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Abstract

Standard response surface methodology employs a second order polynomial model to locate

the stationary point ξ of the true response function. To make Bayesian analysis more direct

and simpler, we refer to an alternative and equivalent parametrization, which contains ξ as

parameter of interest. The marginal reference prior of ξ is derived in its general form and

particular cases are also given in detail, showing the Bayesian role of rotatability.
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1 Introduction

Given a response variable Y and k continuous factors, U1, ..., Uk, the main purpose of Response

Surface Methodology (RSM), introduced by Box and Wilson (1951), is to find the combination of

factor levels to achieve the optimal response. The typical RSM procedures are described in detail

in many textbooks, including those by Davies (1960), Box and Draper (1987), Khuri and Cornell

(1987) and Myers and Montgomery (1995).

For computational convenience, the natural variables are usually converted to coded or design

variables, X1, ..., Xk, standardized so that the design center is at the point (x1, ..., xk) = 0.

Moreover it is assumed that the true response is a function of the levels of the k design variables,

ϕ(x1, x2, ..., xk), called the true response function. The goal of the analysis is to investigate the

behavior of the unknown function ϕ over the operability region, RO, that is the whole subregion of

R
k where it is theoretically possible to do the experiment and observe response values. To make it

possible, the researcher usually defines a smaller subregion R ⊂ RO, called experimental region or

region of interest, that is the region over which the experiment will be performed.

Since the actual form of ϕ is generally unknown, it is usually approximated by a polynomial of

first or second degree in the confined region R. A second order polynomial is used in particular

when the interest is focused on the location of the stationary point of the true response function,

while for the sequential exploration of the surface a first degree polynomial can be sufficient.

The second order polynomial model can be compactly written as

MP : y = β0 + xTb+ xTBx + ε, (1)

where ε is the random error which is assumed to be distributed as a normal distribution with zero

mean and unknown variance σ2. Here x is a k×1 vector of factor levels, β0 is the intercept term, b is

a k×1 vector of regression coefficients βi and B is a k×k symmetric matrix of regression coefficients
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with i-th diagonal element equal to βii and the (ij)-th off-diagonal element equal to (1/2)βij . From

the fitted second order surface model, the estimated stationary point, x̂S = −1
2B̂

−1b̂, is computed,

where b̂ and B̂ are the maximum likelihood estimates (MLEs) of b and B. Depending on the

eigenvalues of B̂, x̂S could be a minimum, a maximum or a saddle point. Therefore a “canonical

analysis” is used to determine the nature of x̂S and to characterize the behavior of the response

surface in the experimental region R. Furthermore, confidence regions on the location of the true

stationary point are derived (Box and Hunter, 1954) to get a more realistic assessment of the quality

of the point estimate.

Formula (1) can be justified by the use of the Taylor formula with the origin at the center of

the design. Assuming that a stationary point ξ for ϕ exists and it is unique, an alternative (and

equivalent) parametrization can be obtained using ξ as origin for the Taylor expansion. We obtain

this way the model

MR : y = α0 + (x− ξ)TA(x− ξ) + ε, (2)

where α0 is the value of the true response function on ξ and A is a k × k symmetric matrix of

coefficients with diagonal elements αi and off-diagonal elements (1/2)αij . Both models, (1) and

(2), are characterized by p + 1 unknown parameters, where p = 1 + 2k + k(k−1)
2 .

The relations between the parameters of the two models are










β0 = α0 + ξTAξ

b = −2Aξ

B = A











α0 = β0 − 1
4b

TB−1b

ξ = −1
2B

−1b

A = B

,

and the MLEs of the parameters of MR can be derived, through invariance, from the MLEs of

the parameters of MP . Obviously ξ̂ = −1
2B̂

−1b̂ coincides with x̂S . Introducing ξ as a parameter

would make the standard frequentist elaborations quite difficult, due to the nature of the sampling

distribution of its MLE, ξ̂. In fact this suggestion does not appear in literature, but a Bayesian

analysis becomes more direct and even simpler since the inferential interest is only centered on ξ.

In order to perform a Bayesian analysis a prior probability distribution for the parameters must

be introduced. This can represent actual pre-experimental information about the response surface

or we can resort to some kind of non-informative prior. The most used and general technique is the

so-called reference prior method. It was proposed by Bernardo (1979), whose original idea was to

find the prior distribution that maximizes the missing information about the quantity of interest.

Since Bernardo’s original paper, the reference prior method has been developed and refined (see, for

instance, Berger and Bernardo, 1989, 1992a, 1992b, and 1992c) and also applied to various problems

(Bayarri, 1981; Ye and Berger, 1991; Liseo, 1993; Sun and Ye, 1995; Bernardo and Ramón, 1998;

to name just a few). Since most of these papers are due to Berger and Bernardo, the statistical

literature often refers to the reference prior method as the Berger-Bernardo method.

An important innovation in constructing non-informative priors which characterizes the Berger-

Bernardo method is the different treatment of interest and nuisance parameters. In multiparameter

situations the general m−group reference prior algorithm requires dividing the whole vector of

parameters, θ, into m ordered groups θ(1), ...,θ(m), where each group θ(j) contains one or more of

the scalar parameters in θ. It is suggested the ordering be in terms of inferential importance of the

groups: the parameter of interest should be the first. Ignoring some technical problems, the iterative

procedure is as follows: first find the conditional reference prior for θ(m) given (θ(1), ...,θ(m−1)), then

find the conditional reference prior for θ(m−1) given (θ(1), ...,θ(m−2)) and so on, until computing

the marginal reference prior for the parameters of interest, θ(1). The conditional reference prior

π(θ(j)|θ(1), ...,θ(j−1)), ∀j = 1, ..., m − 1, is based on the marginal model obtained by integrating
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out the parameters θ(j+1), ...,θ(m). The reference priors obtained can depend on the grouping.

Berger and Bernardo (1992c) recommend using the one-at-a-time reference prior, that is to have one

parameter per group, “unless there is a specific reason for using a certain grouping”. The algorithm

is typically very hard to implement, but in the regular case, where joint posterior asymptotic

normality may be established, calculations become considerably simpler.

Section 2 shows a reference analysis of model MR. In this application it is sensible to refer to

the parameter of interest as the whole vector of the coordinates of the true stationary point. In

Section 3, when k = 2, some features of the marginal reference prior of ξ are described, depending

on the properties of the experimental design.

2 A reference analysis of model MR

2.1 Reference prior distribution of ξ

Let us suppose that n experimental runs are taken on various combination of factor levels. The

model MR can be conveniently written in the form

MR : y = Xξα+ ε, ε ∼ Nn(0, σ2In), (3)

where y is the n× 1 vector of responses, α = (α0, α1, ..., αk, α12, ..., αk−1,k)
T is the p′ × 1 vector of

coefficients, ε is the vector of random errors and

Xξ =













1 (x11 − ξ1)
2 · · · (x1k − ξk)

2 (x11 − ξ1)(x12 − ξ2) · · · (x1,k−1 − ξk−1)(x1k − ξk)

1 (x21 − ξ1)
2 · · · (x2k − ξk)

2 (x21 − ξ1)(x22 − ξ2) · · · (x2,k−1 − ξk−1)(x2k − ξk)
...

... · · · ...
... · · · ...

1 (xn1 − ξ1)
2 · · · (xnk − ξk)

2 (xn1 − ξ1)(xn2 − ξ2) · · · (xn,k−1 − ξk−1)(xnk − ξk)













.

Here ξ is the k−dimensional parameter of interest and φ = (α, σ2) is the nuisance parameter of

dimension p′ + 1, where p′ = 1 + k + k(k−1)
2 . Note that, given ξ, model (3) has the structure of

a normal linear model, with design matrix Xξ. Therefore the conditional reference prior of the

nuisance parameter given the quantity of interest is the standard one

πR(α, σ2|ξ) ∝ 1

σ2
. (4)

Since MR is a one-to-one reparametrisation of the second order polynomial model, we are in the

regular case in which asymptotic normality of the posterior holds (see Bernardo and Smith, 1994,

Section 5.3.3). Let us denote with Sξξ(ξ,φ) the (k×k) upper matrix of Sψ(ξ,φ) = I−1
ψ (ξ,φ), where

Iψ(ξ,φ) is the Fisher Information matrix. Under posterior asymptotic normality, we can generalize

Proposition 3 and its Corollary of Bernardo and Ramón (1998) to the case of a parameter of interest

which is itself a vector. Then if the nuisance parameter space is independent of the parameter of

interest and the following factorization holds
∣

∣S−1
ξξ (ξ,φ)

∣

∣

1/2
= f0(ξ)g0(φ),

where f0 and g0 are arbitrary functions, then the marginal reference prior for ξ is

πR(ξ) ∝ f0(ξ).

Using this result, it is proved in Appendix A that the marginal reference prior of ξ is

πR(ξ) ∝
∣

∣XT
ξXξ

∣

∣

−1/2
. (5)

This is in general an improper distribution, depending on the choice of the experimental design.
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2.2 Reference posterior distribution of ξ

The reference posterior distribution of ξ is obtained by integrating out the nuisance parameter from

the joint reference posterior,

πR(ξ|D) ∝ πR(ξ)

∫

Φ
πR(α, σ2|ξ)L(ξ,α, σ2|D)dαdσ2,

where D denotes the data matrix, Φ = (0,∞)× (−∞,∞)p′ is the nuisance parameter space and

L(ξ,α, σ2| D) = (2πσ2)−
n
2 exp

{

− 1

2σ2
(y −Xξα)T (y −Xξα)

}

(6)

is the likelihood function for the complete vector of parameters. The quadratic form in the exponent

of (6) can be usefully rewritten as

(y −Xξα)T (y −Xξα) = (α− α̂(ξ))TXT
ξXξ(α− α̂(ξ)) + (y −Xξα̂(ξ))T (y −Xξα̂(ξ)),

where α̂(ξ) = (XT
ξXξ)

−1XT
ξ y is the MLE of the nuisance parameter α, written as function of ξ.

Since πR(α|ξ, σ2,D) = MN
(

α̂(ξ), σ2(XT
ξXξ)

−1
)

, where MN denotes the multinormal distribution,

the reference posterior distribution for (ξ, σ2) is given by

πR(ξ, σ2|D) ∝
∣

∣XT
ξXξ

∣

∣

−1

(σ2)
n−p′+2

2

exp

{

− (y −Xξα̂(ξ))T (y −Xξα̂(ξ))

2σ2

}

.

Then, since πR(σ2| ξ,D) = IG
(

(y−Xξα̂(ξ))T (y−Xξα̂(ξ)), n− p′
)

, where IG denotes the inverse

gamma distribution, by integrating out σ2, it results that the posterior distribution of ξ is

πR(ξ|D) ∝
∣

∣XT
ξXξ

∣

∣

−1
[

(y −Xξα̂(ξ))T (y −Xξα̂(ξ))

]−
n−p′

2

. (7)

If k = 1 cumbersome calculations show that (7) is a proper distribution. For a general k, heuristic

arguments show that the posterior distribution, which can be written as a ratio of polynomials in

ξ, is again proper. For standard designs this can be easily proved at least for k = 2, 3.

Finally, note that the marginal reference posterior distribution of ξ can be computed up to a

normalizing constant. Therefore we can make posterior inference on the true optimum point by

using the MCMC technique, resorting in particular to the Metropolis-Hastings algorithm.

3 Analysis of πR(ξ) when k = 2

The marginal reference prior for the stationary point depends on the experimental design and on

its properties. When fitting second order response surface, the actual orientation of the system

is generally unknown and an important property to take into account in choosing the design is

rotatability. It assures that the sampling variance of the estimated response, ŷ(x), depends only

on the distance of x from the design center and not on the direction. Therefore, a rotatable design

guarantees that all the points in the factor space at the same distance from the origin are treated

as being “equally important”. The most used second order design in response surface studies is the

central composite design (CCD). Given k factors, it involves the use of a 2k factorial or fractional

factorial design augmented by 2k axial points with coordinates (±α, 0, ..., 0), (0,±α, 0, ..., 0), ...,

(0, ..., 0,±α) and nc experimental runs at the center point. This class of designs was proposed by

Box and Wilson (1951) as a natural alternative to the 3k factorial design for its requirement of
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fewer experimental runs and its flexibility. In fact the CCD can be made orthogonal (the estimated

effects are all non-correlated) or rotatable only choosing the location of its axial points.

When k = 2, the reference prior of ξ for a rotatable CCD or a factorial 32 design are, respectively,

rotatable CCD: πR(ξ) ∝
[

(

1 + 2ξ2
1 + 2ξ2

2

)(

1 +
(

8/nc + 3
)

ξ2
1 +

(

8/nc + 3
)

ξ2
2

)

]−
1

2

, (8)

factorial 32: πR(ξ) ∝
[

2 + 27
(

ξ2
1 + ξ2

2

)

+ 36
(

ξ4
1 + ξ4

2

)

+ 288 ξ2
1 ξ2

2

]−
1

2

. (9)

Note that (8) is written as a function of the number of center runs. They are two improper

distributions, whose contours are plotted in Figure 1.

-2 -1 0 1 2

-2

-1

0

1

2

PSfrag replacements

ξ1

ξ2

(a) rotatable CCD
-2 -1 0 1 2

-2

-1

0

1

2

PSfrag replacements

ξ1

ξ2

(b) factorial design 32

Figure 1: Contour plot of unnormalized πR(ξ), when k = 2

The gray areas represent the experimental regions: for the rotatable CCD it is a circle of radius√
2. It is possible to see that if we use a rotatable CCD the corresponding distribution πR(ξ) is

constant on circles around the design center. Thus, these points are considered a priori as “equally

probable”. We can say that the design rotatability is preserved from a Bayesian point of view

and πR(ξ) is coherent with the design choice, which itself expresses the prior knowledge about the

location of the stationary point. Note that the just described behavior of this prior does not depend

on the number of center runs. The same situation does not hold if we adopt a 32 factorial plan,

which is orthogonal, “in the sense that no two of the estimates for first and second order effects are

correlated” (see Box and Draper, 1987), but not rotatable. However, in both cases, πR(ξ) presents

its unique mode at the design center, ξ = (0, 0).

Moreover, let us remark that the reference prior of ξ has an infinite integral over the whole

parameter space R
2. However, it results in a proper distribution over a bounded region of

operability, which can be defined when we have a real experiment to perform. Once RO is fixed,

the ratio

C(R,RO) =

∫

R
πR(ξ)dξ

∫

RO
πR(ξ)dξ

, (10)

yields the prior probability assigned to the experimental regionR conditional toRO. For simplicity,

let us suppose that a rotatable CCD with nc center runs is used and a circular region of operability

with center at the design center and radius ro >
√

2 is defined. Table 1 shows the ratios (10), for

different values of ro and nc. As it can be expected, for a fixed nc, the larger the dimension of RO

the smaller the reference prior probability assigned to R is. Once RO is fixed, an increase of nc,

i.e. the experimental information in the design center, produces a decrease in the prior probability

assigned to the experimental region.
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Table 1: Ratios (10) for different values of nc and ro

ro

nc 5 10 15 20 50

1 0.478 0.368 0.324 0.299 0.239

2 0.463 0.354 0.311 0.286 0.228

4 0.451 0.342 0.300 0.275 0.219

8 0.442 0.334 0.292 0.268 0.212

16 0.436 0.328 0.287 0.263 0.208

32 0.433 0.325 0.284 0.260 0.206
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Appendix

A Determination of πR(ξ)

Let us denote with ψ = (ξ,φ) the complete vector of parameters of MR. Fisher’s information

matrix with blocks corresponding to ξ and φ is found to be

Iψ(ψ) =

[

Iξξ(ξ,φ) Iξφ(ξ,φ)

IT
ξφ(ξ,φ) Iφφ(ξ,φ)

]

=
1

σ2







MMT MXξ 0(k×1)

(MXξ)
T XT

ξXξ 0(p′×1)

0T
(1×k) 0T

(1×p′)
n

2σ2






, (11)

where M is the k × n matrix, whose generic column is the k−dimensional vector 2A(xi − ξ),
∀ i = 1, ..., n. That is M =

[

2A(x1 − ξ), 2A(x2 − ξ), ..., 2A(xn − ξ)
]

, where xi = (xi1, xi2, ..., xik)
T

is the vector of factor levels over which the response yi is observed.

As it will be clear in the following, it is also useful to obtain the Fisher information matrix (11)

using the equivalence between models MP and MR. When n experimental runs have been used,

the second order polynomial model can be written in matrix notation as

MP : y = Xβ + ε, ε ∼ Nn(0, σ2In),

where β = (β0, β1, ..., βk, β11, ..., βkk, β12, ..., βk−1,k)
T is the p × 1 vector of regression coefficients

and X is the design matrix. Denoting with θ = (β, σ2) the whole parameter vector of models MP

and with g the non singular transformation such that θ = g−1(ψ), we have that

Iψ(ψ) = JT
g−1(ψ)Iθ(g

−1(ψ))Jg−1(ψ), (12)

where

Iθ(g
−1(ψ)) =

1

σ2

[

XTX 0

0T n
2σ2

]
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is the Fisher information matrix for the parameters of MP and

Jg−1(ψ) =
∂g−1(ψ)

∂ψ
=















(2Aξ)T 1 (ξT )2 j1
(1×s) 0

−2A 0(k×1) J1
(k×k) J2

(k×s) 0

0(k×k) 0(k×1) I(k×k) 0(k×s) 0

0(s×k) 0(s×1) 0(s×k) I(s×s) 0

0 0 0 0 1















, (13)

is the Jacobian of the inverse transformation. In matrix (13) I (k×k) is the k × k identity matrix,

s = k(k−1)
2 , j1 = (ξ1ξ2, ξ1ξ3, ..., ξk−1ξk), J

1 = diag(−2ξ1,−2ξ2, ...,−2ξk) and

J2 =
∂(β1, ..., βk)

∂(α12, α13, ..., αk−1,k)
= [j2

h,(u,l)], where j2
h,(u,l) =











−ξl u = h

−ξu l = h

0 l, u 6= h

.

Using the well-known properties of determinants (see, for instance, Graybill, 1969), we get

∣

∣Sξξ(ξ,φ)
∣

∣ =
∣

∣Iφφ(ξ,φ)
∣

∣

∣

∣Sψ(ξ,φ)
∣

∣ =

∣

∣Iφφ(ξ,φ)
∣

∣

∣

∣Iψ(ξ,φ)
∣

∣

=
n(σ2)−(p′+2)

∣

∣XT
ξXξ

∣

∣

2
∣

∣JT
g−1(ψ)

∣

∣

∣

∣Iθ(g−1(ψ))
∣

∣

∣

∣Jg−1(ψ)
∣

∣

.

Thus, since
∣

∣JT
g−1(ψ)

∣

∣ =
∣

∣Jg−1(ψ)
∣

∣ =
∣

∣− 2A
∣

∣, the following factorization holds

∣

∣Sξξ(ξ,φ)
∣

∣

−1/2
=

∣

∣XT
ξXξ

∣

∣

−1/2
[

n(σ2)−(p′+2)

2
∣

∣JT
g−1(ψ)

∣

∣

∣

∣Iθ(g−1(ψ))
∣

∣

∣

∣Jg−1(ψ)
∣

∣

]−1/2

= f0(ξ) g0(α, σ2),

with f0(ξ) =
∣

∣XT
ξXξ

∣

∣

−1/2
. Thus, from the generalization of Proposition 3 and its Corollary of

Bernardo and Ramón (1998), the marginal reference prior of the quantity of interest is (5).
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