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1 Introduction

The first assessment of calibration estimation was carried out by Deville et al.
(1992). Assume that one or more auxiliary variables are available. The auxiliary
information can be used at the estimation stage to construct estimators that are ap-
proximately unbiased with a variance smaller than that of the Horvitz-Thompson
estimator.

The basic idea is to define a new weights system which are as close as possible,
according to a given distance measure, to the original sampling design weights
while respecting a set of constraints (calibration equations). These state that
the new weights, called calibrated weights, must provide perfect estimates when
applied to each auxiliary variables. Clearly, different distance measures lead to a
different sets of weights, all calibrated to the same information, and thereby to
new estimators.

An important result by Deville et al. (1992) is that, within the classical frame-
work and under some regularity conditions, the calibration estimators with dif-
ferent choice of objective function are asymptotically equivalent (i.e. with the
same asymptotic variance) to the generalized regression estimator, obtained under
a chi-square distance measure.

This paper explores the effect both on the calibrated weights and the resulting
calibration estimator of measurement errors affecting the sample auxiliary infor-
mation. In the sequel we assume that the auxiliary information is one-dimensional
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and global, i.e only the total is known. Besides, we restrict our discussion to the
generalized regression estimator (GREG).

The paper is organized as follows. In Section 2 we introduce the general frame-
work for the calibration estimation with regard to a single-stage cluster sampling.
In Section 3 the effect of measurement errors on the calibrated weights is evaluated
by introducing a model describing their generating mechanism. In Section 4 we
compute the bias and the variance of the calibration estimator whose weights are
affected by measurement errors. In Section 5 a simulation study is performed.
Finally, in Section 6 the conclusions of the paper are given.

2 General Framework

Consider a finite population of N elements U = {1, .., N} grouped into c disjoint
subpopulations, called clusters and denoted by Uc = {U1, .., Uc}. The number of
population elements in the ith cluster is denoted by Ni. In single-stage cluster
sampling a probability sample of clusters sc of size nc is drawn according to the
design p(·) and every population element in the clusters is observed. The first
and second order cluster inclusion probabilities induced by the design p(·) are πi

and πij respectively. Let di = 1/πi denote the original sampling weights, fixed by
design.

As known, single stage-cluster sampling is used in many large scale surveys
where direct element sampling is not used because the corresponding frame could
not exist as well as to reduce the cost of the field work related to travel expenses
(for instance if the population units are scattered over a wide area). Consider as
an example a survey conducted in a large city with city blocks as primary sampling
units and buildings as elements. The study variable Y measures some aspect of
the kth building, such as habitable floor space.

The basic goal is to estimate the (unknown) population total ty. Let X∗ be an
auxiliary variable with total tx∗ , which is assumed to be accurately known from an
outside source. It can be obtained from census data or administrative data files.
For instance, for each city block we could have as auxiliary information the number
or/and the type of buildings, the number of inhabitants and so on. Formally, we
assume the following auxiliary information to be available:

1. The population total tx∗ is known;

2. The cluster totals (tyi , tx∗i ) of Y and X∗ respectively are known for every
cluster i ∈ sc.

In order to estimate the unknown total ty, one possibility is the simple unbiased
Horvitz-Thompson estimator

t̂y,ht =
∑
i∈sc

dityi
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where di is the inverse of cluster inclusion probability. An estimator of ty that uses
explicitly the information tx∗ , through a more efficient weighting of the observed
totals tyi , is the calibration estimator. This term was coined by Deville et al.
(1992) to describe an estimator of the form

t̂∗y =
∑
i∈sc

w∗
i tyi (1)

where the weights w∗
i satisfy the calibration equation∑

i∈sc

w∗
i tx∗i = tx∗ (2)

The constraint (2) states that if we apply the weighting system w∗
i to the totals

tx∗i (for i ∈ sc) and sum over sc, the estimator (1) agrees exactly with the total
known value tx∗ . The set of weights, which is chosen to minimize the average
distance from the basic design weights, is called calibrated to the information tx∗ .
Calibration is a highly desirable property for survey weights, since the control totals
are disseminated as benchmark values then reproducing them from the sample is
reassuring to the user.

As previously stressed, the calibration technique provides an alternative deriva-
tion of the generalized regression estimator (GREG), obtained under a chi-square
distance measure. Formally, the GREG estimator can be expressed as (1), where
the weight w∗

i associated to the ith cluster total is given by

w∗
i = di +

ditx∗i (tx∗ −
∑

i∈sc
ditx∗i )∑

i∈sc
dit2x∗i

= di + Ri,sc (3)

Clearly, w∗
i depend on both ith cluster and the whole sample sc containing i. The

original sampling weights di are suitably modified to reflect the information in the
auxiliary variable. As a consequence the generalized regression estimator can be
written as

t̂∗y,greg = t̂y,ht + B̂∗(tx∗ − t̂x∗,ht) (4)

where B̂∗ is the estimated regression coefficient obtained regressing the cluster
total tyi on tx∗i for the clusters belonging to the sample sc. The estimator (4) is
explained and illustrated in several textbooks, for instance in Chapters 6 and 7
of Särndal et al. (1992). It is important to stress that tx∗ should be an accurate
value of the population total. If an erroneous external total is used, then the
GREG estimator could be severely biased, with a bias depending on the distance
between the erroneous and the correct total of the auxiliary information. In the
sequel we assume that the total tx∗ is considered reliable. The aim of the paper is to
evaluate the effect on both the calibrated weights and the corresponding calibration
estimator of measurement errors affecting the sample auxiliary information.
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3 The effect of measurement errors on the

calibrated weights

3.1 Measurement Errors Model

By the term measurement error we denote the difference between the recorded
value of the variable X∗ for the kth element and its “true value”. This kind of
error occurs during the data collection stage for a variety of reasons. Sources
of measurement errors can be categorized into four principal factors: the ques-
tionnaire, the respondents, the interviewer and the data collection mode which
determines the types of measurement errors (face to face interviewing, telephone
interviewing, self-administered methods) . For instance, the respondent may in-
tentionally or unintentionally give incorrect answers, in a personal interview the
interviewer may record the responses incorrectly and may influence the respondent
answers, some items in the questionnaire may be poorly formulated and so on. An
overview on the measurement errors sources is given in Biemer et al. (1991). This
kind of nonsampling error cannot be completely avoided in practice, but it is pos-
sible to keep it under control through an accurate survey planning: the use of
qualified interviewers or the interviewers training, the supervision phase, an accu-
rate questionnaire wording. In the sequel we assume that the population total tx∗

comes from an external source considered reliable, but that the observed values of
X∗ for the sample elements are subject to measurement errors. More specifically,
with regard to the measurement procedure we assume that the data are collected
through a personal interview. As previously stressed, the interviewer represents a
possible source of measurement errors introducing bias, variance and correlation
into the responses.

In order to evaluate the effect of measurement errors on the calibrated weights,
we introduce a fairly general statistical model describing the mechanism that gener-
ates the observed values. Basic contributions to the methodology of measurement
errors models in survey sampling were given by Mahalanobis (1946), Hansen et al.
(1951, 1961, 1964). In the sequel, the finite population observed values are consid-
ered as a realization from an infinite population and we describe our uncertainty
about what particular values will appear through a probabilistic model (superpop-
ulation approach). Clearly, the model should be adapted to the specific conditions
of the particular survey at hand, and should formalize our prior knowledge about
the population. In fact, if a realistic superpopulation model can give powerful
inferences, on the other side invalid inferences would result if the assumed model
were invalid.

As in Särndal et al. (1992) (pag. 618) we assume to have c interviewers, each
is linked to a cluster Ui in a deterministic, nonrandom manner. The preassigned
interviewer carries out all interviews from his own cluster. For instance, the pop-
ulation can be geographically divided into districts with one interviewer perma-
nently stationed in each district who carries out all interviewers there. Formally,
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the measurement model, denoted by m, specifies that the observed value for the
population unit k in cluster i is composed of a constant true value x∗ki plus an
unobserved error term εki

xki = x∗ki + εki (5)

with the following stochastic structure

Em(εki) = bi + δ ∀k ∈ Ui

varm(εki) = νi ∀k ∈ Ui

covm(εki, εlj) = 0 ∀k ∈ Ui, ∀l ∈ Uj , ∀i 6= j

covm(εki, εli) = ρiνi ∀k, l ∈ Ui, ∀k 6= l

(6)

where bi, νi, ρi, δ are unknown model parameters, and |ρi| < 1. The observed pop-
ulation values of X∗ are considered to be the realized values of random variables,
whose distribution is described by (6). As a matter of fact, a superpopulation
model is invoked but the inference still concerns the finite population parameter
ty.

Model (6) implies that the measurements made by the same interviewer are
correlated and affected by the same constant effect bi (interviewer effect). An
extensive literature exists on the influence that the interviewer demographic and
socioeconomic characteristics (such as sex, race and age) can have on the responses,
see, for instance, Groves (1989). However, the correlation between responses is not
uniquely due to interviewers, since there are other possible sources for correlated
errors. Factors such as coders and supervisors may introduce correlation between
responses for the units they are associated with. Note that bi represents a inter-
viewer fixed-effect, and that the parameter δ represents a systematic error that
consistently affects the measurement process, no matter to which cluster (inter-
viewer) the element belongs.

Under a single-stage cluster sampling with no missing data, the measurement
model (5) can be expressed as

txi = tx∗i +
Ni∑

k=1

εki = tx∗i + ηi

under the stochastic structure
Em(ηi) = Ni(bi + δ) = µi ∀i

varm(ηi) = Niνi + Ni(Ni − 1)ρiνi ∀i

covm(ηi, ηj) = −NiNj(bi + δ)(bj + δ) ∀i 6= j
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where txi , tx∗i represent the observed and the true total for the ith cluster respec-
tively. When the sample observations are affected by measurement errors, the
calibrated weight assigned to the total tyi becomes

wi = di +
ditxi(tx∗ −

∑
j∈sc

djtxj )∑
j∈sc

djt2xj

= di + R̂i,sc (7)

which is different from the “true” calibrated weight (3). Given the sample sc, wi is
a function of txj -values which are random variables under the measurement model
m. As a consequence, the model based evaluation of the observed calibrated weight
wi consists in computing the expectation Em(wi|sc). In order to accomplish this,
let V̂ be the ratio

V̂ =

∑
j∈sc

djt
2
xj∑

j∈sc
djt2x∗j

and let covm(R̂i,sc , V̂ |sc) denote the covariance between R̂i,sc and V̂ , given by

covm(R̂i,sc , V̂ |sc) = Em(R̂i,sc V̂ |sc)− Em(R̂i,sc |sc)Em(V̂ |sc)

=
1
γ

Em[ditxi(tx∗ −
∑

j∈sc
djtxj )]

Em

[∑
j∈sc

djt2xj

] − Em(R̂i,sc |sc)


where

γ =

∑
j∈sc

djt
2
x∗j

Em[
∑

j∈sc
djt2xj

]

Hence

Em(R̂i,sc |sc) =
Em[ditxi(tx∗ −

∑
j∈sc

djtxj )]

Em

[∑
j∈sc

djt2xj

] − γcovm(R̂i,sc , V̂ |sc)

= γ[Ri,sc + C − covm(R̂i,sc , V̂ |sc)]

where

C =
ditx∗µi −

∑
j∈sc

didj [covm(txi , txj ) + µjtx∗i + µi(tx∗j + µj)]∑
j∈sc

djt2x∗j

Then the bias of wi is given by

Em(wi|sc)− w∗
i = Em(R̂i,sc |sc)−Ri,sc

= (γ − 1)Ri,sc + γ[C − covm(R̂i,sc , V̂ |sc)] (8)
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For instance, if µj = 0 for each sample cluster, that is if the expected measurements
values reproduce the true values, then

Em(wi|sc)− w∗
i = (γ − 1)Ri,sc − γcovm(R̂i,sc , V̂ |sc)

where γ < 1 and C = 0. Expression (8) does not give us any useful information
about the sign and the magnitude of the bias since depends on the unknown quan-
tity covm(R̂i,sc , V̂ |sc). However, since wi is a nonlinear function of the nc sample
clusters totals (tx1 , ...., txnc

), by the first-order Taylor approximation evaluated at
the point P0 = [tx∗1 , .., tx∗nc

] we obtain

wi ' di +
ditx∗i [tx∗ −

∑
i∈sc

ditx∗i ]∑
i∈sc

dit2x∗i

+
∑
j∈sc

∂wi

∂txj

∣∣∣∣
P0

(txj − tx∗j )

so that the weight wi can be expressed by a main term, which is linear in (tx1 , ...., txnc
)

and a remainder term that is assumed negligible if compared to the main term.
Taking the expectation with respect to the measurement model m, we have

Em(wi|sc) ' w∗
i +

∑
j∈sc

∂wi

∂txj

∣∣∣∣
P0

Em(txj − tx∗j )

= w∗
i +

∑
j∈sc

∂wi

∂txj

∣∣∣∣
P0

Nj(bj + δ)

= w∗
i +

∑
j∈sc

∂wi

∂txj

∣∣∣∣
P0

µj

where
∂wi
∂txi

∣∣∣∣
P0

=
di

[
(tx∗−

∑
j∈sc

djtxj )(
∑

j∈sc
djt2xj

−2dit
2
xi

)−ditxi

∑
j∈sc

djt2xj

]
(
∑

j∈sc
djt2xj

)2

∣∣∣∣
P0

∂wi
∂txj

∣∣∣∣
P0

= −
didjtxi [

∑
j∈sc

djt2xj
+2txj (tx∗−

∑
j∈sc

djtxj )]

(
∑

j∈sc
djt2xj

)2

∣∣∣∣
P0

j 6= i

(9)

Given the sample sc, the bias in the calibrated weight wi is given by

Em(wi|sc)− w∗
i '

∑
j∈sc

∂wi

∂txj

∣∣∣∣
P0

µj =
∑
j∈sc

∂wi

∂txj

∣∣∣∣
P0

Nj(bj + δ) (10)

If Em(txj ) = tx∗j for each j ∈ sc then wi is approximately unbiased for w∗
i . In

the next section we proceed to analyze the bias (10), which depends on the clus-
ters measurement errors, clusters sizes as well as the sign and the magnitude of
derivatives (9).
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3.2 The measurement bias in the calibrated weights

In order to analyze the bias (10), in the sequel we assume that the auxiliary variable
X∗ > 0. Given the clusters sample sc:

1. If (tx∗ − t̂x∗,ht) = 0 then w∗
i = di. The calibrated weight reproduces the

original sampling design weight. In presence of measurement errors affecting
the sample values of the auxiliary variable X∗, let t̂x,ht denote the Horvitz-
Thompson estimator based on the observed totals txj . If µj > 0 for each
j ∈ sc then the term R̂i,sc in (7), coming from the measurement bias of t̂x,ht

as estimator of tx∗ , is negative. As a consequence, the calibrated weight wi

underestimates w∗
i (wi < w∗

i = di). On the other hand, if µj < 0 for each
j ∈ sc the weight wi overestimates w∗

i (wi > w∗
i = di).

The same results can be obtained analyzing the bias expression (10) together
with derivatives (9). Both derivatives are negative under the initial condition
(tx∗ − t̂x∗,ht) = 0.

2. If (tx∗ − t̂x∗,ht) > 0 then w∗
i > di. With regard to the sign of derivatives

(9), the second one is always negative while the first one could be positive
or negative. In more detail, we have

∂wi

∂txi

∣∣∣∣
P0

=
di

[
(tx∗ −

∑
j∈sc

djtx∗j )(
∑

j∈sc
djt

2
x∗j
− 2dit

2
x∗i

)− ditx∗i
∑

j∈sc
djt

2
x∗j

]
(
∑

j∈sc
djt2x∗j

)2

=
di∑

j∈sc
djt2x∗j

[(tx∗ −
∑
j∈sc

djtx∗j )(1− 2λi)− ditx∗i ] (11)

where λi = dit
2
x∗i

/(
∑

j∈sc
djt

2
x∗j

) represents the weight of ith cluster in the
selected sample sc, with 0 < λi < 1. The derivative (11) is negative if

λi =
1
2

[
tx∗ −

∑
j∈sc

djtx∗j − ditx∗i
tx∗ −

∑
j∈sc

djtx∗j

]
< λi < 1 (12)

where λi < 1
2 .

3. If (tx∗ − t̂x∗,ht) < 0 then w∗
i < di. Under such circumstances the first

derivative is always negative, the second derivative

∂wi

∂txj

∣∣∣∣
P0

= −
didjtx∗i [

∑
j∈sc

djt
2
x∗j

+ 2tx∗j (tx∗ −
∑

j∈sc
djtx∗j )]

(
∑

j∈sc
djt2x∗j

)2

= −
ditx∗i

tx∗j (
∑

j∈sc
djt2x∗j

)
[ditx∗j − 2λj(

∑
j∈sc

djtx∗j − tx∗)] (13)
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is negative if

0 < λj <
djtx∗j

2(
∑

j∈sc
djtx∗j − tx∗)

= λj (14)

where λj = djt
2
x∗j

/(
∑

j∈sc
djt

2
x∗j

), with 0 < λj < 1 for j 6= i.

For instance, given the sample sc, suppose that (tx∗ − t̂x∗,ht) > 0. Then

(a) If λi < λi < 1, both derivatives (9) are negative then the calibrated
weight wi underestimates w∗

i if µj > 0 for each j ∈ sc. Viceversa if
µj < 0.

(b) If 0 < λi < λi the derivative (11) is positive. As a consequence, the final
effect depends on how the parameters appearing in (10) interact each
other. For instance, if µj > 0 for each j ∈ sc the positive term in (10)
due to ith cluster could compensate for the negative term coming from
the remaining nc − 1 clusters. In such circumstances, the calibrated
weight wi overestimates w∗

i .

As a matter of fact, note that the values of λi and λj given by (12) and
(14) respectively depend on the composition of the selected sample sc. However,
for X∗ > 0 and for sample sizes large enough the derivative (11) tends to be
negative since the interval (λi < λi < 1) tends to the interval (0 < λi < 1),
being λi < 0. The same consideration holds for (13), with regard to the interval
(0 < λj < λj) being λj > 1. This means that, as a consequence of the Horvitz-
Thompson estimator consistency, both derivatives tends to be negative for sample
size nc large enough.

Then, the bias in the calibrated weight wi depends on: (i) the composition
of clusters sample; (ii) the sample clusters sizes; (iii) the clusters measurements
errors. The first two factors influence the bias (10) through the quantities (λj , Nj)
respectively, the third one through the superpopulation model parameters. How
these factors combine each other is fundamental in determining the sign and the
magnitude of the bias in the calibrated weights. As a consequence, the calibrated
weight could be approximately unbiased in spite of the condition Em(txj ) = tx∗j
for each j ∈ sc, is not satisfied. However, in practice this happens very rarely. The
bias in the calibrated weight wi will be analyzed via simulation in Section 5.

4 The effect of measurement errors on the

calibration estimator

Let us now consider the GREG estimator and the effect that the measurement
errors in the X∗ sample values have on its accuracy. By replacing the expression
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(7) in the calibrated estimator (1), we obtain

t̂y =
∑
i∈sc

wityi =
∑
i∈sc

[
di +

ditxi(tx∗ −
∑

i∈sc
ditxi)∑

i∈sc
dit2xi

]
tyi

= t̂y,ht +

∑
i∈sc

ditxityi∑
i∈sc

dit2xi

(tx∗ −
∑
i∈sc

ditxi)

= t̂y,ht +

∑
i∈sc

ditxityi∑
i∈sc

dit2xi

(tx −
∑
i∈sc

ditxi) +

∑
i∈sc

ditxityi∑
i∈sc

dit2xi

(tx∗ − tx)

= t̂y,greg +

∑
i∈sc

ditxityi∑
i∈sc

dit2xi

(tx∗ − tx)

= t̂y,greg + B̂(tx∗ − tx) (15)

where t̂y,greg is the generalized regression estimator under the assumption that
the external total has been generated from the same measurement model. The
evaluation of the estimator (15) must take into account both the measurement
model m and the probability mechanism used to select the sample p(sc). More
specifically, the first stage contributing to the randomness arises from the variation
in the measurement on X∗ produced by an hypothetical observational process
regarding the all population, the second one arises from the sampling design.

Denoting by Em(·) and Ep(·) the expectations with respect to the superpopu-
lation model m and the sampling design p(·) respectively, the expected value of t̂y
is given by

E(t̂y) = EmEp(t̂y)

= EmEp(t̂y,greg + B̂(tx∗ − tx))

= EmEp(t̂y,greg) + EmEp[B̂(tx∗ − tx)]

' Em(ty) + Em [B(tx∗ − tx)]

= ty + Em [B(tx∗ − tx)] (16)

where Ep(B̂) ' B is the regression coefficient under a hypothetical complete enu-
meration of the population, where we observe tyi and txi for each cluster. It follows
that the bias of t̂y, given by

Bias(t̂y) = EmEp(t̂y)− ty ' Em [B(tx∗ − tx)] (17)

10



is due to measurement errors. In order to obtain an explicit expression for the
measurement bias (17), note that it is a function of c population clusters to-
tals. By first-order Taylor approximation technique evaluated at the point P1 =
[Em(tx1), ...., Em(txc)], the approximation

B(tx∗ − tx) ' B(tx∗ − tx)
∣∣∣∣
P1

+
∑
i∈Uc

(
∂

∂txi

B(tx∗ − tx)
) ∣∣∣∣

P1

[txi − Em(txi)]

(18)

is obtained. It will be useful in computing the variance of the estimator. Taking
the expected value of (18) with respect to the measurement model m we have

Em [B(tx∗ − tx)] ' −
∑

i∈Uc
(tx∗i + µi)tyi∑

i∈Uc
(tx∗i + µi)2

∑
i∈Uc

µi

As stressed in Section 3, if Em(txj ) = tx∗j the calibrated weight (7) will be
approximately unbiased for (3). As a consequence, the estimator (15) will be
approximately unbiased for the total of Y . Note that the bias in the calibration
estimator mainly comes from the difference between the observed and the true
total of X∗ or equivalently from the measurement bias affecting t̂x,ht as estimator
of tx∗ . In fact, if the same measurement model generates both the sample values
and the external total (tx), then the measurement errors will not tend to introduce
bias into the calibration estimator but only lead to a loss of efficiency. Formally,
it is easy to show that Ep(t̂y,greg) ' ty.

The variance of the calibration estimator is shown to be composed of two
components

var(t̂y) = varmEp(t̂y) + Emvarp(t̂y) (19)

for details see Appendix. With regard to the first component, and using the
approximation (18), we have

varmEp(t̂y) =
∑
i∈Uc

a2
i varm(txi) +

∑
i∈Uc

∑
j 6=i∈Uc

aiajcovm(txi , txj )

(20)

where

ai =
∂

∂txi

[B(tx∗ − tx)]
∣∣∣∣
P1

Note that (20), called measurement variance, represents the increase of vari-
ance due to the presence of measurement errors. More specifically, the former
component comes from the variability of measurements (simple measurement vari-
ance), the latter component from their correlation due to the presence of a com-
mon interviewer (correlated measurement variance). The variability induced by
the sampling design is represented by
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Emvarp(t̂y) '
∑
i∈Uc

∑
j∈Uc

(
didj

dij
− 1

)
Em(EiEj)

+
∑
i∈Uc

∑
j∈Uc

(
didj

dij
− 1

)
Em

[
(tx∗ − tx)2txitxjEiEj∑

i∈Uc
t2xi

]

+ 2Em

[
(tx∗ − tx)covp(t̂y,greg, B̂)

]
where the first two components are expressed in terms of residuals Ei = tyi −Btxi

for the whole population. In conclusion, the Mean Square Error of the calibration
estimator t̂y can be written as the sum of variance (19) and squared bias (17).

The results obtained for a single-stage cluster sampling can be easily extended
to a two stage sampling or multistage sampling. Various practical situations are
covered by this general information statement. For instance city blocks can be
sampled at first stage and buildings within blocks at the second. In a two stage-
cluster sampling, the auxiliary information can be available both for units and
for clusters. Estevao & Särndal (2006) show various alternatives to compute the
calibrated weights using a single step or a two steps approach.

5 A Simulation Study

In the previous sections we have formally evaluated the effect on both the calibrated
weights and the resulting calibration estimator of measurement errors affecting the
sample auxiliary information. In this section we perform a simulation experiment.
In detail, a finite population of size N = 2000 units was generated from log(y) =
1 + x + e, where x ∼ Gamma(5, 1) and e ∼ Normal(0, 1).

Without loss of generality we assume that the population is partitioned in 10
clusters, each having the same size Ni = 200. The tendency of the units in the
same cluster to resemble each other with regard to the Y variable is expressed by
the homogeneity coefficient τ = 0.52, see Särndal et al. (1992) (pag. 130).

From the population a simple random sampling without replacement of size n =
3 was taken. For each cluster i ∈ Uc = {U1, .., Uc}, we have randomly generated
the measurement errors from a normal distribution with mean and variance equal
to mi and νi respectively. In order to evaluate the expectation Em(wi|sc), the
hypothetical observational process regarding the all population has been repeated
B = 300 times.

Given the clusters sample sc = (1, 2, 3), we begin by evaluating the effect of
measurement errors on the calibrated weight of 1 th cluster. Let us suppose that
the measurement model parameters are the same for each sample cluster, that is
m1 = m2 = m3 = m and ν1 = ν2 = ν3 = ν = 1. Different values of m have been
used

m = (−1,−0.75,−0.5,−0.25, 0, 0.25, 0.5, 0.75, 1, 2, 3, 4, 5)

12



The result is reported in Figure 1, where the horizontal line represents the true
calibrated weight w∗

1 = 3.27 obtained in absence of measurement errors. With
regard to the calibrated weight curve characterized by m1 = m2 = m3, if the
sample clusters expected measurement values reproduce the true values (i.e. m =
0) then w1 is approximately unbiased for w∗

1. If m < 0 then w1 overestimates w∗
1.

Viceversa if m > 0.
Suppose now that the interviewer effect corresponding to the first cluster in-

creases, while the interviewer effect of the remaining sample clusters does not
change. More specifically, we assume that m1 = 2,m2 = m3. As Figure 1 shows
the curve shifts down, then the calibrated weight wi underestimates w∗

1 for m > −1.
Besides, when m1 = 2,m2 = m3 = −1 the weight w1 is approximately unbiased
for w∗

1 since in the approximation

Em(wi|sc) ' w∗
i +

∑
j∈sc

∂wi

∂txj

∣∣∣∣
P0

µj for i = 1 (21)

the second term on the right side is near to zero. Then, the bias in the calibrated
weight wi could be zero in spite of the expected measurements values on elements
do not agree with the true values. In order to investigate the dependence of (21)
from the sample clusters sizes, suppose to increase the size of 1 th cluster setting
N1 = 300, N2 = N3 = 150. The calibrated weight curve shifts down again, since
the 1 th cluster interviewer effect is intensified by the larger sample size N1.

The above simulation has been repeated for different values of the sample
clusters measurement errors variance. The results are reported in Table 1 as ν
increases for different values of m. As Table 1 shows, the effect of the measurement
errors variability on the calibrated weight w1 is negligible.

Table 1: Calibrated weight for 1th cluster in the sample sc = (1, 2, 3), as the
sample clusters measurement errors variability ν increases and for different
values of m.

m ν = 0.5 ν = 1 ν = 2 ν = 5 ν = 10
−1 4.09 4.09 4.08 4.13 4.08
0 3.27 3.27 3.26 3.27 3.32
1 2.72 2.73 2.73 2.73 2.73
4 1.81 1.81 1.81 1.80 1.82

Next, we proceed to evaluate the Bias and the Mean Square Error of the cal-
ibration estimator (15). More specifically, assuming that the measurement model
parameters are the same for each population cluster (mi = m, νi = ν = 1), the

13



Figure 1: Calibrated weight for 1th cluster in the sample sc = (1, 2, 3).

relative bias of t̂y is reported in Figure 2. Its expression is given by

RB =
Bias(t̂y)

ty
100

In Figure 3, a measure of relative efficiency given by

RE =

√
MSE(t̂y)

MSE(t̂y,ht)
(22)

is shown, where MSE(t̂y,ht) represents the Mean Square Error of Horvitz-Thompson
estimator.

Figure 2 shows that, if mi = m = 0 for each population cluster then t̂y will
be approximately unbiased for the Y variable total. Otherwise, for mi = m < 0
since the calibrated weights overestimate w∗

i the calibration estimator t̂y will have
a positive bias. Viceversa for mi = m > 0. If we assume that m1 = 2,mi = m
for each i 6= 1 then the bias decreases for m < −0.25 and m > 2 while increases
for −0.25 < m < 2. In the former case (m < −0.25) a positive interviewer
effect for the first cluster partially balances the negative interviewer effects of
the remaining clusters. Clearly, as shown in Figure 2, this effect will be more
enhanced if the 1 th cluster size is larger than the others. We show it setting
N1 = 300, N2 = N3 = 150, Ni = 200 for each i 6= (1, 2, 3).

14



Figure 2: Relative Bias of calibration estimator t̂y.

The performance of the calibration estimator (15), evaluated in terms of Mean
Square Error, is reported in Figure 3. If mi = m, νi = ν = 1 for each popula-
tion cluster, the relative efficiency measure exhibits a parabolic behavior whose
minimum equal to 1.4 corresponds to the measurement model parameter m = 0.
Under such a condition, since the estimator (15) is approximately unbiased the
measure (22) becomes a ratio between two variances. If the interviewer effect of
first cluster increases (m1 = 2) then the Mean Square Error shifts up for m < 2
because of the increase in the estimator bias. Moreover, if we increase also the
cluster size setting N1 = 300, N2 = N3 = 150, Ni = 200 for each i 6= (1, 2, 3), the
relative efficiency curve shifts down below the other curves for m > 2. Under such
a circumstance, while the measurement model parameters corresponding to the
population clusters i ∈ Uc for each i 6= 1 increase (m = 3, 4, 5), the 1 th cluster
model parameter remains constant (m1 = 2). Moreover, its effect on the estimator
accuracy will be more enhanced because of the larger cluster size N1 = 300. Such
a circumstance implies a gain of efficiency for m > 2.

Note that, in absence of measurement errors and assuming that the clusters
have the same size Ni = 200, the relative efficiency of the calibration estimator is
less than one and equal to 0.08. As previously stressed, in presence of measurement
errors (i.e. mi = m = 0) the relative efficiency increases to 1.4. Since the estimator
(15) is approximately unbiased if the expected measurements values reproduce the
true values, the loss of efficiency comes from the variability and the correlation
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between measurements obtained from the same interviewer. As a consequence, the
calibration estimator is not more efficient than the Horvitz-Thompson estimator
that ignores such a information.

Figure 3: Relative Efficiency of calibration estimator t̂y.

6 Conclusions

The basic idea of the calibration approach is to modify the original sampling design
weights di using the available auxiliary information. In this paper, the total tx∗

is assumed to be accurately known while the X∗ sample values are affected by
measurement errors. As shown in Section 3, the bias in the calibrated weight wi

depends essentially on the following factors: (i) the composition of clusters sample;
(ii) the sample clusters sizes; (iii) the clusters measurement errors. The first two
factors influence the bias (10) through the quantities (λj , Nj) respectively, the third
one through the superpopulation model parameters. How these factors combine
each other determines the sign and the magnitude of the bias in the calibrated
weight.

As a matter of fact, the presence of measurement errors in X∗ affects the
accuracy of t̂y through the weights wi. In particular, as shown from (17) the bias
in t̂y mainly comes from the difference between the observed and the true total of
X∗, that is from the measurement bias of t̂x,ht as estimator of the known external
total tx∗ . In fact, as stressed in Section 4 if the same measurement model generates

16



both the sample values and the external total, then the measurement errors will
not tend to introduce bias into the calibration estimator but only lead to a loss
of efficiency. The variance of t̂y is composed by two components. The first one
depends on sampling design, the second one comes from the variability and the
correlation between measurements obtained from the same interviewer.

In conclusion, as shown both formally and via simulation, the presence of mea-
surement errors can eliminate the major efficiency of the calibration estimator
respect to the Horvitz-Thompson estimator that ignores the available auxiliary
information. Formally, the use of calibration is justified if the relative efficiency
measure (22) is less than one. Such a circumstance happens if the bias and the
variability increase in the estimator due to measurement errors does not elimi-
nate completely the variance reduction due to calibration. Clearly, the final effect
depends on the characteristics of the finite population regarding the relationship
between X∗ and Y , as well as the measurement errors generating mechanism. In
fact, the larger is the correlation between X∗ and Y the larger the benefits in terms
of Mean Square Error of the calibration, and then the larger the tolerance level for
the measurement errors. On the other side, if the population is not well described
by a linear regression model, the improvement in terms of variance reduction on
the Horvitz-Thompson estimator is modest and it can be easily compensated by
the loss of efficiency due to measurement errors. Then, if the X∗ sample values are
of poor quality the calibration approach could not bring to any gain of efficiency.
In such circumstances, estimators that ignore such a information are preferable.
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Appendix

In this appendix we derive the variance of the calibration estimator t̂y. Such a
variance is shown to be composed of two components

var(t̂y) = varmEp(t̂y) + Emvarp(t̂y)
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Consider each of these separately. With regard to the first component, we have

varmEp(t̂y) = varm [ty + B(tx∗ − tx)]

= varm [B(tx∗ − tx)]

' varm

[ ∑
i∈Uc

ai[txi − (tx∗i + Ni(bi + δ))]

]

=
∑
i∈Uc

∑
j∈Uc

aiajcovm(txi , txj )

=
∑
i∈Uc

a2
i varm(txi) +

∑
i∈Uc

∑
j 6=i∈Uc

aiajcovm(txi , txj )

where using (18) we have set ai = ∂
∂txi

[B(tx∗ − tx)]
∣∣∣∣
P1

.

The variability induced by the sampling design is represented by

Emvarp(t̂y) = Emvarp

[
t̂y,greg + B̂(tx∗ − tx)

]
= Em

[
varp(t̂y,greg)

]
+ Em

[
(tx∗ − tx)2varp(B̂)

]
+2Em

[
(tx∗ − tx)covp(t̂y,greg, B̂)

]
= A1 + A2 + A3 (23)

where

A1 ' Em

 ∑
i∈Uc

∑
j∈Uc

(
didj

dij
− 1

)
EiEj


=

∑
i∈Uc

∑
j∈Uc

(
didj

dij
− 1

)
Em(EiEj)

is expressed by means of residuals Ei = tyi −Btxi and

A2 = Em

(tx∗ − tx)2∑
i∈Uc

t2xi

∑
i∈Uc

∑
j∈Uc

(
didj

dij
− 1

)
(txiEi)(txjEj)


=

∑
i∈Uc

∑
j∈Uc

(
didj

dij
− 1

)
Em

[
(tx∗ − tx)2txiEitxjEj∑

i∈Uc
t2xi

]
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With regard to the term A3 in (23), note that

covp(t̂y,greg, B̂) = Ep[(t̂y,greg − Ep(t̂y,greg))(B̂ − Ep(B̂))]

' Ep[(t̂y,greg − ty)(B̂ −B)]

since t̂y,greg and B̂ are approximately unbiased for ty and B respectively. For
sample size large enough, the covp(t̂y,greg, B̂) can be approximated by the covari-
ance between their linear approximations at the point P1 = (ty, tx, txy, tx2). Then

covp(t̂y,greg, B̂) '
covp(t̂y,ht, t̂x2,ht)

tx2

−
BCovp(t̂y,ht, t̂xy,ht)

tx2

+

−
BCovp(t̂x,ht, t̂x2,ht)

tx2

+
B2covp(t̂x,ht, t̂xy,ht)

tx2
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