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Abstract

The aim of the paper is to compare the performance of a class of nonparametric
imputation procedures in the simplified context of statistical matching. This class
includes both hot deck methods and two procedures based on estimating the re-
gression function between the variables of interest, namely the kNN estimator and
the local linear estimator. The regression function is assumed not necessarily linear.
Performance is measured by the matching noise given by the discrepancy between
the distribution generating genuine data and the distribution generating imputed
values.
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1 Introduction

Let (X, Z) be a bivariate random variable (r.v.) with density function f(x, z),
and let A, B be two independent samples of nA and nB i.i.d. records from
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(X,Z), respectively, where nA and nB are fixed in advance by design. The
first nA records have Z missing while the last nB records are complete. Hence,
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1 , . . . , xA
nA

)
(
xB, zB

)
=

(
(xB

1 , zB
1 ), . . . , (xB

nB
, zB

nB
)
)
,

(1)

are the observed values in A and B, respectively. This is the typical situation
in statistical matching where missingness is induced by design. Under this
framework, it can be easily proved that the missing data generation process
is missing completely at random, see [5].

The missing Z values in A are usually imputed by means of appropriate impu-
tation procedures. The most popular are those based on hot deck, i.e. missing
Z values are replaced by actually observed values chosen appropriately among
the nB complete records in B. Usually, donor values are selected according
to a distance between observed and incomplete records on X [1]. Two of the
most popular procedures are distance and random hot deck imputation. Hot
deck methods have been largely studied in the statistical literature, see [8] and
[9]. By far, distance hot deck is the most used. Generally speaking, hot deck
methods have attractive properties: (i) they are nonparametric, because they
do not need any explicit definition of a parametric data generation model; (ii)
they impute “live values”, i.e. actually observed values; (iii) they are able to
reproduce the marginal and conditional distributions of the variable to impute
quite well (at least for large samples).

As a matter of fact, hot deck methods are not the only nonparametric pro-
cedures that it is possible to use for imputing missing values. In this paper
we investigate the performance of some procedures based on the nonpara-
metric estimation of the joint distribution of observed and missing variables.
Such procedures are compared by means of their matching noise given by the
discrepancy between the distribution generating genuine data and the distri-
bution generating imputed data [14]. If these two distributions coincide, the
imputed data set can be analyzed as if it was a completely observed data set
generated by the distribution generating genuine data (the joint distribution
of (X, Z)). Otherwise estimators based on the complete synthetic data set
could be inappropriate for inferring properties of the model underlying data.
An example of study of the matching noise for a class of nonparametric im-
putation procedures based on kNN methods (including distance hot deck) is
in [12]. In that case, comparisons are performed when f(x, z) is a bivariate
normal density. The result was that mean kNN plus random residual method
(Section 2.3.1) performs better in reconstructing the marginal distribution of
Z. When the interest is in the conditional distribution of Z | X distance and
random hot deck seem to perform quite well.
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In this paper we consider several different nonparametric imputation tech-
niques: distance hot deck, random kNN and two stochastic imputation proce-
dures based on estimating the regression function of Z given X, namely the
kNN estimator and the local linear regression estimator. The matching noise
of such procedures is evaluated by means of appropriate simulations under dif-
ferent models for (X, Z), each characterized by different regression functions
of Z on X and homoschedasticity. In the sequel imputed data is denoted with
the r.v. (X, Z̃).

The paper is organized as follows. In Section 2 a class of nonparametric impu-
tation procedures both deterministic and stochastic are described. In Section
3 the matching noise is formally evaluated. Finally, in Section 4 a simulation
study is implemented.

2 Nonparametric imputation procedures

In order to appropriately impute missing data, the model that generates im-
putations should equal the data generating model: the distribution of (X, Z̃)
should coincide with the distribution of (X, Z). Either implicitly or explicitly,
the model that generates imputations is estimated from the observed data. In
the case of the data set (1), the model should be estimated from the donor
file B.

In the sequel a short description of widely used imputation methods is given.
Formally, for each a = 1, . . . , nA, let b(a) = (b1(a), . . . , bk(a)) be the labels of
the k ≥ 1 nearest neighbours of xA

a in B, such that

d(xA
a , xB

b1(a)) ≤ · · · ≤ d(xA
a , xB

bk(a)), d(xA
a , xB

bk(a)) ≤ d(xA
a , xB

b )

∀ b /∈ {b1(a), . . . , bk(a)}, where d(., .) is the Euclidean distance. Let xB
b(a) =

(xB
b1(a), x

B
b2(a), . . . , x

B
bk(a)) and zB

b(a) = (zB
b1(a), z

B
b2(a), . . . , z

B
bk(a)) the vectors of cor-

responding X and Z values, respectively.

2.1 kNN random hot deck

Once the k nearest neighbours of xA
a , xB

b(a), are obtained, one could impute

the missing zA
a by randomly choosing a label b̃(a) among bj(a), j = 1, . . . , k,

and in taking imputed values

z̃A
a = zB

b̃(a)
, a = 1, . . . , nA. (2)
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A generalized version of this approach is in [1]. A value is taken at random
assuming different probabilities of selection for the donor records: observations
close to xA

a have higher probabilities than those further away.

2.2 Distance hot deck

When k = 1, the imputation method described in Section 2.1 reduces to
distance hot deck. Imputed data are obtained as:

z̃A
a = zB

b1(a), a = 1, . . . , nA. (3)

In other words, each record in A is matched with the closest record in B.

2.3 Methods based on nonparametric regression function

Since [18], when X and Z are continuous a very important role has been
played by the regression function of Z on X. More precisely, a linear regression
function is assumed. A simple (and natural, as well) idea to impute missing
data consists in using a nonparametric estimator of the (not necessarily linear)
regression function of Z on X (see, for instance, [13]). Suppose that X and Z
are related through the relationship

Z = m(X) + ε (4)

where m(x) = E[Z |X = x] is the regression function of Z given X and
ε = Z −m(X) is the error term, such that E[ε |X = x] = 0 for every x. For
the sake of simplicity, in the sequel we will further assume that the errors are
homoschedastic, i.e. V [ε |X = x] = σ2 independent of x. A simple idea to
impute missing data zA in the sample A could consist of the following steps.

1. Estimate the regression function m(x) by the sample B. From now on, such
an estimator will be denoted by m̂B(x).

2. Let

ε̂B
b = zB

b − m̂B(xB
b ), b = 1, . . . , nB, (5)

be the corresponding residuals in B.
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3. Impute the missing zA
a s by

z̃A
a = m̂B(xA

a ) + ε̃B, a = 1, . . . , nA, (6)

where ε̃B is drawn at random among ε̂B
1 , . . . , ε̂B

nB
.

The rationale of steps 1-3 is simple: at first model (4) is estimated by the
complete sample B, and then used to impute the missing data zA

a s in A.
According to [2] this is a stochastic imputation method. Clearly, if estimated
residuals ε̃B are omitted in (6), so that

z̃A
a = m̂B(xA

a ), a = 1, . . . , nA, (7)

then the imputation method is deterministic. In the sequel, a short description
of two imputation procedures based on estimating the regression function m(x)
through the kNN estimator and the local linear regression estimator is given.

2.3.1 kNN methods

The kNN imputation method consists in estimating the nonparametric regres-
sion function m(x) by the kNN method. Formally, the regression function m(x)
is estimated by the average of Z corresponding to the k nearest neighbours of
x. When x = xA

a :

m̂B(xA
a ) =

1

k

k∑
j=1

zB
bj(a), a = 1, . . . , nA.

Deterministic imputation computed from the estimated nonparametric regres-
sion function is:

z̃A
a = m̂B(xA

a ), a = 1, . . . , nA. (8)

The corresponding stochastic imputation is obtained by

z̃A
a = m̂B(xA

a ) + ε̃B, a = 1, . . . , nA, (9)

where ε̃B is chosen at random from the residuals computed as in (5) on file B.
The key point in using the kNN estimator (8) is the choice of the parameter
k, that determines the amount of smoothing of zB

b s data. It plays a role sim-
ilar to the bandwidth for kernel smoothers. A software for imputing missing
data through the use of different methods based on the selection of k nearest
neighbours (including also the procedures in Sections 2.2 and 2.1) has been
recently developed [1].
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It can be shown ([14], [3]) that distance hot-deck described in Section 2.2 is
equivalent to impute missing data through the kNN method, with k = 1. Such
a procedure seems to be at first sight a deterministic technique, because resid-
uals estimated as in Equation (5) are null. As a matter of fact this method
imputes at the same time both the regression function and the residual. How-
ever, this does not mean that the matching noise is null. It can be proved (see
[12]) that the matching noise still affects this imputation approach for finite
nB, although it becomes negligible for large nB.

2.3.2 Local polynomial estimator

As an alternative to kNN estimator, the local polynomial estimators [6] rep-
resent a simple and useful class of estimators of the regression function m(x).
Suppose that m(x) possesses p + 1 derivatives, and denote by m(j)(x) its jth
derivative, j = 1, . . . , p + 1. The basic idea consists in approximating m(t)
locally by a polynomial of order p:

m(t)≈m(x) + m(1)(x)(t− x) + · · ·+ 1

p!
m(p)(x)(t− x)p

= β0 + β1(t− x) + · · ·+ βp(t− x)p. (10)

Model (10) may be considered as a “usual” polynomial model on a local scale,
with parameters β0, . . . , βp depending on x. They may be estimated by the
weighted least squares method, which consists in minimizing the quantity:

nB∑
b=1

ZB
b −

p∑
j=0

βj(X
B
b − x)j

2

Kh

(
XB

b − x
)

where K(·) is a non-negative weight function, Kh(t) = h−1K(t/h), and h (the
bandwidth) is a smoothing parameter determining the size of the neighbour-
hood of x used in estimating m(x).

Local polynomial estimators have been proved as particularly useful, and ef-
ficient as well. Their merits are thoroughly discussed in [6]. In particular,
when p = 0 the local polynomial estimator reduces to the Nadaraya-Watson
estimator, that may be written as:

m̂B
0 (x) =

∑nB
b=1 ZB

b Kh

(
XB

b − x
)

∑nB
b=1 Kh (XB

b − x)
(11)

When p = 1, the local polynomial estimator reduces to the local linear esti-
mator, that may be written in the form:
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m̂B
1 (x) =

SB
2 (x) TB

0 (x)− SB
1 (x) TB

1 (x)

SB
2 (x) SB

0 (x)− SB
1 (x)2

(12)

where

SB
j (x) =

nB∑
b=1

(x−XB
b )j Kh

(
XB

b − x
)

TB
j (x) =

nB∑
b=1

ZB
b (x−XB

b )j Kh

(
XB

b − x
)

as j = 0, 1, 2.

The local linear estimator (12), if compared to the Nadaraya-Watson estimator
(11), does have several advantages. First of all, it does not suffer of the so-called
“boundary effect” [6], consisting in being severely inefficient when x is close at
the extremes of its range. Secondly, since it is based on a first-order local fit,
it does not really need to assume that the variance V [ε |X = x] is independent
of x, because it is approximately the same in a local neighbourhood of x.

A crucial element, in determining the performance of the local polynomial
estimator, is the choice of the bandwidth h. This point will be discussed in
the simulation study of Section 4.

3 Evaluation of the matching noise for the imputation procedure
based on local polynomial regression estimator

One of the key issues in order to assess the accuracy of imputation procedures
is to study the discrepancy between the distribution that generates genuine
data (i.e. the distribution of (X, Z)) and the distribution that generates im-
puted data (i.e. the distribution of (X, Z̃)). For all the imputation procedures
described in Section 2, based on donors selected according to a distance with
the recipient xA

a , and from the independence of different observations, it turns
out that the distribution of (X, Z̃) is given by:

f
XA

a ,Z̃a
(x, z) =

∫
f

XA
a XB

b(a)
Z̃a

(x, t, z)dt = fX(x)
∫

fXB
b(a)

|XA
a
(t|x)fZ|XB

b(a)
dt

where t is a vector of dimension k ≥ 1. As a matter of fact, if X is categorical,
A and B observe all the categories of X, and distance hot deck is considered,
the matching noise is null. Generally speaking, a continuous X does not allow
the definition of an imputation procedure with a null matching noise. The
matching noise will depend on two elements:

• the distance between the recipient xA
a and the donors xB

b(a);
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• how Z̃ is defined as a function of the observed nearest records xB
b(a).

In [12] the matching noise that affects kNN method is determined. It is proved
that XB

b(a)|XA
a converges in distribution to k-dimensional vector whose ele-

ments are equal to xA
a . Hence, stochastic kNN (9), distance hot deck (3) and

selection of a random element from the k nearest neighbours (2) tend asymp-
totically to be matching noise free, while deterministic kNN (8) is unavoidably
biased. In the sequel, we will prove that a similar result holds for imputation
techniques based on local linear regression estimator.

Proposition 1 Assume that the model (4) holds, with (Zb, Xb), b = 1, . . . , nB

i.i.d. random variables. Assume further that m̂(·) tends in probability to m(·)
as nB goes to infinity, and that Fε(x) = Pr(ε ≤ x) is continuous. If

F̂nB
(x) =

1

nB

nB∑
b=1

I(ε̂b≤x) (13)

is the empirical distribution function (e.d.f.) based on the residuals ε̂bs, then

supx|F̂nB
(x)− Fε(x)| (14)

converges in probability to zero as nB goes to infinity.

Proof Let FnB
(x) be the empirical distribution function based on the errors

εbs:

FnB
(x) =

1

nB

nB∑
b=1

I(εb≤x). (15)

We first show that

|F̂nB
(x)− FnB

(x)| (16)

converges in probability to zero pointwise as nB goes to infinity. First of all,
it is not difficult to see that

E[|F̂nB
(x)− FnB

(x)|] = E

[
1

nB

∣∣∣∣ nB∑
b=1

(I(ε̂b≤x) − I(εb≤x))
∣∣∣∣
]

≤ 1

nB

nB∑
b=1

E|(I(ε̂b≤x) − I(εb≤x))|
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=
1

nB

nB∑
b=1

Pr(|(I(ε̂b≤x) − I(εb≤x))| = 1)

=
1

nB

nB∑
b=1

[Pr(ε̂b ≤ x, εb > x) + Pr(ε̂b > x, εb ≤ x)] (17)

where |(I(ε̂b≤x) − I(εb≤x))| = 1 if either (εb ≤ x, ε̂b > x) or (εb > x, ε̂b ≤ x), and
|(I(ε̂b≤x) − I(εb≤x))| = 0 otherwise. Next, we may write

Pr(ε̂b ≤ x, εb > x) = Pr(zb − m̂(xb) ≤ x, zb −m(xb) > x)

= Pr(zb ≤ m̂(xb) + x, zb > m(xb) + x)

= Pr(m(xb) + x < zb ≤ m̂(xb) + x)

= Exb
[Pr(m(xb) + x < zb ≤ m̂(xb) + x|xb)]

= Exb
[Pr(m(xb) + x < zb ≤ m̂(xb) + x, |m̂(xb)−m(xb)| < δ|xb)]

+Exb
[Pr(m(xb) + x < zb ≤ m̂(xb) + x, |m̂(xb)−m(xb)| ≥ δ|xb)]

≤Exb
[Pr(m(xb) + x < zb ≤ m̂(xb) + x, |m̂(xb)−m(xb)| < δ|xb)]

+Exb
[Pr(|m̂(xb)−m(xb)| ≥ δ|xb)] (18)

for every δ > 0. Since m̂(·) is a consistent estimator of m(·), the second
expected value in (18) goes to zero as nB goes to infinity. As far as the first
one is concerned, from the inequality

Exb
[Pr(m(xb) + x < zb ≤ m̂(xb) + x, |m̂(xb)−m(xb)| < δ|xb)] (19)

= Exb
[Pr(m(xb) + x < zb ≤ m̂(xb) + x, m(xb)− δ < m̂(xb) < m(xb) + δ|xb)]

≤Exb
[Pr(m(xb) + x < zb < m(xb) + x + δ|xb)]

= Pr(x < εb ≤ x + δ) < τ

and from the continuity of Fε(x), it is seen that for every τ > 0 there exists
nB0 “large enough” such that (19) is smaller than τ for any nB ≥ nB0 . The
same consideration holds for Pr(ε̂b > x, εb ≤ x) in (17). This clearly implies
that, for each fixed x, the quantity
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|F̂nB
(x)− FnB

(x)| (20)

converges in probability to zero as nB goes to infinity. From the Glivenko-
Cantelli theorem we know that

supx|FnB
(x)− Fε(x)| (21)

converges almost surely to zero as nB goes to infinity. Since Fε(x) is continuous,
this is enough to conclude that (14) holds. That is, from (20) and (21) it is
immediate to see that

supx|F̂nB
(x)− Fε(x)| (22)

converges in probability to zero as nB goes to infinity, i.e. the e.d.f. of residuals
tends to reproduce the d.f. of εbs. As a consequence of Proposition 1, it is now
easy to conclude that matching based on local linear regression estimator is
asymptotically “noise-free”.

Proposition 2 Under the same assumptions of Proposition 1

z̃A
a = m̂B(xA

a ) + ε̃B (23)

possesses, as nB goes to infinity, the same distribution as

zA
a = m(xA

a ) + ε (24)

4 A simulation study

In this section we perform a simulation experiment to evaluate the match-
ing noise produced by the nonparametric imputation techniques described in
Section 2. It is necessary to resort to simulation procedures because it is not
always possible to compute explicitly the matching noise associated to a given
imputation technique. The simulation study has been carried out by using the
software R ([15]).

In more detail, 500 i.i.d. records from a normal distribution X with mean
1 and variance 5 have been generated. Four regression functions, plotted in
Figure 1 and listed below in (25), have been used to model the relationship
between the predictor X and the response variable Z.
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m1(x) = 0.4
(

x+5.7
13.4

)
+ 1

m2(x) = 0.3 + 4
(

x+5.7
13.4

)
− 3

(
x+5.7
13.4

)2

m3(x) = 4
(

x+5.7
13.4

)
− 2 + 2exp

{
−16

[
4

(
x+5.7
13.4

)
− 2

]2
}

m4(x) = −132
(

x+5.7
13.4

)4
+ 258

(
x+5.7
13.4

)3
− 170

(
x+5.7
13.4

)2
+ 47

(
x+5.7
13.4

)
+ 1

(25)

The function m1(x) is linear in x, while the second and fourth functions
are quadratic and quartic functions respectively. The third function is bump
shaped. Normal random errors have been used for all test functions, ε ∼
N(0, σ2) for different values of σ2. More specifically, the values σ2 = (0.3)2, σ2 =
(0.5)2 have been used. We begin the simulation study setting σ2 = (0.3)2.

Let the recipient file A consist of these 500 observations, with Z dropped.
For each regression function mi(x) = E[Z |X = x] the simulation involves the
following steps:

(1) A donor sample B composed by nB i.i.d. records has been generated
exactly as A, except that the Z values are not dropped. Different values
of nB = 800-2000(200) have been used.

(2) The missing Zs have been imputed by the imputation techniques de-
scribed in Section 2.

(3) Steps 1 to 2 have been repeated 400 times.

In order to evaluate the closeness between the data generating model and the
imputation generating model, a divergence measure based on the Kolmogorov-
Smirnov distance (KS) has been used. At first, the matching noise for the
marginal distribution of Z has been evaluated. Formally speaking, for each
donor sample v (for v = 1, 2, . . . , 400), KS distance compares the empirical
distribution function (edf) of imputed values Z̃ in A (F̂

Z̃,v
(z)) with the edf of

true values (F̂Z,A(z)). A mean of such values over the 400 donor files is then
taken as a global divergence measure, namely:

KSZ =
1

400

400∑
v=1

KSZ(v) =
1

400

400∑
v=1

[
sup

−∞<z<∞
| F̂Z,A(z)− F̂

Z̃,v
(z) |

]
(26)

In Figure 2 we report the matching noise produced by distance hot deck, ran-
dom kNN, mean kNN and mean kNN plus random residual for each regression
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function. In accordance with the variance-bias trade off, k has to be defined
as a function of sample size nB such that k/nB → 0, as nB → ∞. The value
of k =

√
nB has been chosen, according to [17].

As Figure 2 shows, the mean kNN is the worst method. This imputation
technique underestimates variability, since the replacement of the expected
value of k nearest neighbors to each missing item implies that the synthetic
distribution of Z | X is concentrated on the expected value of Z | X. In fact,
the mean kNN plus random residual seems to perform better for all regression
functions. Figure 2 also suggests that the mean kNN plus random residual
works better when the population regression function is “complex”.

The differences between matching noises associated to mean kNN plus random
residual, distance hot deck and random kNN respectively have been checked by
performing the usual difference of means test. In Tables 1 and 2 we report the
test statistic (denoted by τ(mi)) for each regression function and for different
values of nB.

As a matter of fact, as nB increases the test statistic values decrease towards
the test acceptance region for all test functions. In particular, for donor file
sizes large enough (e.g. nB ≥ 1800) and for simple regression functions (lin-
ear, quadratic) the matching noise differences between random kNN and mean
kNN plus random residual are not significant. As a consequence, performance
of the imputation techniques depends on both data generating model com-
plexity and donor file size. However, for nB large enough the methods have a
similar behavior in reconstructing the marginal distribution of Z.

We now proceed to examine the performance of an alternative imputation
method based on the local linear regression estimator of mi(x) = E[Z |X = x]
as described in Section 2.3.2. More specifically, two versions of the method have
been implemented: (i) deterministic imputation (7); (ii) stochastic imputation
(6).

As shown in Section 2.3.2, the local linear regression estimator m̂(x) is ob-
tained by fitting local straight lines in a neighborhood of x, with weights given
by a kernel function K. In the simulation we have used a Gaussian kernel. An
important point is the bandwidth selection, whose magnitude influences the
amount of local smoothing. In the sequel we consider three selection rules of
the smoothing parameter:

• The “Rule of Thumb” (Rot) bandwidth selection;
• The “Generalized Cross Validation” (Gcv) bandwidth selection;
• The bandwidth selection rule (Plug) given by [16];

Rot is a crude bandwidth selector but requires little programming effort. Be-
sides it is so little time consuming that other methods are hard to compete
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with. Essentially, the Rot bandwidth selector estimates the unknown quan-
tities (σ2

i , m
′′
i ) appearing in the asymptotically optimal constant bandwidth

fitting a polynomial of order 4 to mi(x) [7].

Gcv is a simplification of the ordinary cross-validation bandwidth selection
rule having the advantage to be less computationally intensive, since it does
not require to fit the model n times, one for each delete-one data ([10]). In
the Gcv procedure the prediction error is estimated in a grid of points defined
as hj = Chj−1, j ≥ 1 with C = 0.1. We start from h = h0 = hmin and
we stop when h > hmax, where hmin = (max x − min x)/nB and hmax =
(max x−min x)/2.

Plug is an adaptation of a plug-in bandwidth selector, see [16]. The basic idea
is to estimate the unknown quantity (σ2

i , m
′′
i ) in the asymptotically optimal

constant bandwidth by partitioning the range of X into N blocks, and by fit-
ting a quartic polynomial in each block. The number N is chosen by Mallows’s
approach [11].

Let LRot, LGcv, LPlug be the deterministic imputation methods (7) based
on the local linear regression estimators coming from the bandwidth selectors
mentioned above. Figure 3 shows that the corresponding matching noises pos-
sess the same order of magnitude than the mean kNN procedure. All methods
are deterministic and do not improve the mean kNN plus random residual
performance. In order to recover a part of the data variability, their stochas-
tic version has been considered, where the residual is drawn at random from
the residuals distribution obtained through the implementation of the same
method on the donor file B. For instance, in the LRot plus random residual
the imputation value for the Z variable is given by z̃A

a = m̂B
i (xA

a ) + ε̃B, where
ε̃B is drawn at random from the residual ε̂B

b = zB
b − m̂B

i (xB
b ) computed on the

donor file through a local linear regression with the Rot bandwidth selector.
The results are reported in Figure 4.

For all test functions, the stochastic imputation techniques based on both
kNN estimator and local linear estimator seem to perform better than their
deterministic counterparts : adjusting the regressed values in order to account
for the residual variability reduces the matching noise. Such a behaviour is
more evident for complex regression functions (i.e. functions 3 and 4). The
differences between such imputation methods checked by performing the usual
difference of means test are not significant for nB ≥ 1200 and p-value = 0.01.
As a consequence, the preference will be given to the mean kNN plus random
residual since it is computationally easier and does not require any bandwidth
selection.

Figures (2), (3) and (4) evaluate the ability of the imputation methods to
reproduce the marginal distribution of Z in the synthetic data set. In order to
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get information on the closeness of the two distributions f
XZ̃

(x, z) (the distri-
bution generating the genuine data) and fXZ(x, z) (the distribution generating
imputed data), the KS distance has been computed between the conditional
distribution of Z | X = xA

a , a = 1, . . . , 500 (FZ|xA
a
(z)) and the conditional

empirical distribution F̂
Z̃|xA

a
(z). To get a synthetic measure, the average over

the nA = 500 values has been computed:

E[KSX
Z ] ≈ 1

500

500∑
a=1

KSZ(xA
a ) =

1

500

500∑
a=1

[
sup

−∞<z<∞
| FZ|xA

a
(z)− F̂

Z̃|xA
a
(z) |

]
(27)

In Figure 5 we report the discrepancy measure (27) for all the stochastic
nonparametric imputation techniques described in Section 2. For each test
function the results obtained are described below

• Test function m1(x): distance hot deck, random kNN, mean kNN plus ran-
dom residual and LRot plus random residual seem to perform better. The
methods give equivalent results since the corresponding E[KSX

Z ] are not
significantly different for nB ≥ 800 and p-value = 0.02.

• Test function m2(x): distance hot deck, LRot plus random residual and
LGcv plus random residual seem to be the best methods. The corresponding
E[KSX

Z ] are not significantly different for nB ≥ 800 and p-value = 0.01.
• Test function m3(x): distance hot deck and LRot plus random residual seem

to perform better. The corresponding E[KSX
Z ] are not significantly different

for nB ≥ 800 and p-value = 0.03.
• Test function m4(x): distance hot deck and LRot plus random residual seem

to perform better. The corresponding E[KSX
Z ] are not significantly different

for nB ≥ 800 and p-value = 0.03.

As previously stressed, (27) is a crude measure of divergence between the con-
ditional distribution of Z | X = xA

a , FZ|xA
a
(z), and the conditional empirical

distribution F̂
Z̃|xA

a
(z). In order to get additional information about the per-

formance of the imputation techniques, in Figure 6 the KS distance KSZ(xA
a )

is reported for different values of xA
a . As known, the boundary effect is more

evident for the kNN than for the local linear estimator of the regression func-
tion. When xA

a is close to the boundaries, the kNN estimator is based on the
computation of averages in an asymmetric region of xA

a , consisting of a fixed
number of k points. Hence, the matching noise of the stochastic imputation
method based on the kNN estimator could be severely high when xA

a is close
at the extremes of its observational range. As it appears from Figure 6, when
the regression function is very steep at the boundaries the kNN estimator is
expected to be more biased (see, for instance, m4(x)), and hence the corre-
sponding imputation method is affected by a severe matching noise.

As a matter of fact, when comparing the conditional distribution of Z | X a
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slight preference could be given to distance hot deck since it is more easily
implemented and surely less computationally intensive.

Suppose now to perform the simulation study assuming that errors have com-
mon variance σ2 = (0.5)2. The results regarding the marginal distribution of
Z and the conditional distribution of Z | X are reported in Figure 7 and 8,
respectively. Mean kNN plus random residual seems to have the best perfor-
mance in recovering the marginal distribution of Z together with the stochastic
imputation procedures based on the local linear regression estimator (see, for
instance, m4(x)). With regard to the conditional distribution of Z | X, the
results obtained are reported below

• Test function m1(x): distance hot deck, mean kNN plus random residual
and LRot plus random residual seem to have the best performance. Such
methods give equivalent results since the corresponding E[KSX

Z ] are not
significantly different for nB ≥ 800 and p-value = 0.11.

• Test function m2(x): distance hot deck, LRot plus random residual and
LGcv plus random residual seem to be the best methods. The corresponding
E[KSX

Z ] are not significantly different for nB ≥ 800 and p-value = 0.12.
• Test function m3(x): distance hot deck and LRot plus random residual seem

to perform better. The corresponding E[KSX
Z ] are not significantly different

for nB ≥ 800 and p-value = 0.03.
• Test function m4(x): distance hot deck, LRot plus random residual and

LGcv plus random residual seem to perform better. The corresponding
E[KSX

Z ] are not significantly different for nB ≥ 800 and p-value = 0.02.

In conclusion, since in a given survey the construction of a complete syn-
thetic data set containing (X, Z) aims at getting information about both the
marginal distribution of Z and the full distribution of (X,Z), the stochas-
tic imputation method based on the local linear regression estimator (LRot,
LGcv) seems to be the best. Such a method is “almost” as good as the mean
kNN plus random residual for the reconstruction of the marginal distribution
of Z, and as the distance hot deck when the interest is in the conditional
distribution of Z | X. Besides, the more complex is the functional relationship
between the variable of interest, the better seems to be its performance.
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Table 1
Test statistic between distance hot deck and mean kNN + residual

nB τ(m1) τ(m2) τ(m3) τ(m4)

800 9.73 6.34 9.48 9.45

1200 6.23 3.73 6.17 5.55

1600 4.67 3.44 3.48 3.56

2000 3.10 1.19 3.30 4.19

Table 2
Test statistic between random kNN and mean kNN + residual

nB τ(m1) τ(m2) τ(m3) τ(m4)

800 6.77 2.45 6.83 10.20

1200 4.14 0.88 5.72 6.95

1600 4.40 1.45 5.09 4.22

2000 1.72 −0.47 3.26 3.87
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Fig. 1. Plots of the regression functions mi(x) = E[Z |X = x].
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Fig. 2. KSZ for distance hot deck, mean kNN, random kNN and mean kNN +resid-
ual.
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Fig. 3. KSZ for distance hot deck, random kNN, mean kNN +residual, local linear
regression estimators LRot, LGcv, LPlug .
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Fig. 4. KSZ for distance hot deck, random kNN, mean kNN +residual,
LRot+residual, LGcv+residual, LPlug+residual.
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Fig. 5. E[KSX
Z ] for distance hot deck, random kNN, mean kNN +residual,

LRot+residual, LGcv+residual, LPlug+residual.
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Fig. 6. KSZ(xA
a ) for distance hot deck, mean kNN +residual, LRot+residual,

LGcv+residual, LPlug+residual.
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Fig. 7. KSZ for distance hot deck, mean kNN, random kNN and mean kNN +resid-
ual, LRot+residual, LGcv+residual, LPlug+residual. (σ2 = (0.5)2)
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Fig. 8. E[KSX
Z ] for distance hot deck, mean kNN, random kNN and mean

kNN+residual, LRot+residual, LGcv+residual, LPlug+residual. (σ2 = (0.5)2)
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