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Dipartimento di Statistica, Probabilità e Statistiche Applicate, “Sapienza” Univer-
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1 Introduction

We assume that we have a population of n0 individuals or objects. The
components of this population might be the set of healthy people during an
epidemic or the set of items being sold in a store, or even, say, melting ice
pack blocks. However even a coalescence of particles can be treated in this
same manner, leading to a large ensemble of physical analogues suited to the
method. The main interest is to model the fading process of these objects
and, in particular, to analyse how the size of the population decreases.

The classical death process is a model describing this type of phenomena
and, its linear version is analysed in [1], page 90. The most interesting feature
of the extinguishing population is the probability distribution

pk(t) = Pr {M(t) = k | M(0) = n0} , t > 0, 0 ≤ k ≤ n0, (1.1)

where M(t), t > 0 is the point process representing the size of the population
at time t. If the death rates are proportional to the population size, the
process is called linear and the probabilities (1.1) are solutions to the initial-
value problem

d
dtpk(t) = µ(k + 1)pk+1(t)− µkpk(t), 0 ≤ k ≤ n0,

pk(0) =

{
1, k = n0,

0 0 ≤ k < n0,

(1.2)

with pn0+1(t) = 0.
The distribution satisfying (1.2) is

pk(t) =
(

n0

k

)
e−µkt

(
1− e−µt

)n0−k
, 0 ≤ k ≤ n0. (1.3)

The equations (1.2) are based on the fact that the death rate of each compo-
nent of the population is proportional to the number of existing individuals.

In the non-linear case, where the death rates are µk, 0 ≤ k ≤ n0, equations
(1.2) must be replaced by

d
dt pk(t) = µk+1pk+1(t)− µkpk(t), 0 ≤ k ≤ n0,

pk(0) =

{
1, k = n0,

0 0 ≤ k < n0.

(1.4)

In this paper we consider fractional versions of the processes described
above, where fractionality is obtained by substitution of the integer-order
derivatives appearing in (1.2) and (1.4), with the fractional derivative called
Caputo or Dzhrbashyan–Caputo derivative, defined as followsdνf(t)

dtν = 1
Γ (1−ν)

∫ t

0

f ′ (s)
(t− s)ν ds, 0 < ν < 1,

f ′ (t) , ν = 1.

(1.5)

The main advantage of the Dzhrbashyan–Caputo fractional derivative over
the usual Riemann–Liouville fractional derivatives is that the former requires
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only integer-order derivatives in the initial conditions. The population size is
governed by 

dν

dtν pk(t) = µk+1pk+1(t)− µkpk(t), 0 ≤ k ≤ n0,

pν
k (0) =

{
1, k = n0,

0 0 ≤ k < n0,

(1.6)

and is denoted by Mν(t), t > 0. The distribution

pν
k (t) = Pr {Mν(t) = k | Mν(0) = n0} , 0 ≤ k ≤ 0, (1.7)

is obtained explicitly and reads

pν
k (t) =



Eν,1(−µn0t
ν), k = n0,

n0∏
j=k+1

µj

n0∑
m=k

Eν,1(−µmtν)
n0∏

h=k
h6=m

(µh − µm)
, 0 < k < n0,

1−
n0∑

m=1

n0∏
h=1
h6=m

(
µh

µh − µm

)
Eν,1(−µmtν), k = 0, n0 > 1.

(1.8)

Obviously, for k = 0, n0 = 1,

pν
0 (t) = 1− Eν,1(−µ1t

ν). (1.9)

The Mittag–Leffler functions appearing in (1.8) are defined as

Eν,γ (x) =
∞∑

h=0

xh

Γ (νh + γ)
, x ∈ R, ν, γ > 0. (1.10)

For ν = γ = 1, E1,1(x) = ex and formulae (1.8) provide the explicit distri-
bution of the classical non-linear death process.

For µk = kµ the distribution of the fractional linear death process can be
obtained either directly by solving the Cauchy problem (1.6) with µk = k ·µ,
or by specialising (1.8) resulting in the following form

pν
k(t) =

(
n0

k

) n0−k∑
r=0

(
n0 − k

r

)
(−1)rEν,1(−(k + r)µtν). (1.11)

A technical tool necessary for our manipulations is the Laplace transform
of Mittag–Leffler functions which we write here for the sake of completeness:∫ ∞

0

e−zttγ−1Eν,γ(±ϑtν)dt =
zν−γ

zν ∓ ϑ
, R(z) > |ϑ| 1ν . (1.12)

Another special case is the so-called fractional sublinear death process
(for sublinear birth processes consult [8]) where the death rates have the form
µk = µ(n0 + 1− k). In the sublinear process, the annihilation of particles or
individuals accelerates with decreasing population size.
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The distribution pν
k(t), 0 ≤ k ≤ n0 of the fractional sublinear death

process Mν(t), t > 0, is strictly related to that of the fractional linear birth
process Nν(t), t > 0:

Pr {Mν(t) = 0 | Mν(0) = n0} = Pr {Nν(t) > n0 | Nν(0) = 1} . (1.13)

In general, the connection between the fractional sublinear death process and
the fractional linear death process is expressed by the relation

Pr {Mν(t) = n0 − (k − 1) | Mν(0) = n0} (1.14)
= Pr {Nν(t) = k | Nν(0) = 1} , 1 ≤ k ≤ n0.

This shows a sort of symmetry in the evolution of fractional linear birth and
fractional sublinear death processes.

For all fractional processes considered in this paper, a subordination re-
lationship holds. In particular, for the fractional linear death process we can
write that

Mν(t) = M(T2ν(t)), 0 < ν < 1, t > 0, (1.15)

where T2ν(t) is a process for which

Pr {T2ν(t) ∈ ds} = ds q(s, t), (1.16)

is a solution to the following Cauchy problem (see [5])
∂2ν

∂t2ν q(s, t) = ∂2

∂s2 q(s, t), t > 0, s > 0,
∂
∂tq(s, t)

∣∣
s=0

= 0,

q(s, 0) = δ(s), 0 < ν ≤ 1,

(1.17)

with the additional initial condition

qt(s, 0) = 0, 1/2 < ν ≤ 1. (1.18)

In equation (1.15), M(t), t > 0, represents the classical linear death process.
We also show that all the fractional death processes considered below

can be viewed as classical death processes with rate µ · Ξ, where Ξ is a
Wright-distributed random variable.

2 The fractional linear death process and its properties

In this section we derive the distribution of the fractional linear death process
as well as some interesting related properties and interpretations.

Theorem 1 The distribution of the fractional linear death process Mν(t),
t > 0 with n0 initial individuals and death rates µk = µ · k, is given by

pν
k(t) = Pr {Mν(t) = k | Mν(0) = n0} (2.1)

=
(

n0

k

) n0−k∑
r=0

(
n0 − k

r

)
(−1)rEν,1(−(k + r)µtν),

where 0 ≤ k ≤ n0, t > 0 and ν ∈ (0, 1]. The function Eν,1(x) is the Mittag–
Leffler function previously defined in (1.10).
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Fig. 1 Plot of p0.7
n0 (t) (in black) and p1

n0(t) (in grey), both with n0 = 10.

Proof The state probability pν
n0

(t), t > 0 is readily obtained by applying the
Laplace transform to equation (1.6), with µk = µ · k, and then transforming
back the results, thus yielding

pν
n0

(t) = Eν,1(−n0µtν), t > 0, ν ∈ (0, 1]. (2.2)

When k = n0 − 1, in order to solve the related differential equation, we
can write

zνL{pn0−1} (z) = µn0
zν−1

zν + n0µ
− µ(n0 − 1)L{pn0−1} (z) (2.3)

⇔ L{pn0−1} (z) = µn0z
ν−1 1

zν + n0µ
· 1
zν + (n0 − 1)µ

⇔ L{pn0−1} (z) = n0z
ν−1

(
1

zν + (n0 + 1)µ
− 1

zν + n0µ

)
.

By inverting equation (2.3), we readily obtain that

pν
n0−1(t) = n0 (Eν,1(−(n0 − 1)µtν)− Eν,1(−n0µtν)) . (2.4)

For general values of k, with 0 ≤ k < n0, we must solve the following
Cauchy problem:

dν

dtν
pk(t) = µ(k + 1)

(
n0

k + 1

)
(2.5)

×
n0−k−1∑

r=0

(
n0 − k − 1

r

)
(−1)rEν,1(−(k + 1 + r)µtν)− µkpk(t),



6

Fig. 2 Plot of p0.7
n0−1(t) (in black) and p1

n0−1(t) (in grey). Here n0 = 10.

subject to the initial condition pk(0) = 0 and with ν ∈ (0, 1]. The solution can
be found by resorting to the Laplace transform, as we see in the following.

zνL{pk} (z) = µ(k + 1)
(

n0

k + 1

)
(2.6)

×
n0−k−1∑

r=0

(
n0 − k − 1

r

)
(−1)r zν−1

zν + (k + 1 + r)µ
− µkL{pk} (z).

The Laplace transform L{pk} (z) can thus be written as

L{pk} (z) (2.7)

= µ(k + 1)
(

n0

k + 1

) n0−k−1∑
r=0

(
n0 − k − 1

r

)
(−1)r zν−1

zν + (k + 1 + r)µ
· 1
zν + kµ

=
(

n0

k

) n0−k−1∑
r=0

(
n0 − k

r + 1

)
(−1)rzν−1

(
1

zν + kµ
− 1

zν + (k + 1 + r)µ

)

=
(

n0

k

) n0−k∑
j=1

(
n0 − k

j

)
(−1)j−1zν−1

(
1

zν + kµ
− 1

zν + (k + j)µ

)

=
(

n0

k

) n0−k∑
j=1

(
n0 − k

j

)
(−1)j zν−1

zν + (k + j)µ

−
(

n0

k

)
zν−1

zν + kµ

n0−k∑
j=1

(
n0 − k

j

)
(−1)j
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=
(

n0

k

) n0−k∑
j=1

(
n0 − k

j

)
(−1)j zν−1

zν + (k + j)µ
+

(
n0

k

)
zν−1

zν + kµ

=
(

n0

k

) n0−k∑
j=0

(
n0 − k

j

)
(−1)j zν−1

zν + (k + j)µ
.

By taking now the inverse Laplace transform of (2.7), we obtain the claimed
result (1.11).

Remark 1 When ν = 1, equation (1.11) easily reduces to the distribution of
the classical linear death process, i.e.

pk(t) =
(

n0

k

)
e−kµt

(
1− e−µt

)n0−k
, t > 0, 0 ≤ k ≤ n0. (2.8)

In the following theorem we give a proof of an interesting subordination
relation.

Theorem 2 The fractional linear death process Mν(t), t > 0 can be repre-
sented as

Mν(t) i.d.= M(T2ν(t)), t > 0, ν ∈ (0, 1], (2.9)

where M(t), t > 0 is the classical linear death process (see e.g. [1], page
90) and T2ν(t), t > 0, is a random time process whose one-dimensional
distribution coincides with the solution to the following fractional diffusion
equation 

∂2ν

∂tν q(s, t) = ∂2

∂s2 q(s, t), s ∈ R+, t > 0, ν ∈ (0, 1],
us(0, t) = 0,

u(s, 0) = δ(s),
(2.10)

with the additional condition ut(s, 0) = 0 if ν ∈ (1/2, 1] (see [5]).

Proof By evaluating the Laplace transform of the generating function of the
fractional linear death process Mν(t), t > 0, we obtain that∫ ∞

0

e−ztGν(u, t)dt (2.11)

=
∫ ∞

0

e−zt
n0∑

k=0

uk

(
n0

k

) n0−k∑
r=0

(
n0 − k

r

)
(−1)rEν,1(−(k + r)µtν)dt

=
n0∑
0

uk

(
n0

k

) n0−k∑
r=0

(
n0 − k

r

)
(−1)r zν−1

zν + (k + r)µ

=
∫ ∞

0

n0∑
k=0

uk

(
n0

k

) n0−k∑
r=0

(
n0 − k

r

)
(−1)rzν−1e−s(zν+(k+r)µ)ds

=
∫ ∞

0

e−szν

zν−1

{
n0∑

k=0

uk

(
n0

k

) n0−k∑
r=0

(
n0 − k

r

)
(−1)re−s(k+r)µ

}
ds
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=
∫ ∞

0

e−szν

zν−1

{
n0∑

k=0

uk

(
n0

k

)
e−µsk

n0−k∑
r=0

(
n0 − k

r

)
(−1)re−srµ

}
ds

=
∫ ∞

0

e−szν

zν−1

{
n0∑

k=0

uk

(
n0

k

)
e−µsk(1− e−µs)n0−k

}
ds

=
∫ ∞

0

e−szν

zν−1G(u, s)ds

=
∫ ∞

0

e−zt

∫ ∞

0

n0∑
k=0

ukPr {M(s) = k} fT2ν (s, t)ds dt

=
∫ ∞

0

e−zt

{ ∞∑
k=0

ukPr {M(T2ν(t)) = k}

}
dt,

and this is sufficient to prove that (2.9) holds. Note that we used two facts.
The first one is that∫ ∞

0

e−ztfT2ν (s, t)dt = zν−1e−szν

, s > 0, z > 0, (2.12)

is the Laplace transform of the solution to (2.10). The second fact is that the
Laplace transform of the Mittag–Leffler function is∫ ∞

0

e−ztEν,1(−ϑtν)dt =
zν−1

zν + ϑ
. (2.13)

In figures 1 and 2, we compare the behaviour of the fractional probabilities
p0.7

n0
(t) and p0.7

n0−1(t) with their classical counterparts p1
n0

(t) and p1
n0−1(t),

t > 0. What emerges from the inspection of both figures is that, for large
values of t, the probabilities, in the fractional case, decrease more slowly than
p1

n0
(t) and p1

n0−1(t). The probability p0.7
n0−1(t), increases initially faster than

p1
n0−1(t), but after a certain time lapse, p1

n0−1(t) dominates p0.7
n0−1(t).

Remark 2 For ν = 1/2, in view of the integral representation

E 1
2 ,1(x) =

2√
π

∫ ∞

0

e−w2+2xwdw, x ∈ R, (2.14)

we extract from (1.11) that

p
1
2
k (t) =

2√
π

∫ ∞

0

e−w2
(

n0

k

) n0−k∑
r=0

(
n0 − k

r

)
(−1)re−2w(k+r)µt

1
2 (2.15)

=
∫ ∞

0

e−y2

4t√
πt

p1
k(y)dy = Pr {M(|B(t)|) = k} ,

where B(t), t > 0 is a Brownian motion with volatility equal to 2.
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Remark 3 We can interpret formula (1.11) in an alternative way, as follows.
For each integer k ∈ [0, n0] we have that

pν
k(t) = Pr {Mν(t) = k | Mν(0) = n0} (2.16)

=
∫ ∞

0

pk(s)Pr {T2ν(t) ∈ ds}

=
(

n0

k

) n0−k∑
r=0

(
n0 − k

r

)
(−1)r

∫ ∞

0

e−µ(k+r)sPr {T2ν(t) ∈ ds}

=
(

n0

k

) n0−k∑
r=0

(
n0 − k

r

)
(−1)r

∫ ∞

0

e−µ(k+r)st−νW−ν,1−ν(−st−ν)ds

=
(

n0

k

) n0−k∑
r=0

(
n0 − k

r

)
(−1)r

∫ ∞

0

e−ξµ(k+r)tν

W−ν,1−ν(−ξ)dξ

=
∫ ∞

0

W−ν,1−ν(−ξ)Pr {Mξ(tν) = k | Mξ(0) = n0} dξ,

where W−ν,1−ν(−ξ) is the Wright function defined as

W−ν,1−ν(−ξ) =
∞∑

r=0

(−ξ)r

r!Γ (1− ν(r + 1))
, 0 < ν ≤ 1. (2.17)

We therefore obtain an interpretation in terms of a classical linear death
process MΞ(t), t > 0 evaluated on a new time scale and with random rate
µ ·Ξ, where Ξ is a random variable, ξ ∈ R+, with Wright density

fΞ(ξ) = W−ν,1−ν(−ξ), ξ ∈ R+. (2.18)

From equation (1.6) with µk = k · µ, the related fractional differential
equation governing the probability generating function, can be easily ob-
tained, leading to{

∂ν

∂tν Gν(u, t) = −µu(u− 1) ∂
∂uGν(u, t), ν ∈ (0, 1],

Gν(u, 0) = un0 .
(2.19)

From this, and by considering that EMν(t) = ∂
∂uGν(u, t)

∣∣
u=1

, we obtain that{
dν

dtν EMν(t) = −µEMν(t), ν ∈ (0, 1],
EMν(t) = n0.

(2.20)

Equation (2.20) is easily solved by means of the Laplace transforms, yielding

EMν(t) = n0Eν,1(−µtν), t > 0, ν ∈ (0, 1]. (2.21)
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Remark 4 The mean value EMν(t) can also be directly calculated.

EMν(t) =
n0∑

k=0

kpν
k(t) (2.22)

=
n0∑

k=0

k

(
n0

k

) n0∑
r=k

(
n0 − k

r − k

)
(−1)r−kEν,1(−rµtν)

=
n0∑

r=0

Eν,1(−rµtν)(−1)r
r∑

k=1

k

(
n0

k

)(
n0 − k

r − k

)
(−1)k

=
n0∑

r=1

Eν,1(−rµtν)(−1)rn0

(
n0 − 1
r − 1

) r∑
k=1

(
r − 1
k − 1

)
(−1)k

= n0Eν,1(−µtν).

This last step in (2.22) holds because

r∑
k=1

(
r − 1
k − 1

)
(−1)k =

r−1∑
k=0

(
r − 1

k

)
(−1)k+1 =

{
−1, r = 1,

0, r > 0.
(2.23)

3 Related models

In this section we present two models which are related to the fractional
linear death process. The first one is its natural generalisation to the non-
linear case i.e. we consider death rates in the form µk > 0, 0 ≤ k ≤ n0. The
second one is a sublinear process (see [8]), namely with death rates in the
form µk = µ(n0 + 1− k); the death rates are thus an increasing sequence as
the number of individuals in the population decreases towards zero.

3.1 Generalisation to the non-linear case

Let us denote by M ν(t), t > 0 the random number of components of a non-
linear fractional death process with death rates µk > 0, 0 ≤ k ≤ n0.

The state probabilities pν
k (t) = Pr {M ν(t) = k | M ν(0) = n0}, t > 0,

0 ≤ k ≤ n0, ν ∈ (0, 1] are governed by the following difference-differential
equations 

dν

dtν pk(t) = µk+1pk+1(t)− µkpk(t), 0 < k < n0,
dν

dtν p0(t) = µ1p1(t), k = 0,
dν

dtν pn0(t) = −µn0pn0(t), k = n0,

pk(0) =

{
0, 0 ≤ k < n0,

1, k = n0.

(3.1)

The fractional derivatives appearing in (3.1) provide the system with a
global memory; i.e. the evolution of the state probabilities pν

k (t), t > 0, is in-
fluenced by the past, as definition (1.5) shows. This is a major difference with
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the classical non-linear (and, of course, linear and sublinear) death processes,
and reverberates in the slowly decaying structure of probabilities extracted
from (3.1).

In the non-linear process, the dependence of death rates from the size
of the population is arbitrary, and this explains the complicated structure
of the probabilities obtained. Further generalisation can be considered by
assuming that the death rates depend on t (non-homogeneous, non-linear
death process).

We outline here the evaluation of the probabilities pν
k (t), t > 0, 0 ≤ k ≤

n0, which can be obtained, as in the linear case, by means of a recursive
procedure (similar to that implemented in [7] for the fractional linear birth
process).

Let k = n0. By means of the Laplace transform applied to equation (3.1)
we immediately obtain that

pν
n0

(t) = Eν,1(−µn0t
ν). (3.2)

When k = n0 − 1 we get

zνL
{

pν
n0−1

}
(z) = −µn0−1L

{
pν
n0−1

}
(z) + µn0

zν−1

zν + µn0

(3.3)

⇔ L
{

pν
n0−1

}
(z) = µn0

zν−1

zν + µn0

· 1
zν + µn0−1

⇔ L
{

pν
n0−1

}
(z) = µn0z

ν−1

[
1

zν + µn0

− 1
zν + µn0−1

]
1

µn0−1 − µn0

⇔ pν
n0−1(t) =

µn0

µn0−1 − µn0

{
Eν,1(−µn0t

ν)− Eν,1(−µn0−1t
ν)

}
.

For k = n0 − 2 we obtain in the same way that

zνL
{

pν
n0−2

}
(z) (3.4)

= −µn0−2L
{

pν
n0−2

}
(z) +

µn0µn0−1

µn0−1 − µn0

[
zν−1

zν + µn0

− zν−1

zν + µn0−1

]
,

so that

L
{

pν
n0−2

}
(z) (3.5)

=
µn0µn0−1

µn0−1 − µn0

zν−1

[
1

zν + µn0

− 1
zν + µn0−1

]
1

zν + µn0−2

=
µn0µn0−1

µn0−1 − µn0

zν−1

[(
1

zν + µn0

− 1
zν + µn0−2

)
1

µn0−2 − µn0

−
(

1
zν + µn0−1

− 1
zν + µn0−2

)
1

µn0−2 − µn0−1

]
.

By inverting the Laplace transform we readily arrive at the following result

pν
n0−2(t) = µn0µn0−1

[
Eν,1(−µn0t

ν)
(µn0−1 − µn0)(µn0−2 − µn0)

(3.6)
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− Eν,1(−µn0−2t
ν)

(µn0−1 − µn0)(µn0−2 − µn0)
− Eν,1(−µn0−1t

ν)
(µn0−1 − µn0)(µn0−2 − µn0−1)

+
Eν,1(−µn0−2t

ν)
(µn0−1 − µn0)(µn0−2 − µn0−1)

]
= µn0µn0−1

[
Eν,1(−µn0t

ν)
(µn0−1 − µn0)(µn0−2 − µn0)

+
Eν,1(−µn0−2t

ν)
(µn0−1 − µn0)

(
1

µn0−2 − µn0−1
− 1

µn0−2 − µn0

)
− Eν,1(−µn0−1t

ν)
(µn0−1 − µn0)(µn0−2 − µn0−1)

]
= µn0µn0−1

[
Eν,1(−µn0t

ν)
(µn0−1 − µn0)(µn0−2 − µn0)

+
Eν,1(−µn0−2t

ν)
(µn0−2 − µn0−1)(µn0−2 − µn0)

− Eν,1(−µn0−1t
ν)

(µn0−1 − µn0)(µn0−2 − µn0−1)

]
.

The structure of the state probabilities for arbitrary values of k = n0 − l,
0 ≤ l < n0, can now be easily obtained. The proof follows the lines of the
derivation of the state probabilities for the fractional non-linear pure birth
process adopted in Theorem 2.1 in [7]. We have that

pν
n0−l(t) =


l−1∏
j=0

µn0−j

l∑
m=0

Eν,1(−µn0−mtν)
l∏

h=0
h6=m

(µn0−h − µn0−m)
, 1 ≤ l < n0,

Eν,1(−µn0t
ν), l = 0.

(3.7)

By means of a simple change of indices, formula (3.7) can also be written as

pν
k (t) =



n0∏
j=k+1

µj

n0∑
m=k

Eν,1(−µmtν)
n0∏

h=k
h6=m

(µh − µm)
, 0 < k < n0,

Eν,1(−µn0t
ν), k = n0.

(3.8)

For the extinction probability, we have to solve the following initial value
problem: 

dν

dtν p0(t) = µ1

n0∏
j=2

µj

n0∑
m=1

Eν,1(−µmtν)
n0∏

h=1
h6=m

(µh − µm)
, n0 > 1,

dν

dtν p0(t) = µ1Eν,1(−µ1t
ν), n0 = 1,

p0(0) = 0, n0 ≥ 1.

(3.9)
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When n0 > 1, starting from (3.9) and by resorting to the Laplace transform
once again, we have that

L
{

pν
0

}
(z) =

n0∏
j=1

µj

n0∑
m=1

1
n0∏

h=1
h6=m

(µh − µm)
· z−1

zν + µm
. (3.10)

The inverse Laplace transform of (3.10) leads to

pν
0 (t) =

n0∏
j=1

µj

n0∑
m=1

1
n0∏

h=1
h6=m

(µh − µm)
tνEν,ν+1(−µmtν) (3.11)

=
n0∏

j=1

µj

n0∑
m=1

1
n0∏

h=1
h6=m

(µh − µm)
· 1
µm

[1− Eν,1(−µmtν)]

=
n0∑

m=1

n0∏
h=1
h6=m

(
µh

µh − µm

)
−

n0∑
m=1

n0∏
h=1
h6=m

(
µh

µh − µm

)
Eν,1(−µmtν)

= 1−
n0∑

m=1

n0∏
h=1
h6=m

(
µh

µh − µm

)
Eν,1(−µmtν).

Note that, in the last step, we used the following fact:
n0∑

m=1

n0∏
h=1
h6=m

(
µh

µh − µm

)
≡ 1. (3.12)

This can be ascertained by observing that∏
1≤h<l≤n0

(µh − µl) = det A =
n0∑

j=1

A1,j(−1)j+1Min1,j (3.13)

where

A =

∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
µ1 µ2 . . . µn0

µ2
1 µ2

2 . . . µ2
n0

...
...

. . .
...

µn0−1
1 µn0−1

2 . . . µn0−1
n0

∣∣∣∣∣∣∣∣∣∣∣
, (3.14)

is a Vandermonde matrix and Min1,j is the determinant of the matrix result-
ing from A by removing the first row and the j-th column.

When n0 = 1 we obtain

L
{

pν
0

}
(z) = µ1

z−1

zν + µ1
, (3.15)
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so that the inverse Laplace transform can be written as

pν
0 (t) = µ1t

νEν,ν+1(−µ1t
ν) (3.16)

= 1− Eν,1(−µ1t
ν).

We can therefore summarise the results obtained as follows:

pν
k (t) =


n0∏

j=k+1

µj

n0∑
m=k

Eν,1(−µmtν)
n0∏

h=k
h6=m

(µh − µm)
, 0 < k < n0, n0 > 1,

Eν,1(−µn0t
ν), k = n0, n0 ≥ 1,

(3.17)

and

pν
0 (t) =


1−

n0∑
m=1

n0∏
h=1
h6=m

(
µh

µh − µm

)
Eν,1(−µmtν), n0 > 1,

1− Eν,1(−µ1t
ν), n0 = 1.

(3.18)

3.2 A fractional sublinear death process

We consider in this section the process where the infinitesimal death proba-
bilities have the form

Pr {M(t, t + dt] = −1 | M(t) = k} = µ(n0 + 1− k)dt + o(dt), (3.19)

where n0 is the initial number of individuals in the population. The state
probabilities

pk(t) = Pr {M(t) = k | M(0) = n0} , 0 ≤ k ≤ n0, (3.20)

satisfy the equations
d
dtpk(t) = −µ(n0 + 1− k)pk(t) + µ(n0 − k)pk+1(t), 1 ≤ k ≤ n0,
d
dtp0(t) = µn0p1(t), k = 0,

pk(0) =

{
1, k = n0,

0, 0 ≤ k < n0.

(3.21)

In this model the death rate increases with decreasing population size.
The probabilities pν

k(t) = Pr {Mν(t) = k | Mν(0) = n0} of the fractional
version of this process are governed by the equations

dν

dtν pk(t) = −µ(n0 + 1− k)pk(t) + µ(n0 − k)pk+1(t), 1 ≤ k ≤ n0,
dν

dtν p0(t) = µn0p1(t), k = 0,

pk(0) =

{
1, k = n0,

0, 0 ≤ k < n0.

(3.22)
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Fig. 3 Plot of p0.7
n0 (t) (in black) and p0.7

n0 (t) (in grey), with n0 = 2.

We first observe that the solution to the Cauchy problem{
dν

dtν pn0(t) = −µpn0(t),
pn0(0) = 1,

(3.23)

is pν
n0

(t) = Eν,1(−µtν), t > 0.
In order to solve the equation{

dν

dtν pn0−1(t) = −2µpn0−1(t) + µEν,1(−µtν),
pn0−1(0) = 0,

(3.24)

we resort to the Laplace transform and obtain that

L
{
pν

n0−1

}
(z) = µzν−1 1

zν + µ
· 1
zν + 2µ

(3.25)

= zν−1

(
1

zν + µ
− 1

zν + 2µ

)
.

By inverting (3.25) we extract the following result

pν
n0−1(t) = Eν,1(−µtν)− Eν,1(−2µtν). (3.26)

By the same technique we solve{
dν

dtν pn0−2(t) = −3µpn0−2(t) + 2µ [Eν,1(−µtν)− Eν,1(−2µtν)] ,
pn0−2(0) = 0,

(3.27)
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Fig. 4 Plot of p0.7
n0−1(t) (in black) and p0.7

n0−1(t) (in grey), with n0 = 2.

thus obtaining

L
{
pν

n0−2

}
(z) = 2µzν−1

[
1

zν + µ
− 1

zν + 2µ

]
1

zν + 3µ
(3.28)

= 2µzν−1

[(
1

zν + µ
− 1

zν + 3µ

)
1
2µ

−
(

1
zν + 2µ

− 1
zν + 3µ

)
1
µ

]
=

zν−1

zν + µ
− 2

zν−1

zν + 2µ
+

zν−1

zν + 3µ
.

In light of (3.28), we infer that

pν
n0−2(t) = Eν,1(−µtν)− 2Eν,1(−2µtν) + Eν,1(−3µtν). (3.29)

For all 1 ≤ n0 −m ≤ n0, by similar calculations, we arrive at the general
result

pν
n0−m =

m∑
l=0

(
m

l

)
(−1)lEν,1 (− (l + 1) µtν) , 1 ≤ n0 −m ≤ n0. (3.30)

Introducing the notation n0−m = k, we rewrite the state probabilities (3.30)
in the following manner

pν
k =

n0−k∑
l=0

(
n0 − k

l

)
(−1)lEν,1 (− (l + 1) µtν) , 1 ≤ k ≤ n0. (3.31)
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For the extinction probability we must solve the following Cauchy prob-
lem {

dν

dtν p0(t) = µn0

∑n0−1
l=0

(
n0−1

l

)
(−1)lEν,1 (− (l + 1) µtν) ,

p0(t) = 0.
(3.32)

The Laplace transform of (3.32) yields

zνL{pν
0} (z) = µn0

n0−1∑
l=0

(
n0 − 1

l

)
(−1)l zν−1

zν + µ(l + 1)
. (3.33)

The inverse Laplace transform can be written down as

pν
0(t) = µn0

n0−1∑
l=0

(−1)l 1
Γ (ν)

∫ t

0

Eν,1 (−(l + 1)µsν) (t− s)ν−1ds. (3.34)

The integral appearing in (3.34) can be suitably evaluated as follows∫ t

0

Eν,1 (−(l + 1)µsν) (t− s)ν−1 (3.35)

=
∞∑

m=0

(−(l + 1)µ)m

Γ (νm + 1)

∫ t

0

sνm(t− s)ν−1ds

=
∞∑

m=0

(−(l + 1)µ)m

Γ (νm + 1)
tν(m+1)Γ (ν)Γ (νm + 1)

Γ (νm + ν + 1)

=
Γ (ν)

(−µ(l + 1))

∞∑
m=0

(−(l + 1)µtν)m+1

Γ (ν(m + 1) + 1)

=
Γ (ν)

(−µ(l + 1))
[Eν,1(−(l + 1)µtν)− 1] .

By inserting result (3.35) into (3.34), we obtain

pν
0(t) = n0

n0−1∑
l=0

(−1)l+1

l + 1
[Eν,1(−(l + 1)µtν)− 1] (3.36)

=
n0−1∑
l=0

(
n0

l + 1

)
(−1)l+1 [Eν,1(−(l + 1)µtν)− 1]

=
n0∑
l=1

(
n0

l

)
(−1)lEν,1(−lµtν)−

n0∑
l=1

(
n0

l

)
(−1)l

= 1 +
n0∑
l=1

(
n0

l

)
(−1)lEν,1(−lµtν)

=
n0∑
l=0

(
n0

l

)
(−1)lEν,1(−lµtν).
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Remark 5 We check that the probabilities (3.31) and (3.36) sum up to unity.
We start by analysing the following sum:

n0∑
k=1

pν
k(t) =

n0∑
k=1

n0−k∑
l=0

(
n0 − k

l

)
(−1)lEν,1(−(l + 1)µtν). (3.37)

In order to evaluate (3.37), we resort to the Laplace transform

n0∑
k=1

L{pν
k} (z) =

zν−1

µ

n0∑
k=1

n0−k∑
l=0

(
n0 − k

l

)
(−1)l 1

zν

µ + 1 + l
. (3.38)

By using formula (6) of [3] (see also [2], formula (5.41), page 188), we obtain
that

n0∑
k=1

L{pν
k} (z) =

zν−1

µ

n0∑
k=1

Γ (n0 − k + 1)(
zν

µ + 1
) (

zν

µ + 2
)

. . .
(

zν

µ + 1 + n0 − k
) (3.39)

=
zν−1

µ

n0∑
k=1

Γ
(

zν

µ + 1
)

Γ (n0 − k + 1)

Γ
(

zν

µ + 1 + n0 − k
)

=
zν−1

µ

n0∑
k=1

∫ 1

0

x
zν

µ (1− x)n0−kdx

=
zν−1

µ

∫ 1

0

x
zν

µ −1 [1− (1− x)n0 ] dx

=
1
z
− zν−1

µ

Γ
(

zν

µ

)
Γ (n0 + 1)

Γ
(

zν

µ + n0 + 1
)

=
1
z
− zν−1

µ

∫ 1

0

x
zν

µ −1(1− x)n0dx

(− ln x=y)
=

1
z
− zν−1

µ

∫ ∞

0

e−y zν

µ
(
1− e−y

)n0
dy

(y/µ=w)
=

1
z
zν−1

∫ ∞

0

e−wzν (
1− e−µw

)n0
dw

=
1
z
− zν−1

n0∑
k=0

(
n0

k

)
(−1)k

∫ ∞

0

e−zνw−µwkdw

=
1
z
− zν−1

n0∑
k=0

(
n0

k

)
(−1)k 1

zν + µk
.

The inverse Laplace transform of (3.39) is therefore

n0∑
k=1

pν
k(t) = 1−

n0∑
k=0

(
n0

k

)
(−1)kEν,1(−µktν) (3.40)
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= −
n0∑

k=1

(
n0

k

)
(−1)kEν,1(−µktν).

By putting (3.36) and (3.40) together, we conclude that

n0∑
k=0

pν
k(t) = 1, (3.41)

as it should be.

Remark 6 We observe that, in the linear and sublinear death processes, the
extinction probabilities coincide. This implies that although the state prob-
abilities pν

k(t) and pν
k(t) differ for all 1 ≤ k ≤ n0, we have that

n0∑
k=1

pν
k(t) =

n0∑
k=1

pν
k(t). (3.42)

This can be checked by performing the following sum
n0∑

k=1

L{pν
k(t)} (z) (3.43)

=
n0∑

k=1

(
n0

k

) n0−k∑
r=0

(
n0 − k

r

)
(−1)r zν−1

zν + µ(k + r)

=
zν−1

µ

n0∑
k=1

(
n0

k

) n0−k∑
r=0

(
n0 − k

r

)
(−1)r 1

zν

µ + k + r

=
zν−1

µ

n0∑
k=1

(
n0

k

)
(n0 − k)!(

zν

µ + k
) (

zν

µ + k + 1
)

. . .
(

zν

µ + n0

)
=

zν−1

µ

n0∑
k=1

(
n0

k

)Γ (n0 − k + 1) Γ
(

zν

µ + k
)

Γ
(

zν

µ + n0 + 1
)

=
zν−1

µ

∫ 1

0

(1− x)
zν

µ −1
n0∑

k=1

(
n0

k

)
xn0−k(1− x)kdx

=
zν−1

µ

∫ 1

0

(1− x)
zν

µ −1 (1− xn0) dx

=
1
z
− zν−1

µ

∫ 1

0

xn0(1− x)
zν

µ −1dx. (3.44)

This coincides with the fourth-to-last step of (3.39) and therefore we can
conclude that

n0∑
k=1

pν
k(t) = −

n0∑
k=1

(
n0

k

)
(−1)kEν,1(−µktν) =

n0∑
k=1

pν
k(t). (3.45)
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3.2.1 Mean value

Theorem 3 Consider the fractional sublinear death process Mν(t), t > 0
defined above. The probability generating function Gν(u, t) =

∑n0
k=0 ukpν

k(t),
t > 0, |u| ≤ 1, satisfies the following partial differential equation:

∂ν

∂tν
Gν(u, t) = µ(n0 + 1)

(
1
u
− 1

)
[Gν(u, t)− pν

0(t)] + µ(u− 1)
∂

∂u
Gν(u, t).

(3.46)
subject to the initial condition Gν(u, 0) = un0 , for |u| ≤ 1, t > 0.

Proof Starting from (3.22), we obtain that

dν

dtν

n0∑
k=0

ukpν
k(t) (3.47)

= −µ

n0∑
k=1

uk(n0 + 1− k)pν
k(t) + µ

n0−1∑
k=0

uk(n0 − k)pν
k+1(t),

so that

∂ν

∂tν
Gν(u, t) = − µ(n0 + 1) [Gν(u, t)− pν

0(t)] + µu
∂

∂u
Gν(u, t) (3.48)

+
µ(n0 + 1)

u
[Gν(u, t)− pν

k(t)]− µ
∂

∂u
Gν(u, t)

= µ(n0 + 1)
(

1
u
− 1

)
[Gν(u, t)− pν

0(t)] + µ(u− 1)
∂

∂u
Gν(u, t).

Theorem 4 The mean number of individuals EMν(t), t > 0 in the fractional
sublinear death process, reads

EMν(t) =
n0∑

k=1

(
n0 + 1
k + 1

)
(−1)k+1Eν,1(−µktν), t > 0, ν ∈ (0, 1]. (3.49)

Proof From (3.46) and by considering that EMν(t) = ∂
∂uGν(u, t)

∣∣
u=1

, we
directly arrive at the following initial value problem:{

dν

dtν EMν(t) = −µ(n0 + 1) [1− pν
0(t)] + µEMν(t),

EMν(0) = n0,
(3.50)

which can be solved by resorting to the Laplace transform, as follows:

L{EMν(t)} (z) = n0
zν−1

zν − µ
+ µ(n0 + 1)

n0∑
k=1

(
n0

k

)
(−1)k zν−1

zν + µk
· 1
zν − µ

(3.51)

= n0
zν−1

zν − µ
+

n0∑
k=1

(
n0 + 1
k + 1

)
(−1)k

[
zν−1

zν − µ
− zν−1

zν + µk

]
.
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In (3.51), formula (3.36) must be considered. By inverting the Laplace trans-
form we obtain that

EMν(t) (3.52)

= n0Eν,1(µtν) +
n0∑

k=1

(
n0 + 1
k + 1

)
(−1)k [Eν,1(µtν)− Eν,1(−µktν)]

= n0Eν,1(µtν) + Eν,1(µtν)
n0∑

k=1

(
n0 + 1
k + 1

)
(−1)k

−
n0∑

k=1

(
n0 + 1
k + 1

)
(−1)kEν,1(−µktν)

=
n0∑

k=1

(
n0 + 1
k + 1

)
(−1)k+1Eν,1(−µktν),

as desired.

Remark 7 The mean value (3.49) can also be directly derived as follows.

EMν(t) =
n0∑

k=0

kpν
k(t) (3.53)

=
n0∑

k=1

k

n0−k∑
l=0

(
n0 − k

l

)
(−1)lEν,1(−(l + 1)µtν)

=
n0∑

k=1

k

n0+1−k∑
l=1

(
n0 − k

l − 1

)
(−1)l−1Eν,1(−µltν)

=
n0∑
l=1

(−1)l−1Eν,1(−µltν)
n0+1−l∑

k=1

k

(
n0 − k

l − 1

)
.

It is now sufficient to show that

n0+1−l∑
k=1

k

(
n0 − k

l − 1

)
=

(
n0 + 1
l + 1

)
. (3.54)

Indeed,

n0+1−l∑
k=1

k

(
n0 − k

l − 1

)
=

n0−1∑
k=l−1

(n0 − k)
(

k

l − 1

)
(3.55)

=
n0−1∑
k=l−1

(n0 + 1− k − 1)
(

k

l − 1

)

= (n0 + 1)
n0−1∑
k=l−1

(
k

l − 1

)
− l

n0−1∑
k=l−1

(
k + 1

l

)
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Fig. 5 Plot of EM0.7(t) (in black) and EM0.7(t) (in grey), n0 = 2.

= (n0 + 1)
n0∑
k=l

(
k − 1
l − 1

)
− l

n0+1∑
k=l+1

(
k − 1

l

)
= (n0 + 1)

(
n0

l

)
− l

(
n0 + 1
l + 1

)
=

(
n0 + 1
l + 1

)
.

The crucial step of (3.55) is justified by the following formula

n0∑
k=j

(
k − 1
j − 1

)
= 1 +

(
j

j − 1

)
+ · · ·+

(
n0 − 1
j − 1

)
=

(
n0

j

)
. (3.56)

Figure 5 shows that in the sublinear case, the mean number of individuals
in the population, decays more slowly than in the linear case, as expected.

Note that (3.49) satisfies the initial condition EMν(0) = n0. In order to
check this, it is sufficient to show that

n0∑
k=1

(
n0 + 1
k + 1

)
(−1)k+1 =

n0+1∑
r=2

(
n0 + 1

r

)
(−1)r (3.57)

=

[
n0+1∑
r=0

(
n0 + 1

r

)
(−1)r

]
− 1 +

(
n0 + 1

1

)
= n0.

The details in (3.57) explain also the last step of (3.52).
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3.2.2 Comparison of Mν(t) with the fractional linear death process Mν(t)
and the fractional linear birth process Nν(t)

The distributions of the fractional linear and sublinear processes examined
above display a behaviour which is illustrated in Table 1.

Table 1 State probabilities pν
k(t) for the fractional linear death process Mν(t),

t > 0, and pν
k(t) for the fractional sublinear death process Mν(t).

State Probabilities

pν
n0(t) = Eν,1(−µn0t

ν)

pν
n0(t) = Eν,1(−µtν)

pν
n0−1(t) = n0 [Eν,1(−(n0 − 1)µtν)− Eν,1(−n0µtν)]

pν
n0−1(t) = Eν,1(−µtν)− Eν,1(−2µtν)

...
pν

k(t) =
`

n0
k

´ Pn0−k
l=0

`
n0−k

l

´
(−1)lEν,1(−(k + l)µtν)

pν
k(t) =

Pn0−k
l=0

`
n0−k

l

´
(−1)lEν,1 (− (l + 1) µtν)

...
pν
1(t) = n0

Pn0−1
l=0

`
n0−1

l

´
(−1)lEν,1(−(1 + l)µtν)

pν
1(t) =

Pn0−1
l=0

`
n0−1

l

´
(−1)lEν,1 (− (l + 1) µtν)

pν
0(t) =

Pn0
l=0

`
n0
l

´
(−1)lEν,1(−lµtν)

pν
0(t) =

Pn0
l=0

`
n0
l

´
(−1)lEν,1(−lµtν)

The most striking fact about the models dealt with above, is that the
linear probabilities decay faster than the corresponding sublinear ones, for
small values of k; whereas, for large values of k, the sublinear probabilities
take over and the extinction probabilities in both cases coincide. The reader
should also compare the state probabilities of the death models examined
here with those of the fractional linear pure birth process (with birth rate λ
and one progenitor). These read

p̂ν
k(t) =

k∑
j=1

(
k − 1
j − 1

)
(−1)j−1Eν,1(−λjtν), k ≥ 1. (3.58)

Note that p̂ν
1(t) = Eν,1(−λtν) is of the same form as pν

n0
(t) = Eν,1(−µtν).

We now show that
∞∑

k=n0+1

p̂ν
k(t) = 1−

n0∑
k=1

p̂ν
k(t) (3.59)

= 1−
n0∑

k=1

k∑
j=1

(
k − 1
j − 1

)
(−1)j−1Eν,1(−λjtν)
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Table 2 Mean values for the fractional linear birth Nν(t), fractional linear death
Mν(t) and fractional sublinear death Mν(t) processes.

ENν(t) = Eν,1(λtν)

EMν(t) = n0Eν,1(−µtν)

EMν(t) =
Pn0

k=1

`
n0+1
k+1

´
(−1)k+1Eν,1(−µktν)

= 1−
n0∑

j=1

(−1)j−1Eν,1(−λjtν)
n0∑

k=j

(
k − 1
j − 1

)

= 1−
n0∑

j=1

(−1)j−1

(
n0

j

)
Eν,1(−λjtν)

= (3.36) with λ replacing µ.

Note that in the above step we used formula (3.56).
By comparing formulae (3.4) of [7] and (3.31) above, we arrive at the

conclusion that (for λ = µ)

Pr {Nν(t) = k | Nν(0) = 1} (3.60)

=
k∑

j=1

(
k − 1
j − 1

)
(−1)j−1Eν,1(−λjt

ν)

= Pr {Mν(t) = n0 + 1− k | M(0) = n0} , 1 ≤ k ≤ n0.

For k = 0 the probability of extinction corresponds to the probability of the
event {Nν(t) > n0} for the fractional linear birth process.
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