of
the complexity of the problem on the class of complete graphs (Theorem 1).

Theorem 1 The minimum labelling hamiltonian cycle problem on complete
graphs is NP-complete
Proof. The problem belongs to the NP class. Indeed, given an hamiltonian
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cycle of G, it is possible to verify in polynomial time whether it contains less
than k colors.
We show the problem is NP-complete on general graphs by reduction from the
hamiltonian cycle problem. That is, let G = (V, E) be a general instance of the
hamiltonian problem, and consider the associated complete graph G′ = (V,E ′)
where with each edge e = (u, v) ∈ E ′ is associated the color c(e) = 0 if e ∈ E
and c(e) = uv otherwise.
Since G′ is complete any permutation of its vertices is an hamiltonian cycle. It
is simple to show that G admits an hamiltonian cycle H iff the corresponding
set C(H) on G′ has size equal to one, that is iff G′ admits a monochromatic
hamiltonian cycle.

3 The Proposed Heuristic Approaches

3.1 ColorHAM heuristic

The ColorHam heuristic is based on a former heuristic for Hamiltonian Cy-
cles, namely the HAM heuristic proposed by Bollobas et al. [1]. The main
idea of such an algorithm consists in extending a partial actual path P =
{u1, u2, . . . , uk} from one of its extreme node (extension from the extreme
operation) until either an hamiltonian cycle is found or not. If it is not possible
to extend P from its extreme nodes and there exists the arc (u1, uk) connect-
ing them, then it is possible to select one of the internal node of the path, say
x, as a new extreme, by deleting from P one of the arcs connecting x with
one of its neighbors in P and inserting (u1, uk) (cycle extension operation).
If it is not possible to apply the cycle extension operation, for each neighbor
x ∈ P of u1 and uk the algorithm performs a rotational transformation,
an operation that builds a new path containing the same set of vertices but
with different extreme nodes. More in detail, let (u1, uj), 1 < j < k, be an arc
between the extreme node u1 of P and one of its internal node, i.e. (u1, uj)
is the rotating arc. The new path P ′ is built inserting the rotating arc and
changing the order of the nodes between u1 and uj, that is, the new path is
P ′ = {uj−1, uj−2, . . . , u2, u1, uj, uj+1, . . . , uk}
The resulting new paths are stored in a list, and once all the neighbors of the
first path have been explored without resulting in an hamiltonian cycle then
the research starts again from the paths in the list.

During the extension operations, in case of multiple choices the HAM heuris-
tic selects one arc at random among all the possible ones. Our ColorHAM
heuristic adopts two greedy selection criterions: the used color criterion and
the max coverage criterion. Let P be a path in the graph, C(P ) be the set of
colors associated with the arcs in P , and, u ∈ P be a node of the path from
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which one of the three extension operations has to be performed:
Used Color Criterion: chooses the node i /∈ P such that the label l of the
arc (u, i) to be inserted into P already belongs to C(P ).
Max Coverage Criterion: chooses the node i /∈ P such that the label l of
the arc (u, i) that has to be inserted into P covers the greatest number of
nodes not already in the path.

Let us now describe the ColorHAM heuristic by looking at how these two
criteria work in each of the above mentioned extension operations.
Extension from the extreme nodes
Let us suppose that al least one among the extreme node u1 and uk of the
actual partial path has a neighbor i /∈ P . ColorHAM chooses node satisfying
the used color criterion, if such a node does not exist then the selected node
would be the one satisfying the max coverage criterion. Ties are broken ran-
domly.
Cycle Extension
If it is not possible to extend the actual partial path P from its extreme nodes
then the cycle extension operation is carried out. Differently from the HAM
heuristic that chooses randomly the internal node u, ColorHAM chooses the
node satisfying the used color criterion, if such a node does not exist then the
selected node would be the one satisfying the max coverage criterion. Ties are
broken randomly.
Extended Rotational Transformation
When it is not possible to apply none of the two above mentioned extension
operations, then HAM heuristic starts analyzing all the paths that one can
create by performing a rotational transformation on P . In this case HAM and
ColorHam operate the same. We however considered SemiHam, a modifica-
tion proposed by [10] to limit the number of paths stored in the list.
We want just to point out that the rotational transformation operation as well
as the cycle extension operation exchange internal arcs with external ones.
Such an exchange may modify the value of the objective function. However,
from an experimental point of view such modifications, when they occur, are
negligible.

3.2 Tabu Search

In this section we describe a tabu search approach we developed to solve the
problem. We decided to build up the neighbors of a given feasible solution H
by applying our ColorHAM heuristic on a perturbation of the graph G. More
in detail, let H = {u1, u2, . . . , un, u1} be any current feasible solution (i.e. an
hamiltonian cycle of G), and let ei = (ui, ui+1), i = 1, . . . , n, be the collection
of its arcs. A neighbor Hk ∈ N(H) of H is an hamiltonian cycle produced
by our ColorHAM heuristic on the graph Gk obtained from G after deleting
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the arc ek = (uk, uk+1). Each neighborhood of a given solution contains, then,
at most n elements and can be explored by, for example, a steepest descent
technique.
The tabu list memorizes moves corresponding to feasible solutions in order to
avoid cycling on local optima. Let us suppose we move from the hamiltonian
cycle H = {u1, u2, . . . , un, u1} to one of its neighbor H ′ = {u′1, u′2, . . . , u′n, u′1}.
The corresponding move should ideally store n possible pairs (ui, u

′
i) corre-

sponding to all the exchanges performed to move from H to H ′. Since memo-
rizing all the n couples could be heavy from a memory point of view, we fixed
a parameter h defining the number of pairs exchange to memorize. In our
implementation we set the length of the tabu list equal to 10 and h = 4. The
algorithm terminates when either a given neighborhood N(H) = ∅ or after a
given limit on the total number of iterations without any improvement.

3.3 Experimental Results

We evaluated experimentally our algorithms on a set of instances, compar-
ing the results with the exact solution value provided by the CPLEX solver
that solves a single-commodity flow formulation of the problem. We fixed a
threshold on the execution time of the solver equal to 3 hours and a limit of
100 iterations since the last improvement in the solution provided by the tabu
search technique.
The tabu search approach shows generally good performances, but should be
improved when the number of colors is low compared to the dimension of the
graph and a large amount of local minima can occur.
Test instances are available at:
www.dmi.unisa.it/people/cerulli/www/GroupPages/SoftwareGroup.htm.
Our test instances are divided into two groups of scenarios based on different
parameter settings: n: number of nodes of the graph, l: total number of colors
assigned to the graph, m: total number of edges of the graph computed by
m = d(n−1)n

2
where d is a measure of density of the graph. Parameter settings

for scenarios in Group 1 are: l = n = 20, 30, 40, 50 and d = 0.2, 0.5, 0.8, 1,
for a total of 16 different scenarios. Instances in Group 2 are characterized
by n = 50, 100, l = 0.25 ∗ n, 0.5 ∗ n, n, 1.25 ∗ n and d = 0.2, 0.5, 0.8, 1, for
a total of 32 different scenarios. The following tables summarize some of the
results we obtained. For each scenario we generated ten different instances;
each value given in these tables is the mean of the values obtained on the in-
stances of that scenario. Time values are approximated in seconds; we used a
* symbol to mark CPLEX time values where the solver did not find the exact
solution for every instance of the scenario because the time limit was exceeded.
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n = 20, l = 20

d ColorHam Sol Tabu Search Sol Tabu Search Time Cplex Sol Cplex Time

0.2 10 10 1 10 0

0.5 9.5 7.2 0.9 5.5 5

0.8 6.5 4.9 0.1 3.6 24.4

1 5.3 4 0 3 32.1

n = 40, l = 40

d ColorHam Sol Tabu Search Sol Tabu Search Time Cplex Sol Cplex Time

0.2 21.4 17.4 23.6 13.6 32.2

0.5 14.3 10.6 14.3 6.4 806.3

0.8 10.4 7.4 10.8 4.1 2677.1

1 9 6.1 9.1 3.3 4610.9

n = 50, l = 50

d ColorHam Sol Tabu Search Sol Tabu Search Time Cplex Sol Cplex Time

0.2 29 22 69.5 18 33.5

0.5 21 15.8 80.5 7.8 2050.1

0.8 11.3 7.8 26.1 4.5* 7249.5

1 9.6 6.9 24.3 4.3* 10554.3

n = 50, l = 62

d ColorHam Sol Tabu Search Sol Tabu Search Time Cplex Sol Cplex Time

0.2 30 24.5 154.5 20.5 82.5

0.5 21.1 17.2 125.4 9.2 3395.2

0.8 12.4 8.9 31.9 6.3* 10800

1 10.3 7.3 24.5 5.4* 10800

4 Conclusions

In this paper we addressed a new problem namely the Minimum Labelling
Hamiltonian Cycle Problem, that is a variant of the well-known Hamiltonian
Cycle problem and has several applications in telecommunication networks,
electric networks, multimodal transportation networks, among others, where
one aims to ensure connectivity or other properties by means of limited num-
ber of different connections.
Starting from the analysis of the best heuristics existing in the literature we
define a local search heuristic (ColorHAM ) and a tabu search paradigm to
solve the problem. Performances of the algorithms are experimentally evalu-
ated on a set of instances and compared with the exact solution value provided
by a solver.
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Further research is focused in developing an exact approach to solve the prob-
lem and improving the performance of our tabu search algorithm.
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