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Abstract

In several European countries, including Germany, Italy and Spain, the
flag carriers typically connect national airports to major foreign airports using
a couple of national hubs. If one airport often experiences congestion due to
airport capacity restrictions, then, beyond adopting the necessary air traffic
flow management measures, it is advisable to redirect some demand from the
more congested airport to the less congested one.

The purpose of this paper is two-fold.
First, we present an original aggregate model for estimating delays. The

model we propose, in the domain of Air Traffic Flow Management models,
extends previous approaches by simultaneously taking into account three im-
portant issues: (i) the model explicitly incorporates uncertainty in the airport
capacities using scenarios; (ii) it also considers the trade-off between airport
arrivals and departures, crucial issue in any hub airport; and (iii) it takes into
account the interactions between the two hubs.

The second aim is to provide a quantitative appreciation of the overall
capacity gain to be achieved through reallocation of demand. This can be
indirectly evaluated by a measure of the overall delays: a major reduction in
delays will obviously indicate an increase in the overall capacity of the system.

Computation of numerical instances clearly shows in quantitative terms
the benefits of demand re-allocation.

Keywords: ATFM model, hub and spoke operations, stochastic programming,
strategic flow management, decision analysis.
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1 Introduction

The worldwide growth in air traffic during the last several decades has been dra-

matic. As a result, air traffic management has become increasingly crucial. Air

Traffic Management (ATM) consists of all processes that support the goal of safe,

efficient, and expeditious aircraft movement. In addition to the tactical separation

services provided by Air Traffic Control, a more “macroscopic” management of traf-

fic flows is used to address system-wide efficiency. Generally speaking, Air Traffic

Flow Management (ATFM) considers strategic procedures which aim to detect and

resolve demand-capacity imbalances by adjusting aggregate traffic flows to match

scarce capacity resources. ATFM initiatives can be classified according to their time

horizon (see [18]). Long-term initiatives, such as the construction of new runways

typically aim to increase capacity. Medium-term approaches, such as the use of slot

auctions or congestion pricing, are mostly administrative or economic in nature,

and try to alleviate congestion by modifying spatial or temporal traffic patterns.

Short-term approaches consider the operational adjustment of air traffic flows to

match available capacity, and typically span a planning horizon that is less than

24 hours. These operational ATFM initiatives attempt to mitigate the congestion

that may arise from unforeseen disruptions as efficiently as possible. Such periods

of congestion arise frequently when bad weather causes sudden capacity reductions.

The most popular approach, by far, in resolving these short-term periods of conges-

tion, has been the allocation of ground delays. In the U.S., for instance, the FAA

implements approximately 500 Ground Delay Programs (GDPs) per year. Ground
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delays refer to the idea that flights are delayed prior to their departure; the reason

being that it is generally both safer and less costly to delay flights on the ground,

rather than flights that are airborne. The Ground Holding Problem considers the

development of strategies for allocating ground delays to aircraft, and has received

considerable attention (see [2, 6, 16] to mention just a few of the most recent ones).

Yet in spite of their prominence and the considerable focus on the development

of appropriate decision support tools, several issues with regard to the allocation of

ground delays remain wide open. A first issue is the stochastic nature of the capac-

ity reductions (e.g. due to bad weather conditions), and the allocation of ground

delays in this setting. During September and October 2002, for instance, 111 GDPs

were executed in the U.S. Only 17% of these GDPs ran to their completion (that

is, according to the initial plans implemented by air traffic managers). This statis-

tic clearly shows that most GDPs are revised during operations, since air traffic

managers are generally not able to foresee capacity fluctuations. As such, decision

models that explicitly take into consideration uncertainty may improve ATFM op-

erations. For these reasons the proposed model explicitly incorporates uncertainty

in the airport capacity. This important issue will be addressed through the use of

scenarios. The model discussed in this paper is based on a generalization of the

traditional ground holding model, known as the capacity allocation model. Unlike

most models that are concerned only with arrival capacity, the proposed model will

also take into account a second important issue, i.e., the possible trade-off between

arrival and departure capacities, that are absolutely critical in most hub airports.

Finally, a third issue is the network impact that results when ground delays are im-
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posed at different, interdependent airports. In the U.S., for instance, there have been

situations during which 10 GDPs were executed simultaneously (see [17]). Clearly

the use of GDPs, which only address capacity reductions at a single airport, do not

take into account the system-wide effects of these interdependent decisions. In the

European airport network, it is quite common that a flag airline of a Nation uses a

couple of hub airports. This is the case of Spain, Germany and Italy, just to men-

tion a few. The hubs are the airports most responsible for propagating delays to the

remaining airports of the network. The model proposed in this paper, allows for an

exchange of flows between the hub airports of the same Nation. This exchange of

flows is something that is already practiced by some airlines. The key concept is that

for passengers that use the hub airports only for transfer purposes, it is absolutely

irrelevant in which airport they have to transfer, as long as there is a good flight

connection. Therefore, to some extent, at least a partial exchange of traffic can be

moved from one hub airport to the other one. Although we do not fully take into

account all the network consequences, we believe that considering the (couple of)

hubs incorporates most of such consequences. To better address these three issues,

namely: uncertainty, arrival-departure capacity trade-off and network effects, we

decided to build a macroscopic model rather than a microscopic one. In other words

the proposed model will suggest how many flights should be delayed during each

time period under consideration, rather than providing detailed suggestions on how

much delay should be imposed on each single flight.

It is also important to note that this macroscopic approach is perfectly consistent

with the Collaborative Decision-Making (CDM) paradigm in ATFM (see [8]). The
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models presented in this paper concur with this approach due to their focus on

aggregate capacities, as opposed to the consideration of individual flights. Given

these aggregate capacity profiles, CDM procedures could be used to distribute the

slots among individual flights. Notice that in the extreme case where all operations

were run by a single airline, our model will find how many flights should be delayed

(and this is a decision that belongs to the ATFM Authority) while the airline will

decide which individual flights should be delayed (this is a decision that belongs

to the airline). In the more realistic case where more than one airline is using the

airport, then there will also be the need of an intermediate decision, i.e., how many

flights of each company should be delayed. This again could be resolved through

CDM measures. Typically, at a European hub airport, half of the traffic is carried

out by one company (the flag company).

In the paper we will also test our model on a few numerical instances in order to

provide a quantitative evaluation of the capacity gain that can be achieved through

reallocation of demand. An indirect measure of it will be a major reduction of the

overall delays. Computational results clearly confirm these expectations.

The paper is organized as follows: In Section 2, we formally describe the capacity

allocation problem. In Section 3, we present a formulation for the tactical capacity

allocation problem. Computational experiments and analyses of these models are

given in Section 4. Finally, Section 5 contains conclusions and indications for future

research.
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2 Problem Description

In this paper, we propose a multi-airport capacity allocation problem to manage

congestion phenomena in ATFM. Generally speaking, our objective is to compute

an optimal mix of arrivals and departures for a given network of airports, that is, a

mix of arrivals and departures that minimizes the total delay over all the airports

during the periods of congestion.

To be more precise, we consider a given set of airports K and, for each airport,

a given demand for both arrivals and departures during a time horizon [0, T ] for

which we expect congestion. The time horizon is discretized into time periods. The

resulting demands can be represented by set of parameters Dh,k
τ , where h denotes

the origin airport, k the destination airport, and τ the requested take-off time. If

we use FT h,k to represent the flight time between airports h and k, Dh,k
τ implies a

demand for departures at airport h during time period τ and a demand for arrivals

at airport k during time period τ + FT h,k. Later on in this paper, Dh,k
τ will be used

to denote the cumulative demand of departures up to time period τ . We represent

the airport capacity by a so-called airport capacity envelope, which incorporates

the trade-off between arrivals and departures. Specifically, for each airport k ∈ K

and time period t ∈ {1, . . . , T} the airport capacity envelope E(k, t) denotes the

feasible combinations of arrivals and departures at airport k during time period t.

We note that a pair of airports is connected if there exists a non-zero air traffic flow

between the two airports. To summarize, the resulting problem can now be stated as

follows. Given the parameters described above, compute for any time period t and
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for any airport of the network k the delay-optimal flow of in-bound and out-bound

flights while satisfying the capacity constraints on the mix of arrivals and departures

at each airport of the network during each time period. The resulting model can

incorporate both deterministic and stochastic problem data.

In the Deterministic Case, all problem parameters (e.g. the airport capacities

and the en-route flight times) are assumed to be deterministic and known. There are

several reasons to study a deterministic problem. First, there are situations where

it is reasonable to assume that capacities can be forecast with little error. This is

typically true for airports located in areas where changes in weather conditions are

relatively predictable and where weather patterns, once established, remain stable

for longer periods of time. Another motivation for the use of deterministic models is

that they form the basis for the development of stochastic models. The deterministic

capacity allocation model was first introduced by Gilbo (see [12]), who proposed an

optimisation model to resolve short-term periods of congestion. Subsequently, this

model was extended (see [13]) by considering both airport (i.e. runway) and fix ca-

pacities jointly as a single system resource. In related papers (see [9, 10]), Dell’Olmo

and Lulli proposed capacity allocation models that incorporated both the single-

and the multi-airport version of the problem. They proposed an efficient dynamic

programming formulation for the single-airport capacity allocation problem. The

single-airport capacity allocation problem has also been studied within the context

of Collaborative Decision Making by Hall (see [15]). This approach was based on a

constraint-coordinated decomposition of the airport capacity allocation problem. In

this model, airlines are decision-makers, that adjust their arrival-departure mix at
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the airport during a ground delay program based on their internal trade-offs. The

model was analyzed using a simulation study that investigated the impact of the

mentioned methodology on the air transportation system during GDPs.

In the Stochastic Case, addressed in this paper, we consider situations where

airport capacity is uncertain. As a result, the airport capacity envelopes E(k, t)

are represented as random variables. In most stochastic programming applications,

however, a complete and accurate description of a complex stochastic process may

be difficult to obtain. As such, it is common to consider a finite set of scenarios,

where each scenario describes a possible trajectory of the random variables over

time. This assumption implies that we are assuming random variables with finite

support (see Birge and Louveaux [5]).

It is important to note that in the stochastic framework, the assignment of both

ground and airborne holding delays are used as control decisions to define the ap-

propriate mix of departures and arrivals. In fact, using exclusively ground delays

may lead to too conservative decision policies based on the worst case scenario.

The assignment of airborne holding delay allows a more efficient use of the airport

capacity and helps in hedging against uncertainty.

3 The Stochastic Programming Formulation

As discussed in the previous section, we assume that the information on the airport

capacity is given by a discrete time stochastic process {ωt}|T |t=1 defined on some prob-

ability space (Ω,F ,P). Under the hypothesis of a random vector with finite support,
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then Ω = (ω1, . . . , ωr) with probabilities p1, . . . , pr. Each scenario represents a re-

alization of the random variable corresponding to an elementary atom ω ∈ Ω. The

relationship between scenarios is represented via a scenario tree =, which captures

the evolution of all information trajectories over time. At any node of the tree, there

are several branches to indicate possible outcomes of the future which is modelled

by random variables (associated with each node of the tree). Such a construction

allows us to specify the events and probabilities in a natural way by conditioning

on the events leading up to the current stage. Each scenario is represented by a

path from the root node (at stage 1) to a leaf node (at stage T) of the scenario tree.

Note that with the exception of leaf nodes, all other nodes of the scenario tree may

belong to more than one scenario.

In our model, we assume that the flight time between each pair of airports is the

same for all the aircraft. In our aggregate model, this hypothesis is reasonable since

it does not introduce a too large approximation especially if we limit our attention

to commercial aviation airports, as in our case.

The deterministic version of this problem has been formulated in [10]. Here,

we formulate the problem as a multi-stage stochastic integer program, using the

following notation:
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S ≡ is the set of scenarios each denoted by s,

Dh,k
t ≡cumulative requested number of departures from airport h to airport k up to time t,

FT h,k
s ≡ flight time between airports h and k in scenario s,

K ≡ set of airports,

T ≡ set of decision time intervals,

Es(k, t) ≡ capacity envelope of airport k at time t in scenario s,

ps ≡ probability of scenario s,

cg ≡ cost due to one period of ground holding,

ca ≡ cost due to one period of airborne holding.

Given this notation, the decision variables can be defined as follows:

dh,k
s (t): the number of departures from airport h to airport k by time t

in scenario s,

ak,h
s (t): the number of arrivals at airport k from airport h by time t in

scenario s.

The decision variables represent cumulative numbers of departures and arrivals at

the given airport for each time period. Therefore, they are non-decreasing func-

tions of the time periods. The resulting objective function is the expected weighted

average delay (to be minimized).

Min
∑
s∈S

ps

∑

k,h∈K,t∈T
[ca(a

k,h
s (t)−Dh,k

t−FT h,k
s

)− (cg − ca)(d
k,h
s (t)−Dh,k

t )]
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The decision variables are subject to the following conditions:

(
∑

k∈K
dh,k

s (t)− dh,k
s (t− 1),

∑
j∈K

aj,h
s (t)− aj,h

s (t− 1)) ∈ Es(h, t)

∀h ∈ K, ∀t ∈ T , ∀s ∈ S.

(1)

dh,k
s (t) ≤ Dh,k

t ∀k, h ∈ K, ∀t ∈ T \ {T}, ∀s ∈ S. (2)

dh,k
s (T ) = Dh,k

T ∀k, h ∈ K, ∀s ∈ S. (3)

dh,k
s (t) = dh,k

s′ (t) ∀k, h ∈ K, ∀t ∈ T , ∀s ∈ S ∀s′ ∈ Bt
s. (4)

ah,k
s (t) ≤ dh,k

s (t− FT h,k
s ) ∀k, h ∈ K, ∀t ∈ T \ {T} ∀s ∈ S. (5)

ah,k
s (T ) = dh,k

s (T − FT h,k
s ) ∀k, h ∈ K, ∀s ∈ S. (6)

ah,k
s (t) ≥= ah,k

s (t− 1) ∀k, h ∈ K, ∀t ∈ T ∀s ∈ S. (7)

dh,k
s (t) ≥= dh,k

s (t− 1) ∀k, h ∈ K, ∀t ∈ T ∀s ∈ S. (8)

dh,k
s (t), ah,k

s (t) ∈ Z+ ∀k, h ∈ K, ∀t ∈ T , ∀s ∈ S. (9)

where Bs
t represents the set or bundle of scenarios that are indistinguishable from

scenario s at time t, i.e. all scenarios u for which ωu
τ = ωs

τ for all τ = 1, . . . , t.

Therefore, for each node n of the scenario tree = uniquely defined by the scenario

s and time t, the bundle of scenarios is the set of all the scenarios, i.e. root-leave

paths passing through the node n ∈ =.

The first set of constraints represent capacity constraints, where the first term on

the left hand side equals the total number of flights in arrival while the second term

equals the total number of departures at the considered airport h in the specified time

period t. We here suppose that the airport capacity is unbounded at the last time
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period T in order to assure problem feasibility. The set of constraints 2 and 3 states

that all of the flight demand must be satisfied by means of flight delays. Constraint 4

represents the non-anticipativity requirement. Constraints 5 and 6 are the coupling

constraints. These constraints explicitly “link” together the arrival and departure

variables, where the connection follows from the flights demand. Constraints 7 and

8 state that decision variables are time-periods non-decreasing functions. Finally,

the integer requirements on the decision variables are stated.

As in all stochastic programming problems, the non-anticipativity constraints

state that decisions depend only on information revealed in the past and not in the

future, i.e. all scenarios with same history until the t-th stage should result in the

same decisions until this stage. Therefore, we make decisions before realizing the

random outcomes of airport capacity and origin-destination flight times.

We recall that the stochastic programming formulation presented above, with

respect to its deterministic counterpart ([10]) does also formalize the assignment of

airborne holding delay as a control action. Therefore a trade off exists between the

assignment of ground delay, which is certain, and the possible assignment of airborne

holding delay, which is uncertain and imposed only in case of a capacity reduction.

Varying the ratio ca/cg, a wide range of operational “situations” can be defined. For

big values of the ratio (ca >> cg), the problem is equivalent to a formulation (OGH

model) where the ground delay is the only control action, as opposed to the case

with ca ≤ cg where the only one control action would be the assignment of airborne

holding. Obviously, this last operational situation is rather unrealistic while the

former one leads to too conservative solutions based on the worst scenario (in terms
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od capacity evolution).

Finally, note that our approach could also accommodate, at least in principle,

uncertainty in the flight times FT h,k. This would more accurately reflect ATFM

operations. More specifically, it will be useful to address issues related to sector

congestion which are of particular relevance within the European ATFM context.

However, this extension is not pursued here.

4 Settings for experimental analysis

For our experimental analysis, we consider a small network of Italian airports com-

posed of two hubs, Rome Fiumicino and Milano Malpensa, and a set of spokes.

We are going to simulate different operational conditions. Data on the arrivals and

departures airports’ demand and traffic flows, have been provided by ENAV, while

the capacity envelopes have been generated based on simulation using the aircraft-

sequencing model described in [7]. We focused on these two airports because they

represent a typical instance we want to consider.

The capacity envelope is represented in the model as random variable, in order

to capture its uncertain evolution over time. Since few data are available at the

moment, we use randomly generated instances. In particular, we consider the case

where only one airport has uncertain capacity while the capacity of the other air-

port takes on deterministic values. In our analysis, we have also assumed that the

capacity envelopes do not change over time up to a scale factor. A possible evolu-

tion of the scale factors is represented by a scenario. The scenario tree used in our
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computational analysis, is schematically depicted in Figure 1.

�
�

�
�

�
��

�
�	

�
�


�
��

�
�

�

�

����

� ��

���

��� �

����

Figure 1: Scenario Tree.

In particular, the conditional probability for any branch is denoted by pn, so that the

other branch has conditional probability 1− pn, where n denotes a node of the tree.

pn is randomly chosen from the uniform [0,1] distribution. By choosing alternative

values of pn, as well as various values of the capacity scale factor, we generated

different problem instances.

4.1 Computational Experience

In this section we show the potential benefits of hedged solutions with respect to

deterministic counterpart. To solve both the stochastic formulation and its deter-

ministic counterpart we used CPLEX 7.0 Branch and Bound method (CPLEX-MIP),

implemented using AMPL as the modelling language. A CPLEX default relative
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tolerance of 0.0001 is set. We run our experiments on a two-processor, 1 GB RAM

SUN Ultra 80 workstation.

The stochastic model computes here-and-now decisions, i.e. decisions that are

implemented before the realizations of the random variable becoming known. De-

cisions depend only on the history of the system, that is, on the values assumed

by the random variables in the previous stages (time periods). We here introduce

two measures to gauge the value of stochastic programming: the expected value of

perfect information (EVPI) and the value of the stochastic solution (VSS). These

are standard measures to evaluate the benefits of taking into account uncertainty,

see Birge and Louveaux [5]. The EVPI measures the maximum amount a decision

maker would be ready to pay in return for complete and accurate information about

the future. Having perfect knowledge of airport capacity would enable the decision

maker to devise appropriate (best) decision policies. We can quantify its value to

see the importance of having accurate weather forecast and consequently airport ca-

pacity estimations. The VSS measures the cost of ignoring uncertainty in making a

planning decision. This value is computed comparing the value obtained by solving

the stochastic program with the ”expected value” of the deterministic solution, ob-

tained by plugging the deterministic solution of the program which replaces all the

random variables with their expected values, into the original probabilistic model.

We run several computational tests, using different demand patterns (named

d1, · · · , d5) and two different discrete probability distributions, one with more equiprob-

able scenarios (p1) and the other with the following probabilities for each scenario:

0.12, 0.48, 0.225 and 0.175. Moreover, the evolution of airport capacities is modelled
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by a capacity scale factor whose evolution in represented by the scenario tree de-

picted in Figure 1. The final values of the airport capacity factor, for each scenario,

are: 1.2 for the first scenario, 0.85 for the second scenario, 0.55 and 0.3 for the third

and the fourth scenario respectively.

We summarized the results in the following table where we report the instance,

the value of the stochastic solution (Stoc), the solution value (Det) of the determin-

istic program which replaces all the random variables with their expected values, the

perfect information solution (PIS), the expected value solution (EVS) and finally

the expected value of perfect information (EVPI) and the value of stochastic solu-

tion (VSS). Note that, the deterministic program, from now on, is the mathematical

program which replaces all the random variables with their expect value.

The value of the stochastic solution is here always larger than the value of the

corresponding deterministic solution. This is because the unit cost of airborne hold-

ing delay is higher than the unit cost of ground delay (the ratio ca/cg was set to

1.2).

The values on which we should focus more are the VSS values. This statistic

gives a measure of the benefits of the solution of the stochastic program. Even

though such values are modest, 5.74 % on average for the instance reported in Table

1, the benefits could be significant given the delays assigned every year; its annual

cost was quantified by IATA in Euro 5.73 billion (year 1999).

We here give some more insights on the stochastic program solution, describing

into details the solution of the d2p2 instance.

Figure 2 and Figure 3 depict the stochastic solutions for the two airports (hubs)
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Instance Stoc Det PIS EVS EVPI VSS

d1 p1 879 720 760 918 15,7 4,3

d2 p1 1050 916 910 1108 15,4 5,2

d3 p1 857 758 761 886 12,6 3,3

d4 p1 844 732 742 905 13,7 6,7

d5 p1 1073 916 910 1155 17,9 7,1

d1 p2 934 751 800 977 16,8 4,4

d2 p2 1167 893 971 1253 20,2 6,9

d3 p2 940 793 817 976 15,1 3,7

d4 p2 923 769 795 998 16,1 7,5

d5 p2 1159 953 971 1264 19,4 8,3

Table 1: EVPI and VSS statistics
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Figure 2: Departures and Arrivals at airport 1 (stochastic solution).

we are considering. The upper histograms show the cumulative departures while the

lower histograms depict the cumulative arrivals. The red thicker line represents the

cumulative demand. The other colored lines represent scenario solutions, according

to the legend reported below the histogram. For any time period (reported on the

x-axis), the difference between the demand and the solution represents the number

of delayed flights at that period of time. For instance, at time period 5 (stage 5)

at airport 1 we have 52 (41) departures (arrivals) delayed in case scenario 1 and 2

unfold and 30 (21) departures (arrivals) delayed otherwise.

We recall that, only the capacity of airport 1 is affected by uncertainty, while

capacity of airport 2 is deterministic. However, due to the connection (in terms of

exchange of flows of flights) between the two airports, airport 2 solution is correlated

to the scenario that is unfolding in airport 1. Therefore, also airport 2 has scenario
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solutions, even though there is much less variability among them.
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Figure 3: Departures and Arrivals at airport 2 (stochastic solution).

In the following table, we compare the stochastic solution and the determinis-

tic solution. We report the departures (Dep) and the arrivals (Arr) for both the

stochastic (S) and the deterministic (D) solutions in the first two time periods. We

report only the first two time periods because those are the here-and-now solutions

for the stochastic program.

First of all, at airport 2 the stochastic solution suggests a higher number of de-

partures with respect to the deterministic counterpart. Indeed, some of these flights

may incur in an airborne holding delay if scenarios which represent a capacity reduc-

tion unfold. On the other hand, if a scenario with enough capacity actually occurs,

all the capacity is going to be used. In other words, the scope of a greater number of

departures, in the stochastic framework, is to have a reservoir of incoming flights in
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Airport 1 Airport 2

Time period Dep D Dep S Arr D Arr S Dep D Dep S Arr D Arr S

1 23 25 31 30 32 34 33 31

2 23 27 31 29 32 33 33 32

Table 2: Stochastic vs deterministic solution (for the first two time periods)

order to avoid that some capacity is going to be wasted. Analogously, at airport 1,

the stochastic solution suggests a higher number of departures with respect to the

deterministic solution. Therefore, first stage stochastic solution is less restrictive,

in terms of ground delay assignment, than the corresponding deterministic solution.

This represents a way of hedging against uncertainty. Of course, even though this

is quite general, we cannot conclude that this is always the case, since it depends

on the cost structure, demand patterns, airport capacities and their evolution over

time.

4.2 Effect of Strategic Aircraft Flow Re-allocation

The stochastic model proposed in §3 is envisioned within the framework of Air

Traffic Flow Management in order to detect strategies to solve or reduce periods of

congestion. However, the model can be used to evaluate the effect/benefit of possible

reallocation of flows of flights. The scope would be a more efficient use of available

resources and the consequent alleviation of airport congestion. Obviously, delay

reduction at one airport comes at a cost, which can be the increase of congestion at
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the other airport. Such reallocation of flights can take place even within the same

airlines, especially for the case study we are considering, i.e., two national hubs.

Through the following example, we show the benefits of moving a certain number of

flights from one hub airport to the other one. In Figure 4 and Figure 5, we depict

the stochastic solution for the instance d2p2, where we reallocate 20% of flights from

airport 1 to airport 2. The reallocation of flights induces delays at airport 2 but

drastically reduce those at airport 1.
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Figure 4: Departures and Arrivals at airport 1 after aircraft flow re-allocation.

More specifically, at airport 1 the number of delayed departures (arrivals) reduces

from 36.4 (36.9) to 20.2 (26.3) flights per period, while at airport 2 the number of

delayed departures (arrivals) increases from 16.6 (14.7) to 33.2 (14.4). These values

are on average computed across all the time periods. Even though the number

of delayed arrivals at airport 2 increases substantially, the net reduction in the
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Figure 5: Departures and Arrivals at airport 2 after aircraft flow re-allocation.

number of delayed flights is positive, about 9% in this case. The decision on the

amount of flights to move from one hub to the other can be formalized as a one

parameter optimization problem. To give an idea, in Figure 6 we plot the stochastic

solution value (on the y-axis) for the d2p2 instance for different percentage of flights

reallocation (reported on the x-axis).

Finally, we have also to note that moving flights from airport 1, whose capacity

is uncertain, to airport 2 whose capacity is deterministically known helps in hedging

against uncertainty. Indeed, the effects od uncertainty are attenuated as it can be

verified by comparing both the values of the expected value of perfect information

(EVPI) and of the value of stochastic solution (VSS) before and after the flights

reallocation. Before moving flights to airport 2, the EVPI and the VSS are 20.6%

and 6.9% respectively which are reduced to 15.6% and 4.4% after the reallocation.
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Figure 6: Reallocation benefits.

5 Conclusions

In this paper we addressed several issues within the domain of Air Traffic Manage-

ment. First of all, we developed a stochastic programming model, named Stochastic

Multi-airport Capacity Allocation Model, which extends previous Air Traffic Flow

Management approaches in several directions. The proposed model takes into ac-

count three important issues: (i) the model explicitly incorporates uncertainty in

the airport capacities using scenarios; (ii) it also considers the trade-off between

airport arrivals and departures, crucial issue in any hub airport; and (iii) it takes

into account the interactions between airports.

This last issue is of particular interest in Europe, where several countries have

their flag carriers which typically connect national airports to major foreign airports
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using a couple of national hubs. In this cases, especially if one of the hub airport often

experiences congestion due to airport capacity restrictions, then, beyond adopting

the necessary air traffic flow management measures, it is advisable to redirect some

demand from the more congested airport to the less congested one. The developed

model has been used to give a quantitative measure of the overall capacity gain to

be achieved through reallocation of demand.

Form our computational analysis, the benefits coming from explicitly modelling

uncertainty are evident. Moreover, it clearly appears that strategic aircraft flow

re-allocation is another possible control action, in addition to those proposed by the

ATFM stochastic model, which helps in hedging against uncertainty.
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