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Abstract

In response surface methodology a second order polynomial model is typically used to make

inferences on the stationary point ξ of the true response function. The standard confidence

regions for the true stationary point are due to Box and Hunter (1954). We introduce an

alternative parametrization, in which ξ appears as parameter of interest. This way likelihood

techniques and Bayesian analysis are more easily performed. An empirical method to get

HPD regions for the true maximum point (not simply for the stationary point) is also

proposed and a simulation study is produced to compare their coverage probabilities and

sizes with the coverage probabilities and sizes of the frequentist regions.

Keywords: Bayesian analysis, confidence regions, HPD regions, integrated likelihood, MCMC

simulations, profile likelihood, response surface methodology, rotatability.

1 Introduction

Response Surface Methodology (RSM), first introduced by Box and Wilson (1951), is typically

used to find the levels of k continuous factors which optimize a response variable, Y . This set of

techniques is described in detail in many textbooks, including those by Davies (1960), Box and

Draper (1987), Khuri and Cornell (1987) and Myers and Montgomery (1995). The relevance

for biometric and pharmaceutical research was recently stressed by Peterson, Cahya and del

Castillo (2002).

The original input variables are usually converted to coded variables, X1, ..., Xk, so that

the design center is at the point (x1, ..., xk) = 0. Moreover the true response function,

ϕ(x1, x2, ..., xk), i.e. the unknown relationship between the response variable and the explanatory

variables, is usually approximated by a second order polynomial model. This approximation can

be considered reliable in the experimental region, R, that is the sub-region of the factor space

over which the experiment is performed.

The second order polynomial model can be compactly written as

MP : y = β0 + xT β + xTBx + ε, (1)

where ε is the random error which is assumed normally distributed with zero mean and unknown

variance σ2. Here x is a k× 1 vector of factor levels, β0 is the intercept term, β is a k× 1 vector

of regression coefficients βi and B is a k × k symmetric matrix of regression coefficients with

i-th diagonal element equal to βii and the (ij)-th off-diagonal element equal to (1/2)βij . Model
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(1) is characterized by p + 1 unknown parameters, where p = 1 + 2k + k(k−1)
2 is the number of

regression coefficients, including the intercept term.

The exploration of the fitted second order surface, ŷ, is usually based on the estimation

of the true stationary point, x̂S = −1
2B̂

−1β̂, where β̂ and B̂ are the maximum likelihood

estimates (MLEs) of β and B. Depending on the sign of the eigenvalues of B̂, x̂S could be

a maximum, a minimum or a saddle point of ŷ. On the other hand, the magnitude of the

eigenvalues characterize the degree of curvature of the fitted quadratic response: an eigenvalue

near 0 indicates the presence of a ridge in the surface. Therefore, a canonical analysis can be

performed to determine the nature of x̂S and to interpret the behavior of the response system in

the experimental region. Furthermore, in order to make inferences on the nature of the response

surface, Carter et al (1986 and 1990), Peterson (1993) and Bisgaard and Ankenman (1996) give

methods to get standard errors and large-sample confidence intervals for the eigenvalues of B.

Let us suppose that we are interested in the point of maximum response. If x̂S is not a

maximum point or if it is a maximum that lies outside the experimental region, it would not be

reasonable to suggest it as a candidate for optimum conditions, but attention should be focused

on the nature of the system inside R, where the fitted model is reliable, and further experiments

should be carried out. In these situations it is useful to employ a ridge analysis (see, for instance,

Draper, 1963), which locates the points of maximum response at a fixed distance from the design

center. This methodology provides information about the role of the design variables inside R
and the areas where future experiments could be made.

Confidence regions are obviously useful to locate at least approximately the true maximum

point. It must be stressed that they are especially interesting and reliable when x̂S is a maximum

for the fitted surface and resides inside R. Box and Hunter (1954) derive a confidence region

for the true stationary point. Denoting with ξ = (ξ1, ..., ξk) the unknown stationary point and

with d̂(x) = β̂ + 2B̂Tx the vector of derivatives ∂ŷ(x)/∂xj , for all j = 1, ..., k, the 100(1− α)%

Box-Hunter confidence region for ξ is given by

CBH =
{

ξ : d(ξ)T V−1
d(ξ) d(ξ) ≤ k F (k, n − p ; α)

}

, (2)

where Vd(ξ) is the estimate of the variance-covariance matrix of d(ξ), n is the sample size and

F (k, n− p ; α) is the upper 100(1− α) percentile of the F-distribution with k and n− p degrees

of freedom. Del Castillo and Cahya (2001) provide a program, coded in the computer algebra

package MAPLE, for the computation and display of the regions CBH . Peterson, Cahya and del

Castillo (2002) point out that the Box and Hunter procedure provides a confidence region for

the stationary point, that is not necessarily a point of maximum. Therefore CBH could consist

in disconnected regions, because some points in CBH could be associated with maximum points

on the fitted response surface, while other points could be associated with saddle points. The

same authors propose an alternative constrained approach, computing a confidence region for

the optimum point of the response surface over an arbitrary experimental region and showing

the connections with the Box-Hunter region.

This paper deals with the use of likelihood and Bayesian techniques to make inferences on the

optimal factor combination. To make things easier, we introduce an alternative parametrization

of MP in which the true stationary point appears as parameter of interest. The structure of the

paper is as follows. In Section 2 we describe the new proposed model. Section 3 derives the profile

and integrated likelihoods for ξ and shows their behavior with a simulated example. In Section

4 we present the Bayesian analysis of the new model and an empirical method to obtain HPD
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regions for the true maximum point, which is obviously a special case of the stationary point.

Three different examples of this method are given, based on experiments taken from the literature

(Section 5, with k = 3 and Section 7, with k = 5) and on simulated data (Section 6, with k = 2).

These examples show the HPD regions for the true maximum point that are obtained, through

MCMC simulations, using non-informative and informative priors on ξ. The CBH confidence

regions for the true stationary point are also computed to get a comparison. Finally, in Section

8 a simulation study is performed to compare the frequentist coverage probabilities of Bayesian

and Box and Hunter regions and to examine the different widths of these regions.

2 The new proposed model

Since the interest is focused on the location of the true stationary point, we propose the use of

an alternative model, equivalent to MP and reparametrised so that ξ appears as parameter of

interest.

The rationale for the polynomial approximation for the true response function is based on

the Taylor series expansion around the center of the design. Assuming that a stationary point

ξ for ϕ exists and it is unique, an alternative model can be obtained using ξ as origin for the

Taylor expansion. We obtain this way the model

MR : y = α0 + (x − ξ)TA(x − ξ) + ε, (3)

where x is a k × 1 vector of factor levels, α0 is the value of the true response function on ξ and

A is the k × k symmetric matrix

A =













α11
1
2α12 · · · 1

2α1k
1
2α12 α22 · · · 1

2α2k
...

...
...

1
2α1k

1
2α2k · · · αkk













.

Model (3) is a one-to-one reparametrisation of the second order polynomial model: both models

are characterized by p + 1 unknown parameters and the following relations between their

parameters hold










β0 = α0 + ξTAξ

β = −2Aξ

B = A











α0 = β0 − 1
4βTB−1β

ξ = −1
2B

−1β

A = B

.

Therefore the MLEs of the parameters of MR can be derived, through invariance, from the

MLEs of the parameters of MP , obtaining obviously that ξ̂ coincides with x̂S . Such model

is not useful in a frequentist framework because of the inconvenient nature of the sampling

distribution of the estimated stationary point. On the contrary, it makes more direct and easier

the likelihood techniques and the Bayesian approach in order to make inferences on ξ, while the

other parameters are treated as nuisance parameters.

3 Profile and integrated likelihoods

Let us suppose that n observations on the response variable are available. The model MR can

be written in the convenient matrix notation

MR : y = Xξα + ε, ε ∼ Nn(0, σ2In), (4)
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where y is the n × 1 vector of responses, α = (α0, α11, ..., αkk, α12, ..., αk−1,k)
T is the p′ × 1

vector of coefficients, with p′ = 1 + k + k(k−1)
2 , and ε is the vector of random errors. The n× p′

matrix Xξ depends on the factor levels fixed by the experimenter and on the components of ξ,

the k−dimensional parameter of interest, in the following way

Xξ =













1 (x11 − ξ1)
2 · · · (x1k − ξk)

2 (x11 − ξ1)(x12 − ξ2) · · · (x1,k−1 − ξk−1)(x1k − ξk)

1 (x21 − ξ1)
2 · · · (x2k − ξk)

2 (x21 − ξ1)(x22 − ξ2) · · · (x2,k−1 − ξk−1)(x2k − ξk)
...

... · · · ...
... · · · ...

1 (xn1 − ξ1)
2 · · · (xnk − ξk)

2 (xn1 − ξ1)(xn2 − ξ2) · · · (xn,k−1 − ξk−1)(xnk − ξk)













,

while φ = (α, σ2) is the nuisance parameter of dimension p′ + 1.

Denoting with D the matrix including the vector y and the fixed values of the k factors, the

likelihood function for the complete vector of parameters is given by

L(ξ, α, σ2| D) = (2πσ2)−
n
2 exp

{

− 1

2σ2
(y − Xξα)T (y − Xξα)

}

(5)

In order to eliminate the nuisance parameters, we can use standard likelihood techniques, such

as profile and integrated likelihood. Replacing the nuisance parameters for each fixed ξ by their

conditional MLEs, α̂ξ = (XT
ξ Xξ)

−1XT
ξ y and σ̂2

ξ = 1
n(y − Xξα̂ξ)

T
(

y − Xξα̂ξ

)

, we obtain the

profile likelihood

L̂(ξ|D) = L(ξ, α̂ξ, σ̂
2
ξ|D) ∝

[(

y − Xξα̂ξ

)T (

y − Xξα̂ξ

)]−n
2 . (6)

An alternative method is the elimination of nuisance parameters through integration, obtaining

the so-called integrated likelihood

L̃(ξ|D) ∝
∫

Φ
π(α, σ2|ξ)L(ξ, α, σ2|D)dαdσ2,

where Φ = (0,∞)×(−∞,∞)p′ is the nuisance parameter space and π(α, σ2|ξ) is a suitable weight

function for (α, σ2) (see Berger, Liseo and Wolpert, 1999). In a Bayesian framework π(α, σ2|ξ)

represents the conditional prior distribution of (α, σ2) given the parameter of interest, ξ. Let us

remark that, given ξ, model (4) has the structure of a normal linear model, with design matrix

Xξ. Therefore we can employ the usual non-informative (reference) prior distribution for the

parameters of a normal linear model, that is πR(α, σ2|ξ) ∝ 1/σ2. Moreover the quadratic form

in the exponent of (5) can be rewritten as

(y − Xξα)T (y − Xξα) = (α − α̂ξ)
TXT

ξ Xξ(α − α̂ξ) + (y − Xξα̂ξ)
T (y − Xξα̂ξ)

so that

L̃(ξ|D) ∝
∫

Φ

1

σ2
L(ξ, α, σ2|D)dαdσ2

∝
∣

∣XT
ξ Xξ

∣

∣

−1/2
∫ ∞

0

1

(σ2)
n−p′+2

2

exp

{

− (y − Xξα̂ξ)
T (y − Xξα̂ξ)

2σ2

}

dσ2

∝
∣

∣XT
ξ Xξ

∣

∣

−1/2[(
y − Xξα̂ξ

)T (

y − Xξα̂ξ

)]−n−p′

2 , (7)

where
∣

∣XT
ξ Xξ

∣

∣ denotes the determinant of the matrix XT
ξ Xξ.
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In this framework the parameter of interest ξ is any possible type of stationary point, not in

particular the maximum. Given the data, we can explore not only the nature of the estimated

stationary point, ξ̂, but also the nature of any possible value of ξ. In fact, the estimated response

surface, using model MR, can be written for a given ξ as

ŷξ = α̂0ξ + (x − ξ)T Âξ(x − ξ),

where

Âξ =













α̂1ξ
1
2 α̂12ξ · · · 1

2 α̂1kξ
1
2 α̂12ξ α̂2ξ · · · 1

2 α̂2kξ

...
...

...
1
2 α̂1kξ

1
2 α̂2kξ · · · α̂kξ













. (8)

Note that α̂0ξ, α̂11ξ, ..., α̂kkξ, α̂12ξ, ..., α̂k−1,kξ are the elements of the conditional MLE α̂ξ. Now,

the hessian matrix of ŷξ, whose generic element is hjh =
∂2ŷξ

∂xjxh

∣

∣

∣

x=ξ
, with j, h = 1, ..., k, is given

by 2Âξ. Therefore the experimental results partition the space Ξ of the ξ values into two sets,

Ξmax and Ξ − Ξmax, where

Ξmax = {ξ : Âξ is negative definite}

is the set of stationary points that, according to the data, turn out to be maximum points for

ŷξ. A careful exploration of the behavior of the profile and the integrated likelihoods requires

taking into account this partition. The likelihoods (6) and (7) represent two different techniques

for measuring the amount of support the data offer to the hypothesis that the point ξ under

consideration is a stationary point. For every ξ it is possible to argue whether the support

provided by the data is referred to a maximum point or not. Even if the estimated stationary

point is a maximum, L̂(ξ|D) and L̃(ξ|D) can assign a non-negligible support to the points

ξ ∈ Ξ − ΞMax, depending on the goodness of fit of the model and on how flat is the estimated

surface around ξ̂. In general, if there is an adequate fit and the quadratic effects contribute

significantly to the model, the points ξ ∈ Ξ − ΞMax should receive a negligible support. Next

sub-section will illustrate the issue in more detail.

3.1 Two simulated examples with k = 1

The case k = 1 is not typical in a response surface study. However, this case is useful to show

graphically the behavior of profile and integrated likelihoods.

Denoting with X the uncoded input variable, the estimated response surface for a given ξ is

ŷ(ξ) = α̂0ξ + α̂1ξ(x − ξ)2.

Given n experimental runs taken on the factor levels x1, ..., xn, the stationary points in ΞMax

are all the values ξ such that

α̂1ξ =

∑

yi
∑

(xi − ξ)2 − n
∑

yi(xi − ξ)2
[
∑

(xi − ξ)2
]2 − n

∑

(xi − ξ)4
< 0. (9)

Therefore, in this simple situation, it is possible to obtain the threshold, say ξ̃, that divides

Ξ into the two intervals Ξmax and Ξ − Ξmax. In fact, after some algebra, we obtain that the
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condition (9) is satisfied for all the values of ξ such that

{

ξ < ξ̃ if 2
(
∑

yi
∑

xi − n
∑

yixi

)

> 0

ξ > ξ̃ if 2
(
∑

yi
∑

xi − n
∑

yixi

)

< 0
, where ξ̃ =

∑

yi
∑

x2
i − n

∑

yix
2
i

2
(
∑

yi
∑

xi − n
∑

yixi

) .

Two samples of size n = 6 were simulated from a true response function with maximum at ξ =

20, using the factor levels x = (22, 23, 24, 25, 26, 27) and standard errors simulated from a normal

distribution of mean zero and variances equal to 1 and 2, respectively. The obtained data sets are

y1 = (38.65, 35.35, 28.85, 22.20, 12.77, 2.74) and y2 = (38.16, 39.34, 31.14, 15.12, 11.93,−3.67).

For data set y1, using the standard second order polynomial model, R2 = 0.999 indicates a

very good fit of the quadratic polynomial model to the data and the quadratic term contributes

significantly to the model (the p−value is 0.0016). For data set y2 we obtain R2 = 0.962 and

the test for quadratic effect gives a p−value of 0.20. Therefore it is a typical situation in which

further runs should be conducted. However, this example can be interesting to explore and to

compare the behaviors of L̂(ξ|D) and L̃(ξ|D) in such a situation.

Figure 1 shows the graphs of the profile and the integrated likelihood (normalized versions)

for the two data sets. In both figures all the values of ξ such that ξ < ξ̃ represent the stationary

points that are points of maximum for the fitted response. In particular, for the data set y2, being

the quadratic effect nonsignificant, there is a non-negligible possibility that the true response is

not a concave quadratic function. As a result, the profile and the integrated likelihood assign a

positive support to the values of ξ which are not maximum. The different behavior of L̂(ξ|D) and

L̃(ξ|D) can be explained taking into account that the profile approach, replacing the nuisance

parameters by their conditional MLEs, ignores their uncertainty. Integration methods, instead,

“automatically incorporate nuisance parameter uncertainty, in the sense that an integrated

likelihood is an average over all the possible conditional likelihoods given the nuisance parameter”

(Berger, Liseo and Wolpert, 1999). On the contrary for data set y1 L̂(ξ|D) and L̃(ξ|D) almost

coincide and the values of ξ which are not maxima, given the data, receive a zero support.

16 18 20 22 24 26

0.2

0.4

0.6

0.8

1

ξ

ξ̃ = 24.638

(a) Data set y1

10 20 30 40

0.2

0.4

0.6

0.8

1

ξ

ξ̃ = 24.619

(b) Data set y2

Figure 1: Profile (dashed lines) and integrated (full lines) likelihoods for ξ

4 Bayesian analysis of model MR

Given a prior probability distribution for the parameters of MR, π(ξ, α, σ2) = π(ξ)π(α, σ2|ξ),

the marginal posterior distribution of the parameter of interest is obtained by integrating out
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the nuisance parameters from the joint posterior, that is

π(ξ|D) ∝ π(ξ)

∫

Φ
π(α, σ2|ξ)L(ξ, α, σ2|D)dαdσ2.

When clear prior information is lacking, the Bayesian method requires the use of non-informative

prior distributions. Sambucini (2005), resorting to the well-known reference priors method (see,

for instance, Bernardo, 1979; Berger and Bernardo, 1992a and 1992b) shows that the conditional

reference prior of the nuisance parameters given the quantity of interest is πR(α, σ2|ξ) ∝ 1/σ2

and the marginal reference prior for the true stationary point is given by

πR(ξ) ∝
∣

∣XT
ξ Xξ

∣

∣

−1/2
. (10)

This is in general an improper distribution with its unique mode at the design center.

Furthermore, πR(ξ) depends on the choice of the experimental design. When fitting a second

order response surface, a standard property of the design is that of rotatability because the

actual orientation of the system is generally unknown and rotatability assures that the sampling

variance of the estimated response is constant for all the points at the same distance from the

design center. Therefore, such points are treated as being “equally important”. It is possible

to show that, at least for standard cases, using a rotatable design the corresponding prior

distribution (10) is constant for all the points at the same distance from the design center.

These are then considered a priori as “equally probable” and a kind of rotational invariance is

ensured from a Bayesian point of view as well.

If prior information about the location of the true stationary point is available, it is useful to

introduce an informative marginal prior distribution for ξ. Some possible choices are for instance

the normal, the generalized Student-T and the uniform distribution on the experimental region,

that is:

(i) πI(ξ) = Nk

(

µξ, Σξ

)

, ∀ ξ ∈ R
k;

(ii) πI(ξ) = Tk

(

µξ, Σξ; ν
)

, ∀ ξ ∈ R
k;

(iii) πI(ξ) ∝ c, ∀ ξ ∈ R and c=constant.

The specification of the prior hyperperameters should be coherent with the properties of the

employed experimental design. For example, in both cases (i) and (ii), when a rotatable design

has been chosen, it is reasonable to assume µξ = 0 and Σξ diagonal with equal diagonal elements.

In this way there is not a discrepancy between the knowledge the researcher expresses choosing

the experimental design and that he wants to take into account introducing the informative prior

distribution. The diagonal elements of Σξ can be fixed with reference to the prior probability

that seems reasonable to assign on R.

Always assuming the conditional reference prior proportional to 1/σ2 for the nuisance

parameters given ξ, whether π(ξ) is a non-informative prior or an informative one, the marginal

posterior distribution of the true stationary point is

π(ξ|D) ∝ π(ξ) L̃(ξ|D)

= π(ξ)
∣

∣XT
ξ Xξ

∣

∣

−1/2[(
y − Xξα̂ξ

)T (

y − Xξα̂ξ

)]−n−p′

2 . (11)

In particular, using the reference prior distributions, we obtain the reference marginal posterior

distribution

πR(ξ|D) ∝
∣

∣XT
ξ Xξ

∣

∣

−1[(
y − Xξα̂ξ

)T (

y − Xξα̂ξ

)]−n−p′

2 . (12)



8 V. Sambucini and L. Piccinato

If k = 1 cumbersome calculations show that (12) is a proper distribution. For a general k,

heuristic arguments show that the posterior distribution, which can be written as a ratio of

polynomials in ξ, is again proper. For standard designs this can be easily proved at least for

k = 2, 3.

4.1 An approximated method for posterior inferences on the true maximum

point

It must be reminded that the parameter of interest is the stationary point for the true response

function, not necessarily a maximum point. If we assume that a proper maximum point exists

and we are interested in identifying it, we should impose a priori a constraint on the nuisance

parameter space, assuming that matrix A in model MR is negative definite. Then, denoting by

Φ∗ the subset of the nuisance parameter space Φ such that ξ is actually a maximum point, we

should restrict our elaborations to the set Φ∗. Since this procedure is in general cumbersome,

we propose a simpler approximated method.

The idea is to consider the marginal posterior distribution of the true stationary point and

to identify the points ξ ∈ Ξ − Ξmax. Since, as previously remarked, these are all the stationary

points that, given the data, are not of maximum response for the estimated surface, it is not

reasonable to propose them as possible candidates for the maximum conditions. Therefore, to

have a posterior density for the maximum point, we will restrict the posterior distribution of the

stationary point to the set Ξmax. The resulting density will be denoted with πmax(ξ|D). This

procedure can be seen as an empirical technique, in which the parameter space Φ∗ is actually

estimated through the experimental results.

Now, our purpose is to make posterior inferences on the true maximum point, using its

approximated marginal posterior distribution, πmax(ξ|D). In particular we are interested in

computing highest posterior density (HPD) region. The 100(1 − α)% HPD region for the true

maximum point is given by

CHPD =
{

ξ : πmax(ξ|D) ≥ cα

}

where cα is the largest number so that

1 − α =

∫

ξ: πmax(ξ|D)≥cα

πmax(ξ|D)dξ.

Note that πmax(ξ|D) can be computed up to a normalizing constant. Therefore we must employ

Markov Chain Monte Carlo (MCMC) techniques. In particular in the following examples we

shall use the Metropolis-Hastings algorithm, with a gaussian random walk to generate proposed

values for the jump. Moreover, in order to be sure that we are drawing from πR
max(ξ|D), in

the algorithm we simply discard any point proposed for the jump that violate the constraint

regarding matrix Â(ξ).

Assuming that an MCMC sample {ξi, i = 1, ..., N} is available from πmax(ξ|D), it is possible

to estimate Bayesian HPD regions with the following steps (Chen, Shao and Ibrahim, 2000):

(i) compute ζi = π(ξi|D), ∀ i = 1, ..., N ;

(ii) sort {ζi, i = 1, ..., N} to obtain the ordered values ζ(1) ≤ ζ(2) ≤ ... ≤ ζ(N);

(iii) compute the 100(1 − α)% HPD region for ξ, using cα = ζ(αN).
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When k = 2, 3 it is possible to plot the CHPD regions displaying in a 2−dimensional or

3−dimensional space, respectively, the set of points ξ such that πmax(ξ|D) = cα, using the

value of cα estimated through MCMC simulations. For k > 3 we can show the point-by-point

projections of the k−dimensional HPD region into 2−dimensional planes. Given an MCMC

sample {ξi, i = 1, ..., N} from πmax(ξ|D), for each point ξ∗ = (ξ∗1 , ..., ξ
∗
i , ..., ξ∗j , ..., ξ∗k) in the

sample that lies inside the CHPD region the idea is to plot the points (ξ∗i , ξ∗j ) on the i − j

planes, ∀ i, j = 1, ..., k, i < j. Such point-by-point projections represent the “shades” of the

k−dimensional HPD regions on the k(k−1)
2 possible 2−dimensional spaces. Of course the points

inside the projections actually lie inside the k−dimensional CHPD only for some values of the

other k − 2 factors.

In the examples which follow the HPD regions will be compared with Box and Hunter

confidence regions referring to the same levels of probability and confidence (usually 90% and

95%) respectively.

5 A three factor experiment

Let us consider the experiment described in Section 9.2 of Box and Draper (1987) and also

studied by del Castillo and Cahya (2001) and Peterson, Cahya and del Castillo (2002). In

particular, these latter authors used this example to show the possibility of getting disconnected

Box and Hunter confidence regions for the stationary point. In the experiment the purpose is

to find the combination of the levels of three reaction conditions that maximize the elasticity

of a certain polymer. The factors of interest, denoted as coded variables with X1, X2 and X3,

are the percentage concentrations of two constituents and the reaction temperature. A central

composite design is employed, with two center runs and six axial points (±2, 0, 0), (0,±2, 0) and

(0, 0,±2). Fitting the second order polynomial model, all the terms in the model are statistically

significant and the R2 value is 0.972 (R2
adj = 0.930), showing an adequate fit. The estimated

stationary point, x̂S = (0.460,−0.464, 0.151), located inside the experimental region, turns out

to be a maximum point being all the eigenvalues of B̂ negative.
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Figure 2: Regions CBH for the true stationary point and CHPD for the true maximum point.

To perform a Bayesian inference, we employ the Random Walk Metropolis-Hastings

algorithm to generate a sample of simulations from the approximated marginal posterior
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distribution of the maximum point, obtained through the reference prior (10). In particular

we draw a sample of size 70000, discarding the initial 20000 iterations and taking every 10th

simulation draw. The result is a simulated chain of size 5000.

Figure 2 (a) and (b) shows the 95% Box and Hunter confidence region for the true stationary

point and the 95% HPD approximated region for the true maximum point. The CBH region is

composed of two disjoint regions, one associated with maximum points and the other associated

with saddle points (as already observed by Peterson, Cahya and del Castillo, 2002). Furthermore,

the region is unbounded and therefore it is not contained into the experimental region. On the

contrary, CHPD is properly contained in the experimental region.

6 Simulated examples with k = 2

Simulated examples, differently from real data examples, allow to show whether the calculated

regions contain or not the true maximum point. Different patterns are exhibited in the examples

which follow.

Three samples of size n = 12 are simulated from the coded true response function

ϕ(x1, x2) = 100 − 2.5(x1 − 0.6)2 − 5(x2 − 0.4)2 + 3.75(x1 − 0.6)(x2 − 0.4), (13)

with a maximum at ξ = (0.6, 0.4), using simulated errors from a normal distribution of mean

zero and σ2 equal to 1, 2 and 3, respectively. The combinations of factor levels considered are

those of a rotatable central composite design with axial points at distance
√

2 from the design

center and 4 center points. The obtained data sets are in Table 1. For the three data sets, fitting

the second order polynomial model, the quadratic effects are statistically significant and the R2

values are, respectively, 0.982, 0.925 and 0.921. The estimated stationary points are

ξ̂y1
= (0.563, 0.371), ξ̂y2

= (0.315, 0.235) and ξ̂y3
= (0.465, 0.333)

and they correspond to maximum points that lie inside the experimental region.

Table 1: Simulated runs from (13), using σ2 = 1, σ2 = 2 and σ2 = 3.

Runs X1 X2 y1 y2 y3

1 -1 -1 90.11 94.64 93.53

2 -1 1 88.01 88.26 87.07

3 1 -1 88.67 89.64 85.85

4 1 1 98.58 95.65 97.21

5 0 0 99.10 99.93 96.05

6 0 0 99.48 99.01 102.32

7 0 0 99.01 99.90 97.74

8 0 0 100.24 99.39 98.91

9 −

√

2 0 92.13 92.09 90.27

10
√

2 0 99.98 95.66 94.68

11 0 −

√

2 88.25 89.16 82.99

12 0
√

2 93.00 93.99 89.73
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Figure 3 shows the CBH regions for the true stationary point and the approximated HPD

regions for the true maximum point, obtained through MCMC simulations introducing the

following marginal prior distributions for ξ:

(i) the non-informative reference prior, πR(ξ);

(ii) the informative normal distribution πI
1(ξ) = N2(0, Σξ), with Σξ = diag(0.33, 0.33);

(iii) the informative uniform distribution in the experimental region, πI
2(ξ) .

Note that the informative priors do not express information about the true orientation of the

system and therefore they are coherent with the design property of rotatability. It is sensible

that in general the informative priors assign an high probability to the experimental region R.

In particular, under πI
1(ξ), the region R has a probability approximately equal to 0.95.

All the regions contain the true maximum point, but there is an apparent difference between

the sizes of the regions. The already encountered situations of disconnectedness of CBH regions

again occur in some cases.
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Figure 3: 90% (full lines) and 95% (dashed lines) CBH for the true stationary point and CHPD for

the true maximum point. The gray areas represent the experimental region. The experimental runs are

denoted by • and the true maximum point by ∗.
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7 A five factor experiment

The following example is considered several times in the literature (Box, 1954; Box and Draper

(1987); Bisgaard and Ankenman, 1996; del Castillo and Cahya, 2001), which should be referred

for more details. It involves the maximization of the yield of a chemical process with two

stages and includes five factors: the temperatures (X1 and X4) and the reaction times (X2 and

X5) at the two stages and the concentration of one of the reactants at the first stage. Fitting

the second order polynomial model on the basis of 32 runs the estimated stationary point is

x̂S = (2.50,−1.09, 1.24,−0.30, 0.54) and represents a point of maximum.
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Figure 4: Point-by-point projections of the 90% CHPD region for the true maximum point, using the

non-informative reference prior for ξ.

Figure 4 shows the point-by-point projections of the 5-dimensional 90% HPD region for the

true maximum point obtained using the reference prior (10) for ξ. The figure is obtained using

MCMC simulations as described in Section 4.1. In order to make a comparison, we also report

Figure 5, taken from del Castillo and Cahya (2001), in which the point-by-point projections of

the 90% Box and Hunter confidence region for the true stationary point are displayed. These

authors obtained the figure computing a 5-dimensional grid of points and plotting on the i − j

plane every sub-vector (xi, xj) which is a component of a 5-dimensional vector in the grid such

that it lies in the CBH region for at least one choice of the other three factors levels. The

projections of the 90% CBH region are clearly larger than the projections of the 90% HPD

region.
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Figure 5: Point-by-point projections of the 90% CBH region for the true stationary point (del Castillo

and Cahya, 2001).

8 Coverage rates

In order to assess if the proposed Bayesian procedures have a good behavior from a frequentist

perspective, we provide a simulation study to obtain an empirical check on the coverage

probability of the Bayesian posterior regions. The coverage probability of the Box and Hunter

confidence regions is also evaluated to have a comparison. In addition to the coverage rates it

is interesting to examine the width of the regions to assess if good coverage rates are associated

with big sizes, hence with poorly informative conclusions.

Given two coded factors, we consider different true response functions (modeled as in (3))

with a unique maximum point. From each of them, 1000 samples of n = 12 response values are

simulated corresponding to the experimental points of a rotatable central composite design with

four center points. The experimental region, R, is a circle of radius
√

2. The simulated errors

are from a normal distribution with mean zero and variance 1. The true maximum point has

been located on the design center (ξ = (0, 0)), inside R (ξ = (0.5, 0.5)), on the boundary of R
(ξ = (1, 1)) and then outside of the experimental region (ξ = (1.5, 1.5)). The value of the true

nuisance parameter α is also varied to consider different shapes and curvatures. Choices of α

which lead to high eigenvalues of matrix A characterize a more peaked true response function,

while a considerable difference in the magnitude of this eigenvalues indicates an elongation in

the surface. Equal eigenvalues results in a rotationally symmetric true response function. Figure

6 shows the three true surfaces considered in the simulation study for the three chosen values of

α when ξ = (0, 0) (for the other values of ξ the surfaces are rigidly translated).

The simulated data are used to compute the coverage rates of the 95% Box and Hunter

confidence regions for the true stationary point and of the 95% Bayesian HPD regions for the true

maximum point. For the Bayesian regions we consider three different marginal prior distribution

for ξ: the non-informative reference prior (10), an informative normal distribution with mean 0
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Figure 6: Contours of levels 99, 97, 94 and 90 of the true response functions considered in the simulation

study for the three chosen values of α when ξ = (0, 0). The true maximum response is 100, being α0 = 100.

The experimental runs are denoted by • and the dashed circles represent the experimental region.

and variance-covariance matrix Σξ = diag(0.621, 0.621) and an informative uniform distribution

on R. They are respectively denoted with πR(ξ), πN (ξ) and πU (ξ). Note that the informative

priors are coherent with the choice of a rotatable design. Moreover, the informative distribution

πN (ξ) assigns a prior probability to the experimental region approximately equal to 0.8. Let

us remark that we can evaluate the coverage rates of the HPD regions only through MCMC

methods: thus this check requires long computational times. Besides the coverage probability, in

order to take into account the width of the CBH and CHPD regions, we compute the proportion

of regions that cover the true maximum and are completely enclosed in R or in the regions R2

and R3, which are circles with double and triple radius with respect to the experimental region.

The simulation results are given in Table 2. In most cases the observed coverage probabilities

of the HPD regions are reasonably close to the nominal value, showing a good frequentist

behavior of the Bayesian procedure in particular when the non-informative reference prior for

ξ is assumed. When we use the informative distribution πN (ξ), the coverage rates tend to be

lower than the nominal level as the true maximum point get far the design center mainly in the

case α = (100,−2,−6, 4.5), when the true surface is more flat and more elongated. This fact is

not surprising. The informative distribution πN (ξ), being a normal with zero mean, indicates a

priori the design center as the best candidate for the maximum conditions and assigns a prior

probability to the experimental region approximately equal to 0.8. On the other hand, when

the true maximum point is located on the boundary or outside of the experimental region, there

is a big percentage of simulated data sets with an estimated stationary point that lies outside

of R. In particular, for the three values of α considered, these percentages are respectively

53%, 50.1% and 53.5% when ξ = (1, 1) and 99.4%, 100% and 92.8% when ξ = (1.5, 1.5). In

such situations, according to the typical RSM procedures (see, for instance, Cornell, 1990), it

is reasonable to conduct a further experiment rather than to construct confidence regions for ξ.

This is the reason for which in this simulation study we do not consider true response functions

with maximum point extremely far from R.

As regards the widths of the CBH and CHPD regions, let us remark that in all cases the

proportion of HPD regions that cover the true maximum and are completely enclosed in R,

R2 or R3 is always larger than the corresponding proportion of the Box and Hunter confidence

regions.
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Table 2: Coverage rates for 95% CBH and CHPD regions and proportions of regions that cover the true

ξ and are inside R, R2 or R3, for different values of ξ and α = (α0, α11, α22, α12).

α = (100,−2,−2, 0) α = (100,−8,−9, 6) α = (100,−2,−6, 4.5)

Eigenvalues A =(−2, −2) Eigenvalues A =(−11.54, −5.46) Eigenvalues A =(−7.01, −0.99)

CBH CHPD CBH CHPD CBH CHPD

ξ πR(ξ) πN (ξ) πU (ξ) πR(ξ) πN (ξ) πU (ξ) πR(ξ) πN (ξ) πU (ξ)

(0, 0) Coverage 0.957 0.978 0.975 0.978 0.945 0.945 0.952 0.947 0.945 0.968 0.965 0.959

∈ R 0.734 0.965 0.987 − 1 1 1 − 0.251 0.777 0.841 −

Coverage 0.961 0.974 0.975 0.964 0.939 0.939 0.943 0.941 0.951 0.960 0.959 0.958

(0.5, 0.5) ∈ R 0.245 0.451 0.560 − 0.995 1 1 − 0.056 0.245 0.308 −

∈ R2 0.586 0.946 1 − 0.995 1 1 − 0.160 0.791 0.997 −

Coverage 0.961 0.965 0.952 − 0.942 0.939 0.936 − 0.945 0.954 0.930 −

(1, 1) ∈ R2 0.271 0.564 0.991 − 0.997 1 1 − 0.055 0.356 0.973 −

∈ R3 0.475 0.867 1 − 1 1 1 − 0.112 0.657 1 −

Coverage 0.957 0.960 0.893 − 0.940 0.937 0.926 − 0.950 0.950 0.786 −

(1.5, 1.5) ∈ R2 0.053 0.124 0.711 − 0.607 0.750 0.962 − 0.017 0.096 0.775 −

∈ R3 0.274 0.569 1 − 0.998 1 1 − 0.072 0.398 1 −
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