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Abstract 
In this technical report we examine and compare the estimators most widely used to evaluate the 
prediction error of a non-parametric regression model. An extensive simulation approach allowed us 
to compare the estimators with respect to different data characteristics: the linearity of the relation, 
the signal-to-noise ratio, and the amount of model overfitting. 
We compared estimators based on resampling methods such as Leave-one-out, parametric and non-
parametric Bootstrap, as well as repeated Cross Validation methods and Hold-out. The models used 
were Regression Trees, Projection Pursuit Regression and Neural Networks. The simulations show 
that the repeated corrected 10-fold cross-validation proposed by Burman and the Parametric 
Bootstrap proposed by Efron have the best performance. 
 
Keywords: Extra sample error, Optimism, Cross-Validation, Resampled Hold-Out, Bootstrap .632+, 
Leave-One-Out, Parametric Bootstrap, Prediction Error, Regression Trees, Projection Pursuit 
Regression, Neural Networks. 
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1. Introduction 
 
Given a predictive statistical model, estimated on the available sample data, a fundamental 
problem in statistics is that of obtaining an accurate estimate of the prediction error, i.e. the 
expected loss of the model on future observations. 
This task has particular relevance every time a very large sample is not available, the 
underlying distribution is not known and you need to evaluate the prediction error of a non-
parametric model which could overfit data.  
It is quite common to meet this condition in Data Mining problems, where objective of the 
analysis is often to predict correctly the values of a target variable on new observed cases. For 
this aim, we should select the model having the greatest prediction capability and this requires 
to evaluate each model, ensuring the evaluation comparability with other concurrent models, 
which could have a different parametrization. Consequently we need a reliable prediction-
error estimator which does not assume a specific model and which does not require restrictive 
hypotheses on the data generation process. 
 
In literature the main effort, regarding the model evaluation, refers to the choice of the best 
model in a fixed homogeneous class (f.e. the linear regression models). In that case we don’t 
need a precise assessment of each model because it is sufficient to use a “relative measure” 
comparing the (usually nested) models to select, for example, the most important explicative 
variables. With this respect, the most famous proposals are the Mallows’s Cp, Akaike’s 
information criterion (AIC) and the Bayesian information criterion (BIC) (Mallows 1973, 
Akaike 1973, Schwarz 1978 ) or the Adaptive Model Selection based on a concept of 
generalized degrees of freedom proposed by Shen & Ye (2002). 
Alternative approaches for model selection are based on cross-validation or bootstrap 
techniques producing many estimators of prediction error. In literature the most relevant 
proposals consider mainly linear or near-linear models (see Shao 1993, Zhang 1993, Efron 
2004) and the asymptotic properties of the estimators (Stone 1977, Dudoit & van der Laan 
2005). Shao (1997, 1993) showed that in linear models, leave-one-out estimator is 
asymptotically equivalent to AIC and Mallows’s Cp but it is asymptotically inconsistent in 
the sense that the probability of selecting the model with the best predictive ability does not 
converge to 1 as the number of observations goes to infinity.  
 
On the other hand, if we want to evaluate the predictive performance of a model or select the 
best model in a heterogeneous class of parametric and non-parametric models, we need a 
reliable assessment of a model prediction capability. 
There are some results available providing bounds on the accuracy of the various estimators 
of prediction error (see f.e. Devroye, Györfi and Lugosi, 1996). Perhaps the most general 
results are those given for the (classification) training error estimate by Vapnik (1998), who 
proved that for any target function and input distribution, and for any learning algorithm that 
chooses its hypotheses from a class of VC dimension d, the training error estimate is at most 

( )mdO~   away from the true error, where m is the size of the training sample. On the other 
hand, among the strongest distribution free performance bounds are those given by Devroye 
and Wagner (1979), that can be applied to linear discrimination rules, nearest neighbours and 
histogram rules, and by Gascuel and Caraux (1992). Others bounds for the leave-one-out 
estimate have been proposed, for example by Rogers and Wagner (1978) for local 
discrimination rules, by Zhang (2001) for kernel methods and by Kearns & Ron (1999). 
However all the results are limited to classification problems, and the bounds are not sharp 
with respect to realistic situations. As alternative to the classical complexity-oriented 
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approach, recent approaches to deriving generalization bounds are based on the algorithmic 
stability, that is the behaviour of a learning algorithm with respect to perturbations of the 
training set (see f.e. Bousquet and Elisseeff, 2002).  
For the above reasons, a good generalization and a consistent model selection could lead to 
conflicting decision rules regarding the best choice of the prediction error estimator (see 
Larsen and Goutte, 1999). 
 
Efron (1986) introduced the optimism theorem and, therefore, the problem of estimating the 
prediction error became a problem of estimating covariance-penalty terms. Recently, Efron 
(2004) proposed a new parametric bootstrap approach, moreover new developments in the 
covariance-penalty approach for nonparametric regression and classification have been 
provided by Zhang (2008) and Daudin & Mary-Huard (2008). 

To the best of our knowledge, ours is the first large-scale study on the performance of  
prediction error estimators taking into consideration non-parametric regression models. More 
precisely, we propose carrying out the following tasks: 

• compare the most widely known estimators of prediction error with respect to 
different nonparametric regression models;  

• analyse the importance of sample-size, non-linearity, overfitting, and the signal-to-
noise ratio to explain the estimators’ performance on different data-sets.  

 
We deal with these specific tasks in the next paragraphs using an extensive simulation 
approach without considering any restrictive assumptions. 
 
In section 2 we introduce the concept of extra-sample error, in-sample error, expected extra-
sample error and their relationships. 
The concepts of apparent error estimator and optimism are introduced in section 3. 
In section 4 we introduce the estimators based on cross-validation, while the estimators based 
on repeated cross-validation are introduced in section 5. In section 6 and 7 we introduce the 
estimators based on bootstrap, parametric and non parametric, including the improvements 
632 and 632+. Section 8 considers a tentative of unified view of prediction error estimators 
proposed in literature. In section 9 we show the complex structure of each simulation and the 
evaluation measures employed to compare the estimators. The characteristics of each 
simulation carried out, are explained in section 10 with the results of the comparison of all the 
estimators. To reinforce the previous results, we considered also the analysis with an ill-
specified model in section 11 where the usual hypotheses for the noise (homoschedasticity, 
normal distribution with zero mean) do not hold.  Finally in the last paragraph we provide 
some conclusions. 
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2. The Prediction Error 
 
Let  ( ) ε+= J.....,X,XXfY 21 , where f is a general unknown function of the covariates 

J.....,X,XX 21=X  and ε  is a random noise with zero mean and variance 2σ .  

Let 

 ( ) ( )x|21 YE.....,x,xxf J ==μ  (1) 
be the conditional expected value of Y given the value of covariates. We can indicate the 
conditional distribution of Y for the i-th observation as ( )

i
GY ii μ~| x . If we suppose 

( )  0 2
εσε ;~ N then 

 ( ) ( )2;~| εσμiii NY x  (2) 
Having chosen an appropriate loss function ( ).L  and given a sample s  we can estimate the 
function ( )Xf  using the entire sample or, more generally, a subset, the training-set 

{ } sxc ⊆= n
iiy 1, , obtaining the cf̂  . We also indicate the training set as ( )cc Xyc ,= , where cy  

is the vector of observed iY  and cX  is the matrix of the covariate values. 

Given c and estimated the function cf̂ , we want to know the prediction capability of cf̂  on all 
the possible values x  of  X. 

The prediction error of  a fixed cf̂  is given by 

 
( ) ( ) ])([ ˆ  ˆ,ˆ

ccxc x ffYLEEfErr Y=  (3) 

which in the following we will indicate simply as Err . 
The expected prediction error is obtained averaging with respect to the training sample c: 

 { }ErrEErr c=  (4) 
Note that cE  averages on training samples, non fixing cf̂ , while xE  and YE  consider the 

possible values of  X  and Y with a fixed cf̂ . Err  is also called generalization error, and Err  
the average generalization error. 

If we want to obtain a measure of the capability of a function cf̂  estimated on the observed 
training set c, we are mainly interested in Err. On the other hand, expectation (4) could be 
useful in obtaining a general evaluation of the given model, independently from a particular 
sample.  

Expression (3) is also called extra-sample error (Efron & Tibshirani, 1997) because the 
average xE  refers to all possible values of X. 

Define the expected prediction error at the generic point ox  as 

 ( ) ( ){ }])([ | ooo o ccc xx f̂f̂,YLEEErr Y=  (5) 

If we choose the quadratic loss function ( )( ) ( )( ) ( )2
o

2
oooo ccc xx μ̂Yf̂Yf̂,YL −=−=  

( ) 2
oooo )( ccx μ̂YEEErr Y −= = ( ) ( ) 2

oooo )(
o cccccc μμμ ˆˆEˆEYEE Y −+− = 
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= ( ) ( ) ( ) ( ){ }))(()()( oooo
2

oo
2

oo 2
o ccccccccccc μμμμμμ ˆˆEˆEYˆˆEˆEYEE Y −−−− ++ = 

= ( ) ( ) =−− ++ 02
oo

2
oo )()(

oo ccccccc μμμ ˆˆEEEˆEYEE YY  

= ( ) ( ) =−− + 2
oo

2
oo )()(

o cccccc μμμ ˆˆEEˆEYEY  

= ( ) ( ) =−−+− + 2
oo

2
oooo )()(

o cccccc μμμμμ ˆˆEEˆEYEY  

= ( ) ( ) =−−− ++ 2
oo

2
o0

2
00 )()()(

0 cccccc μμμμμ ˆˆEEˆEYEY  

= ( ) ( ) =−− ++ 2
oo

2
oo

2 )()( cccccc μμμμσε ˆˆEEˆE  
= variance redictorpbias redictorp ++ 22

εσ  
 
Then, the Expected Prediction Error at a generic input point x  is 

⎟
⎠
⎞

⎜
⎝
⎛xErr  = variance redictorpbias predictor ++ 22

ε
σ    (6) 

where 2
ε

σ  is the variance of the noise, sometimes called the irreducible error. 

A more restrictive definition of prediction error is the in-sample error of cf̂ , where the 
values of the covariates cXx ∈i , cy  and cf̂   are considered fixed at their observed sample 
values  while iY  are random variables as defined in (2), thus 

 
( )( )[ ]∑

=
=

n

i
iiYin f̂f̂,YLE

n
Err

i
1

  1
cc x  (7) 

Expression (7) has been considered by several authors mainly in a model selection approach 
(Efron, 1986, 2004; Ye, 1998; Shen & Ye, 2002). 

On the other hand, considering the in-sample error approach, we can define the expected 
in-sample prediction error at the sample point cXx ∈i  as: 

 
( ) ( ){ }])([    cc xx

c
f̂f̂,YLEEErr iiYYiin i

=  (8) 

Note that cf̂  in (8) is not fixed: 
cYE  averages with respect to training samples which have 

fixed Xc (the values of the covariates in the training set) but different cy . 

The general expression of expected in-sample prediction error is obtained averaging with 
respect to the training units: 

 ( ){ }∑
=

=
n

i
iinin Err

n
Err

1

1 x  (9) 

If we choose the quadratic loss function, expression (8) can be written as 

 ( )iinErr x = )|  (|  ( )22
cc XX variancepredictorbiaspredictor ++

ε
σ  (10) 

where the covariate values in the new training sets are fixed at their observed values Xc. 
We expect that by increasing the sample size, the difference between (3) and (7) will 

decrease because Xc includes more ix   of the generating distribution.  

In the plots 2.1 and 2.2 we can see the extra-sample error (3) and the expected in-sample 
error (9), computed on 30.000 samples drawn from 1000 generating distributions. The 
predictive model is the Project Pursuit Regression (for details see section 9). It is evident that 
for a large sample (500 cases) the difference between the two measures is greatly reduced.  
We can also see that the difference between in-sample error and expected in-sample error is 
quite modest also for a small sample size, as shown in the figure 2.3. 
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Fig. 2.1 – Extra-sample error vs expected in-sample error. PPR with n=120, number of samples=30000.  

 
Fig. 2.2 – Extra-sample error vs expected in-sample error. PPR with sample size n=500, number of 
samples=30000. 
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Fig. 2.3 – In-sample error vs expected in-sample error. PPR with n=120, number of samples=30000.  
 

 
Also using a different model we can observe the same results, as shown in the fig. 2.4 and 2.5, 
where we applied regression tree models (for details see section 9). 
 
If ( )Xf  is a linear function with p parameters, expression (10) can be written as (Hastie et al. 
2001) 

 ( )iinErr x = ( ) ( ) 2222 )( ˆ
εε

σμμσ iii hE xcy ++ −
 

(11) 

where cXx ∈i , ( )ih x  is the vector of linear weights that produce the fit 

( ) ( ) ( )yxyXXXxxcc iiii hf =′′′== −1ˆμ̂ , then ( )( )if xĉvar = ( ) 22

ε
σih x . The average of this 

quantity with respect to the training data is 2

ε
σ

n
p . Finally we obtain: 

( )∑i iinErr
n

x1 = ( ) 2
i

22 )(1
εε σμμσ

n
pˆE

n iYi ++ ∑ − cc
 (12) 

 
From expressions (6), (10) and (11) we can observe the bias-variance trade-off (Breiman 
1992): minimizing the bias may increase the variance and vice-versa. In fact, in order to 
minimize the variance we could take a constant function cyi =ˆ , in this way the variance will 
be necessarily equal to zero while the bias will be very high. On the other hand, if our model 
interpolates perfectly the sample data (it is possible if there are not equal values of xi) then we 
have: 

( ) ( ) ( ) ( ) ( )( ) 0ˆEEˆB             thenˆ 22
=⎥⎦

⎤
⎢⎣
⎡ −==Ε iiiii YxfYxfY  

While ( )iYVar ˆ  will be equal to ( )εVar , which could be high. 
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Fig. 2.4 – Extra-sample error vs expected in-sample error. TREES  with n=120, number of samples=30000.  
 
The use of overly complex models (overfitting) produces low distortion and high variability 
while the use of overly simply models (underfitting) may produce high distortion and low 
variability. Specifically, if the signal-to-error ratio is high, overfitting should not be a matter 
of concern because the prediction error will be at most double the error variance while 
underfitting could result in a much higher prediction error.   

 

 
Fig. 2.5 – Extra-sample error vs expected in-sample error. TREES  with n=500, number of samples=30000.  
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Fig. 2.6 – Extra-sample error  and expected in-sample error  vs standard deviation of noise. PPR with n=120, 
number of samples=30000. 
 
In fig. 2.6  we can see the extra-sample error (3) and the expected in-sample error (9), 
computed on 30.000 samples drawn from 1000 generating distributions. The predictive model 
is the Project Pursuit Regression with sample size 120 (for details see section 9). The X-axis 
is the standard deviation of the noise, as explained in section 4. Expected in-sample error 
shows a remarkable lower variability than extra-sample error particularly for low values of 
noise standard deviation. 

 
 

3.  Apparent error and optimism 
 

When the data distribution is unknown, we cannot calculate (3), (4) ,(7) or (9), so it is 
necessary to use an estimator. 

The simplest estimator is the apparent error (AE) or resubstitution error, defined as 

 
( )( )∑

=
=

n

i
ii f̂,yL

n
err

1

1 xc               cXx ∈i   cy∈iy  (13) 

i.e. the average of the loss function on the training data-set c. 
The expression (13) can be calculated easily but it is well known that err is an optimistic 

estimator both of the extra-sample error Err and in-sample error inErr , because it uses the 
same data for both the training and evaluation of the model. Moreover, using powerful non-
linear models such as Neural Networks, it is possible to obtain a very low value of the 
apparent error just by including more parameters in the model.  

The optimism is usually defined as the difference between inErr  and err on the training 
data, while the expected optimism is defined as 

 [ ]cY X
c

|errErrEop in −=  (14) 
that is, the difference between inErr  and err on new training data, having random Y but fixing 
X at the observed sample values (Efron, 1986, Tibshirani & Knight, 1999). 
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Note that cf̂  in (14) changes for each training sample: 
cYE  averages with respect to training 

samples which have fixed Xc (the values of the training set) and different cy . 
Expected optimism is typically positive, since the apparent error is usually biased downward 
as an estimate of the (in-sample) prediction error.  
 
 

For a quadratic loss and a general function ( )Xf , from (14) we obtain (Efron, 1986):  

 
[ ] [ ] [ ] ( )∑+=+==

i
iiinin Y

n
errEoperrEErrEErr ,ˆcov2

cYYYY cccc
μ  (15) 

The expression (15) can be obtained by: 

[ ] [ ] [ ]

( ) ( ) ( ) ( )[ ]
( )22

222

22

ˆ1

ˆ2ˆ1

ˆ1ˆ1

ii
i

i iiiiiiiiY

i iiiiYi iiYin

E
n

YYEE
n

YEE
n

YE
n

EErrE

i

ii

μμσ

μμμμμμ

μμμμ

ε −+=

=−⋅−−−+−=

=−+−=
⎭
⎬
⎫

⎩
⎨
⎧ −=

∑

∑

∑∑

cY

ccY

cYcYY

c

c

ccc

 

[ ] ( ) [ ]

( ) ( ) ( ) ( )[ ]

( ) ( ) ( )[ ]∑∑

∑∑∑

∑∑

−⋅−−−+=

=−⋅−−−+−=

=−+−=⎥
⎦

⎤
⎢
⎣

⎡
−=

=

i
iiii

i
ii

i
iiii

i
ii

i
ii

i
iiii

n

i
ii

YE
n

E
n

YE
n

E
n

YE
n

YE
n

Y
n

EerrE

μμμμμσ

μμμμμμ

μμμμ

ε cYcY

cYcYY

cYcYY

cc

ccc

ccc

ˆ2ˆ1

ˆ2ˆ11

ˆ1ˆ1

22

22

2

1

2

 

and finally 

( ) ( )[ ] ( )∑∑ =−⋅−=
i

ii
i

iiii Y
n

YE
n

op cYcY cc
μμμμ ˆ,cov2ˆ2  (16) 

In (15) the covariance penalty term added to the apparent error indicates the influence of the 
values of iY  on the estimates ciμ̂  in the sample c.    

We can note that the covariance penalty theory can be generalized to a broad and important 
class of loss functions (.)L , the Bregman q-class divergence. This class accounts for different 
types of dependent variables and includes the quadratic loss, misclassification loss and other 
popular loss functions (see Efron, 2004; Zangh, 2008).     

The covariance term in (15) and (16) is used by Ye (1998) to define an extension of degree of 
freedom. Given a modeling procedure M, the generalized degrees of freedom (GDF) is 
defined as:  

[ ] ∑
=

=
n

i

M
i

hMGDF
1

     where     
[ ] ( )cY

cy
c

c
ii

i

iM Y
E

h
i

μ
σμ

μ

ε

ˆ,cov1ˆ
2=

∂

∂
= .  (17) 

Therefore GDF is defined as the sum of the average sensitivities of the fitted value ciμ̂  to a 
small change in iy  and we can see it as an extension of the trace of the hat matrix (used as 
degree of freedom for linear smoothers). When the model M is very flexible, the fitted values 
tend to be close to the observed values and therefore the sensitivity of the fitted to the 
observed values could be high and GDF very large. Ye (1998) proposed a Monte Carlo 
method to estimate [ ]MGDF  with respect to the derivative formulation:  
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[ ] ( ) ( )

⎥⎦
⎤

⎢⎣
⎡ −+

=
∂

∂
=

→ δ
μδμ

μ
μ

δ
cc

y
cy yIy

c
c iii

i

iM E
E

h
i

ˆˆ
lim

ˆ
0  

(18) 

where iI  is the i-th column of the nn ×  identity matrix. In other words, an identified structure 
is stable if the same structure would be identified with perturbed values δyc +  where 

),0(~ 2Iδ τN . In this algorithm different values tδ  are generated (t=1,2,….T, where T is the 
number of replications) from a Gaussian density with variance 2τ  depending on the unknown 
value of 2

εσ  and leading to a looping situation. Others authors proposed to estimate directly 
the covariance terms (see section 7 for the parametric bootstrap approach of Efron) but 
incurring in the same problem of 2

εσ  estimation. 
 

4. Estimators based on Cross-Validation. 
 

In K-fold Cross-Validation (CV), we split the sample into K disjoint subsets ht  of 
(approximately) equal size. We train the model K times, each time leaving out one of the 
subsets from the training, but using only the omitted subset to estimate the prediction error. 
The mean of these K values is the CV-estimate of the extra-sample error.  

Indicate with hc  the training set obtained removing the h-th subset ht  and let Knm /=  be 
the number of units in each subset (assuming that n is a multiple of K). The CV-estimator is 
defined as the average error on the K analyses: 

 ( )∑ ∑
= ∈

=
K

h
jj

CV
hfyL

mK
err

1 tj h

)( ˆ,11 x
c  (19) 

To simplify the notation we have indicated by htj ∈  the expression ( ) hjj ty ∈x; . 

It is known that k-fold CV is a biased estimate of Err and that by increasing the number of 
folds we can reduce the bias (Kohavi, 1995). This is due to the fact that CVerr  is based on 
functions hfc

ˆ  estimated on samples of size (n-m), so it tends to overestimate Err. 

We can interpret expression (19) also from another point of view. If we see the training sets 
Kccc  ...., ,, 21  as samples of size (n-m), we are estimating hfc

ˆ  on different samples, so CVerr  is 
an unbiased estimator of the expectation of  Err  for sample-size (n-m). We can thus obtain an 
approximate estimation of ( ) ( )h

c
cfErrEErrE hh ,ˆ|

cc ≈ .  

The main problem with K-fold CV is that the training-sets Kccc  ...., ,, 21  are not independent 
samples, i.e. they have  ( )mn 2−  cases in common, and also the test sets ht  come from the 
same data. This implies that the variance of CVerr  may be very large (Breiman, 1996) and 
several authors (Dietterich, 1998; Bengio & Grandvalet, 2003) have considered the 
difficulties of the variance estimation showing that no unbiased estimator of ( )CVerrVar  can 
be obtained. 

Note that CVerr  defined by (19), using a quadratic loss function, can be written as the average 
of identically distributed (dependent) variables: 

∑ ∑
= ∈

=
K

h
j

CV

mK
err

1 tj h

   11 δ      (20) 
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with ( )( )2ˆ
jjj hfy xc−=δ , for htj ∈ .  

 
Then CVerr  asymptotically converges to a normally distributed variable with variance 
(Bengio & Grandvalet, 2004): 

( ) ( )∑=
ij

2 ,1
ji

CV Cov
n

errVar δδ  = γωσδ n
mn

n
m

n
−

+
−

+
11 2   (21) 

Where 
• 2

δσ   is the average variance (taken over training sets) of jδ  for true test cases (i.e. 
sampled independently from the training sets), considering training samples of size 

( )1−km ; 
• ω  is the covariance of jδ  for the same “true” test set ht , i.e. it measures the 

dependence of test errors stemming from the common training set; 
• γ  is the covariance of jδ for different test sets, i.e. it measures the dependence of the 

training sets (each couple of training sets share ( )2−km  cases) and the dependence 
due to the fact that the test-set cases of  ht  are included in each training set jc  with 

hj ≠ . 

Expression (21) is the sum of ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+⎥⎦

⎤
⎢⎣
⎡ −

+
22

)1( 22 KmnmmKn =
2

)1( +nn  covariance terms, but 

there are only three different values. 
 
If K equals the training sample size n , we obtain the "Leave-One-Out" Cross-Validation 
(LOO). So LOO can be considered a particular case of K-fold Cross-Validation. 
Note that LOO is known to fail to estimate ( )ErrEc  for unsmooth statistics (Breiman, 1996; 

Efron & Tibshirani, 1993). This failure is due to the similarity of the training sets nccc  ...., ,, 21  
which are far from being independent samples of dimension (n-1). 
 
In particular LOO is an almost unbiased estimator of Err  but it has high variability producing 
non-reliable estimates (Efron, 1983; Stone, 1977). Furthermore it was showed that using LOO 
for model selection, we obtain an inconsistent procedure in the sense that the probability of 
selecting the model with the best predictive ability does not converge to 1 as the size of the 
dataset tends to infinity. On the contrary, K-fold CV shows lower variability than LOO and it 
results consistent in linear model selection problems but it may have large bias (Shao, 1993; 
Zhang, 1993).  
Some authors defined sanity-check bounds which show that the LOO estimator performance 
will not be never considerably worse than the apparent error estimator, under a weak 
assumptions of error stability (Kearns & Ron, 1999). Computation of LOO is heavy also for 
moderate sample size, but when we are considering a linear regression (or a linear smoother), 
it is possible to use the Generalized Cross Validation estimator (Hastie et al., 2001).  
 

Many simulation and empirical studies have verified that a reliable estimate of Err  can be 
obtained with K=10 for n>100 as recommended by Davison et al. (1997). In choosing subsets 
of inputs in linear regression, Breiman and Spector (1992) found 10-fold and 5-fold cross-
validation to work better than Leave-one-out. The variance of LOO is generally larger than 
10-fold CV and this could be due to the instability of the model used as, for example, in the 
case of decision trees (Kohavi, 1995; Elisseeff & Pontil, 2003). 
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Burman (1989) showed that ( ) ( ) 11
0 1 −−−≈− nKcErrerrE CV . For K=n the right-side term of 

the expression is ( )2−nO , but when K is small this term is not necessarily very small. 
Moreover, the constant term 0c  is of the same order of the number of parameters being 
estimated and so CV may give a poor estimate of Err  if the number of parameters is large. 
Therefore, Burman introduced a corrected version of cross-validation, CV*:   

 
+−+= eerrerrerr CVCV *  (22) 

where ∑
=

++ =
K

j
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K
e

1

1  and +
je  are obtained considering K-1 folds for model estimation and, 

differently from CV, the whole sample for testing.  
We can write expression (22) as 
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 (23) 

 

The second term of (23) will usually be negative to compensate for the bias of CVerr . 

The author showed that ( ) ( ) 21
1

* 1 −−−≈− nKcErrerrE CV  where the constant 1c  depends on 
the loss function ( )⋅L  and on the density distribution of the variables.  

In short,  err  uses a function cf̂  estimated on all data, while +
je  uses functions estimated on 

(n-m) data. Consequently, usually, +< jeerr  and the difference will be greater the larger the 

amount of overfitting, and thus, the larger the value of  CVerr . 

We can also write expression (22) as: 

 )(* +−+= eerrerrerr CVCV                                     (24) 
where )( +− eerrCV  can be seen as an estimate of optimism referring to extra sample error . 

Let ( ))( ˆ, jjjh hfyL xc=δ . We can write, differently from (14), this estimate of optimism as: 
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The first term in the square brackets is the mean function’s fit to test sets, i.e. CVerr , the 
second term is the mean function’s fit to the training sets, i.e. the average apparent error on 
(n-m) data. 
 
The Hold-out estimator (HO) is similar to a cross-validation estimator. It is obtained splitting 
randomly the sample in a training set to estimate the model and a test set to evaluate the 
prediction error.  If we split the sample into two subsamples of equal size, repeating two time 
the procedure swapping test data with training data, we obtain an estimator very similar to 2-
fold cross-validation. For a classification problem, Kearn (1997) gives a general bound on the 
error of the hold-out estimator considering the approximation rate (the accuracy to which the 
true function can be approximated as a function of the number of model parameters). The 
author shows that the bound is strictly linked to the fraction of sample used for testing. When 
the complexity of the true function is small compared to the sample size, the performance of 
the hold-out estimator is relatively insensitive to the choice of the fraction of cases used for 
the test set. Therefore there is a fixed value of the fraction which seems to yield reasonably 
good performance for a wide range of values of complexity. Surprisingly the optimal value of 
the fraction tends to one as the size of the sample tends to infinity, indicating that most data 
should be used for testing. Usually, the dimension of the training set is 2/3 of the sample.  
 

5. Repeated cross-validation estimators 
 
The values obtained by HO and, at a lower level, CV depend on the initial random partition of 
the sample. A method to reduce this dependence obtaining a more reliable estimate, consists 
in repeating the procedure a small number of times with a different random split. The average 
value obtained is the Repeated CV (RCV) or the Repeated Corrected CV (RCV*) (Burman, 
1989; Molinaro et al., 2005), or the Repeated Hold-Out (RHO), also named Monte Carlo 
Cross-Validation (Dudoit & Van der Laan, 2005). 
Another cross-validation technique is the complete K-fold CV or leave-m-out CV (Shao, 

1993). Indicating with 
K
nm =  the test set size in a K-fold CV, we can consider the average of 

all different values obtained splitting in ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
m
n ways the data set. However, when m is large, the 

amount of computation required to use the complete cross-validation may be impractical. 
 
Several authors have applied RCV to concrete problems, but there are not papers showing the 
real advantage of this approach (except for Burman, 1989). 
To evaluate the influence of repetition on cross-validation estimators we can consider the 
simulation showed in fig. 5.1. In this case we can see what happens for one generating 
distribution, using Regression Trees and sample size 120. We have drawn 500 samples from 
one distribution (obtained as described in section 9) and for each sample we have calculated: 
Err (on a 50.000 cases test-set), 100 (random split) CV and one RCV (the mean of the 100 
random CV). 
The obtained average Err  was 35.84 with standard deviation 2.0. 
CV and RCV have mean 37.62, but MSE of CV is 25.75 and MSE of RCV is 20.77. That is, 
Repeated CV shows an important reduction of variability. 
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In the figure we can see the average Err  (the horizontal red line), the single CV estimates 
(blue points) and the RCV estimate (yellow points). The black line represents the values of 
Err, that is the values we want to estimate.  
 
 

 
Fig. 5.1 - Comparison between CV and RCV(100 random splits) for Regression Trees: 500 samples of size 120 

from one data generating distribution, with respect to extra-sample error. 
 
 

6. Estimators based on non-parametric Bootstrap 
 

Instead of repeatedly analyzing subsets of the data as in RHO, it is possible to analyze 
bootstrap samples of data. Given a collection of K samples, { }K21 b,,b,b K  of size n, drawn 
with replacements from the training set, the model is estimated on each sample jb , and the 

estimated prediction error for the jb  sample, Bt
jerr , is calculated considering as a test sample 

the cases not included in jb .  

The Leave-one-out bootstrap estimator of Err  is defined as: 

 
∑

=

=
K

j

Bt
j

Bt err
K

err
1

1  (26) 

The properties of this estimator, compared with Cross-Validation and Hold-out estimators, 
have been analysed in many theoretical and empirical studies (Efron & Tibshirani, 1997). 
This estimator is biased upwards, but is considered to have lower variability with respect to 
Cross-validation or Hold-out estimators. 

To improve Bterr , Efron (1983) proposed the .632 bootstrap estimator: 



Estimators of extra-sample error- techn.report 2008-19 
http://www.dspsa.uniroma1.it/on-line/Home/Ricerca/Pubblicazioni.html 

 
 

 17

 errerrerr BtB ⋅+⋅= 368.0632.0632  (27) 
designed to correct the upward bias in Bterr  by averaging it with the downwardly biased 
estimator err . The weights are based on the fact that bootstrap samples include 
approximately 0.632n cases of the training data. However, in all situations of severe overfit, 
the estimator 632Berr  is downwardly biased because 0=err . To avoid this problem, Efron 
and Tibshirani (1997) proposed a new estimator, the .632+ bootstrap estimator, +632Berr , 
designed to be a less-biased compromise between err  and Bterr . It assigns greater weight to 

Bterr  when the amount of overfitting is large.  
To calculate +632Berr , firstly the no-information error, γ , is introduced corresponding to the 
expected prediction error of model )(f̂ X  when Y and X  are independent. Given ( )Xf̂ , an 
estimate of γ is obtained considering the loss on all n2 couples ( iy , jx ): 
 

 
( )( )∑=

ji
ji fyL

n ,
2

ˆ,1ˆ xγ            (i,j=1,2,…,n) (28) 

 
Thus a relative overfitting rate is defined as: 

 ( ) ( )errerrerrR Bt −−= γ̂ˆ  (29) 
with its range forced to be between 0 (no overfitting) and 1 (high overfitting).  

The .632+ bootstrap estimator is given by:  

 ( ) errwerrwerr BtB ⋅−+⋅=+ ˆ1ˆ632  (30) 
where )R̂.(.ŵ ⋅−= 368016320 . The weight ŵ  ranges from 0.632 (no-overfitting) to 1 
(severe overfitting). 
 
 

7. Estimators based on parametric Bootstrap and covariance penalties 
 
A seen in section 3 a way to evaluate the prediction capability of the model is to estimate the 
optimism and then add it to the apparent error. Many methods based on this idea are been 
proposed, specially for the modeling selection process, as the well known AIC, BIC or 
Mallows’ Cp estimators.  
Expression (15) can be seen as a generalization of Mallows’ pC  for a general estimator of 

( )Xf . In fact, considering a linear rule Myμ =  with hat matrix M  and y  generated from a 
homoscedastic Gaussian model, the covariance penalty term ( )∑

i
iiy cy μ̂,cov  is equal to 

( )Mtrace2
εσ  and, for a linear regression model with p  parameters, to p2

εσ . We must remark 
that expression (15) considers the expected in-sample error while CV and Nonparametric 
Bootstrap are estimators of the extra-sample error. 
As shown in fig. 7.1, the Parametric boostrap for the small sample understimates the extra-
sample error, but with a larger sample and a more stable model the estimator becomes quite 
unbiased (see fig. 7.2). 
In the literature, several methods have been proposed to estimate the optimism. Considering a 
nonlinear estimation rule ( )yμ g=ˆ , if g(.) is a smoother function for a homoskedastic 
Gaussian model, under differentiability conditions, it is possible to use Stein’s unbiased risk 
estimate (Stein 1981): 
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∑ ∂
∂

+=
i i

iSURE

yn
errerr μ̂2      (31) 

Other authors proposed to estimate the covariance term by bootstrap. Recently, Efron (2004) 
introduced a parametric bootstrap procedure consisting of the following steps: 

1. Estimate ( )yμ g=ˆ , while 2σ̂ can be obtained applying a model sufficiently complex to 
have negligible bias.  

2. From the bootstrap density ( )Iμf 2ˆ,ˆˆ σN=   generate, for each ix  of the data-set, B new 
values b

iy ∗
 and estimate  ( )b

i
b

i ygμ ∗∗ =ˆ .  
3. Estimate ( )iiy μ̂,cov y  by 
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4. Finally, the estimator is given by:  

  
∑+=

i
i

PB

n
errerr vôc2  (33) 

 
To adapt Efron’s proposal of Parametric Bootstrap to a complex non-parametric model (e.g. 

Neural Networks), we adopted a two-step procedure.  

In the first step we need to obtain good estimates of εσ  and μ . In fact, Efron’s proposal to 
use a “big” model is not applicable when considering models capable of fitting random noise: 
in this case, it is possible to obtain cyμ =ˆ   and  0ˆ =εσ . 

To overcome this problem, in the first step of our simulation we applied a non-parametric 
bootstrap procedure in order to obtain robust estimates of εσ  and μ . Once we have obtained 

these estimates, we can define the bootstrap density ( )Iμf 2ˆ,ˆˆ σN=  and then calculate formula 
(33). This estimation is illustrated in the following Matlab code, which uses a PPR model: 

 

Zhang (2008) proposed an alternative model-free approach to estimate the covariance-penalty 
based on Leave-one-out. The author suggested an approximated LOO formulas which 
facilitate fast estimation of prediction error when the conditional distribution of the response 
variable Y belong to the exponential family and the prediction error is based on the Bregman 
divergence measure.    
In a classification context, Daudin and Mary-Huard (2008) presented a similar method for 
prediction error estimation based on the covariance terms and named swapping method. The 

% niter = n. of Bootstrap iterations 
% n = number of units  
       sigma = 0.0; 
  mu    = zeros(n,1); 
   for i=1:niter     
       % generate from YX one nonparametric bootstrap sample YXb 
        [Yb Xb] = bootstrap(Y,X); 
    % estimate Y by Projection Pursuit Regression on Yb Xb 
        smod = ppreg(Yb,Xb,min,max);         
        Yhat = pphat(X,smod) ;        
        ydif(:,i) = Y - Yhat ; 
        sigma   = sigma + std(ydif(:,i)); 
        mu = mu + Yhat; 
   end;        
% sigma = mean of standard deviations in each samples 
        sigma = sigma/niter;        
% mu = mean prediction vector for each sample 
        mu    = mu/niter; 
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authors showed, by using artificial and real data sets, that their method is very competitive 
compared to CV using the K-nearest-neighbor classificator. 
 

 
Fig. 7.1 – Parametric bootstrap vs extra-sample error. TREES 120, 30000 samples 

 
Fig. 7.2 – Parametric bootstrap vs extra-sample error, PPR 500, 30000 samples. 

 
 

8. A unified view of the estimators 
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It is possible to view several of the previous estimators as a particular case of a general CV 
estimator (Dudoit & Van der Laan, 2005). 
Introduce a binary split vector δ  defining a particular split of the sample into a training-set 

δc  and a test-set δt  ( ⇒= 0iδ i-th unit in the training-set). Let tp  be the proportion of 
observations in the test set, ∑= np it /δ . 
We can generalize the expression of the CV estimator as: 
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If we consider K split vectors   ,... , , K321 δδδδ , defining K mutually exclusive and 
exhaustive test-set of approximately equal size, we obtain the K-fold CV defined in (19), 
having Kpt 1= . If 1=tn , we obtain LOO and  npt 1= . 
Drawing randomly the split vectors, having fixed tp  (usually 1/3), we obtain the Repeated 
Hold Out estimator (RHO). 
Defining bootstrap inside this scheme is a bit more complicated. 
Let be   ,... , , r321 ςςςς  a set of random binary vectors such that 

nrnn i
j i

i ==⎟⎟
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j
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j

i r ςw . 

In this case tp  is a random variable, but we know (see section 6) that ( ) 368.0≈tpE . 
We have then obtained the Leave-One-Out Bootstrap estimator (26). Anyway, we cannot 
derive the more interesting B632 or the B632+ estimators, the corrected CV or the parametric 
Bootstrap of Efron, so this unified view has not great interest for this study. 
 

9. The simulation framework 
 

Given five variables 4321     X,X,X,XY ,  we considered 1000 data generating distributions, in 
which ( ) ε+= 4321 ,X,X,XXfY  and  f  is the non-linear function 

( ) ( ) ( )∑∑ ==
−β++=

4

1

24

10 j jjjj jj XXXccaf X   (36) 

where  
 
• Xj   (j=1,…,4) is the j-th explanatory variable generated from a Beta distribution with 

parameters (gj, tj) , where the latter are drawn from a Uniform distribution in the interval 
[2 , 10]; 

• a, c0, cj and βj  (j=1,…,4) are randomly drawn from Uniform distributions in the intervals 
[0, 4],  [-5 , 5],  [-5 , 5] and  [-50 , 50], respectively; 

•  ε  is the noise generated from a Gaussian distribution ( )2,0 εσN . 
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Fig. 9.1 – The simulation scheme for Repeated Hold-Out estimator.  

 
In this diagram we show the main steps needed to carry out the simulation with the Repeated 
Hold-Out estimator. For the other estimators the simulation change only in the last step:  we 
don’t split, repeatedly, the sample in two subsamples, rather we create bootstrap samples or 
k-fold splits. 
 

 
The above definitions allow us to generate data with different levels of non-linearity in the 
relation between Y and X. To allow great generality in the results, the systematic component 
of the model (the signal) has been scaled so that its standard deviation, sσ , is equal to a 
random value drawn from a Uniform distribution in the interval [10 , 30]. We then drew 
randomly the signal-to-noise ratio nsr /  (between 0.5 and 4.5). The standard deviation of the 
noise, εσ , was then fixed to be nss r /σσε = . 
Note that S/n=0.5 means that the true underlying function accounts for  20% of the variance 
of the response, while S/n=4.5 implies a percentage of  95%. 
Several simulations were carried out as follows. One thousand data generating distributions 
were obtained first drawing the values of a, c0, cj, βj,  gj , tj , sσ  and nsr / ; then, conditionally 
on these, creating the test-set drawing 50000 values for each Xj  (j=1, … , 4) and for ε , and 
finally computing Y.  
For each data generating distribution, in the same way as the test-set, we extracted 30 
independent samples of size 120 or 500, depending on the simulation (see the next 
paragraph). 

 
Data generator random parameter 

generator 
 

sample 1 
 

sample 2 sample 30 
 

30 samples 

100 splits 

Test data-set 

 50000 cases 
 

1000 data-generating distributions

 Train  2 
Test  1 Test  2 
Train  1 
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Fig. 9.2  - Plot of 1000 data generating distributions with respect to S/n ratio and R2 

 
In the fig. 9.2, they are shown 1000 generating distribution by level of linearity (measured by 
R2) and noise to signal ratio (S/n). Of course, there can not be generating distributions with 
small S/n and high R2. Moreover, R2 can not be greater than 0.95 (corresponding to S/n=4.5 
and a perfectly linear function). 
 
To estimate the function f  we chose three different methods: 

• The Regression Tree model (RT) as implemented in CART (Breiman et al., 1984). It 
can fit non-linear data, it is very fast, it is easy to interpret. Moreover it is quite unstable 
and, having a large number of leafs, can overfit data. 
The Regression Tree model can be defined 

( ) ε+∈= ∑
=

M

m
mm RcY

1
I x      (37) 

where ( )mm RYEc ∈= x|  and  mR  is one of the M leafs of the regression tree. To 
control the tree size, we didn’t use pruning but we fixed the minimum split size to 10, 
for sample size 120, and 20, for sample size 500. 

 
• The Projection Pursuit Regression model (PPR), as proposed by Friedman & Stuetzle 

(1981). We used the algorithm SMART (Friedman, 1985). Given a sufficient number of 
parameters, PPR can approximate any continuous function, but, for moderate M, it 
generates quite stable and smooth functions. 
In the PPR we have the following model: 

    ( ) ε+′= ∑
=

M

m
mmgY

1
xβ       (38) 

That is an additive model in the transformed variables xβmmz ′= , where the functions 

mg  are estimated by nonparametric scatterplot smoother. We fixed M=3, as PPR 
showed to be an adequate performance in a pre-simulation analysis.    
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• The Neural Network model (NEU). We considered a simple feedforward Neural 

Network with one hidden layer with 6 nodes which appeared to be adequate for our 
data. It is important to note that this Neural Network model has an expression similar to 
(38) but with simpler functions than mg  (Hastie et al., 2001). Using also an early 
stopping rule based on a validation set, we expect NEU to be more regular than PPR. 

 For this model we considered only 200 generating distributions. 
 
 

The loss function considered in this simulation is the usual squared error function. Given a 
data generating distribution, we carried out the following steps for each sample: 

1. Estimation of the models TREE, PPR and NEU on all the units of the sample. 
2. Estimation of the predicted values of Y on the large test-set: comparing the 

estimates with the true values of Y, we obtain, with a small approximation, the 
extra-sample error Err . 

3. Estimation of in-sample error inErr : generate 300 new response vectors by 
( )Iμ 2, εσN , with ( )4321 ,X,X,XXf=μ , then compute expression (7). 

4. Calculation of all the estimators described in the previous paragraphs, using only 
the sample. 

 
At step 2), the value of Err  was obtained estimating the model on the sample and then 
calculating the prediction error on the large (50.000 cases) test set. The more complex 
calculation of inErr  is showed in the following Matlab code: 
 

 
 
 
Calculation of inErr  is more demanding and it is showed in the following Matlab code: 
 

% computation of ERRin 
    % nrep = number of replications; 
    % deve = standard deviation of noise 
    ERRin=0.0; 
    mu = Y-eps; % mu = E(Y/X)= Y without error 
    Ys = zeros(n,nrep); 
    % generate nrep new vectors Y/X 
    for j=1:nrep 
         Ys(:,j) = normrnd(mu,deve);          
    end; 
    % calculate ERRin as mean of (nrep*(nrep-1)) values 
    smod = ppreg(Ys(:,j),X,min,max); 
    Yhat = pphat(X,smod) ; 
    for j2 = 1:nrep 
          ydif = Yhat-Ys(:,j2);   
          ERRin = ERRin + (ydif'*ydif /n) ;       
    end; 
    ERRin = ERRin / double(nrep); 
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To account for the sample variability, in a given h-th distribution, we computed the value: 
 

    ( )∑
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jhjhh ErrrrE
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2ˆ1ν       (39) 

where K=30, the number of samples. 
This estimator will be zero if  jj ErrrrE =ˆ  for each sample, i.e. the estimation procedure 
gives always the exact value we would obtain (the extra-sample error of that model on the 
generating distribution). 
We calculated also the mean of  the jErr   in a fixed distribution by:  
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Then we have 
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In most cases we should obtain hh ϕν ≥ .  
An overall measure of performance on all distributions can be obtained by 

    
h

h
hrse

ϕ
ν

=         (relative root squared error for h-th distrib.) (42) 
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1

1
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    (mean relative root squared error)  (43) 

If the estimator is unbiased and has low variability, then, for each distribution, rseh will be 
small. rse  considers jointly the main characteristics of an estimator evaluated on a number of 
different distributions.  
As summary estimators of biaseness of the models on all the distributions, we computed the 
following indices: 
 

% computation of expected ERRin 
    % nrep = number of replications; 
    % deve = standard deviation of noise 
    EERRin=0.0; 
    mu = Y-eps; % mu = E(Y/X)= Y without error 
    Ys = zeros(n,nrep); 
    % generate nrep new vectors Y/X 
    for j=1:nrep 
         Ys(:,j) = normrnd(mu,deve);          
    end; 
    % calculate EERRin as mean of (nrep*(nrep-1)) values 
    for j = 1:nrep 
      smod = ppreg(Ys(:,j),X,min,max); 
      Yhat = pphat(X,smod) ; 
      for j2 = 1:nrep 
          if (j ~= j2)  
          ydif = Yhat-Ys(:,j2);   
          EERRin = EERRin + (ydif'*ydif /n) ; 
          end; 
      end; 
    end; 
    EERRin = EERRin / double(nrep*(nrep-1)); 
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∑
= +

−
=

K

j jhjh

jhjh
h ErrrrE

ErrrrE
K

rb
1 ˆ

ˆ1        (relative bias for h-th distrib.)  (44) 

∑
=

=
H

h
hrb

H
arb

1

1       (mean absolute relative bias)   (45) 

 
 
where H=1000, the number of generating distributions, and K=30, the number of samples. An 
unbiased estimator should have 0≅hrb  for each h, obtaining a small value of arb .    

To be confident on the interpretation of the previous indices and, in particular, of  rse  as a 
global measure of performance, we computed also an “estimator’s mean rank”: for each 
sample we ranked the estimators on the strength of their ability to predict Err , the mean of 
these (30000) ranks is easily interpretable in order to compare the estimators. 
 
 

10. Simulation experiments 
 
We compared the estimators of  Err by carrying out two simulations with different sample 
sizes: 120 and 500. To indicate a model, e.g. Regression Tree, applied to the sample size 500, 
we will use the synthetic notation TREE 500. 
The list of estimators considered is the following: 

• err , the resubstitution estimator; 
• RCVerr , the Repeated 10-fold Cross Validation estimator, with 10 random start; 
• *RCVerr , the same as RCVerr  but with Burman’s correction; 
• RHOerr , the Repeated Hold-Out estimator, with 100 random splits; 
• LOOerr , the Leave-one-out Cross Validation estimator; 
• ,632Berr  the Bootstrap .632 estimator, with 100 bootstrap samples; 
• ,632+Berr  the Bootstrap .632+ estimator, with 100 bootstrap samples; 
• ,PBerr  the Parametric Bootstrap estimator, with 100 bootstrap samples; 

 
All the previous estimators require similar computational times, except for err (very quick) 

and LOOerr  (very slow for sample size = 500). Moreover PBerr  also required a preliminary 
estimation step by nonparametric bootstrap (see Section 6). 

 
It is useful to start from a general evaluation of the performance of the models on the two 

sample sizes. We can gather from table 10.1 that, for the smaller sample size, all models 
overfit. Indeed, apparent error is much lower than extra-sample error, this is true also for 
TREE 500. 
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Table 10.1  
Extra-sample and apparent error. Mean on all generating distributions with respect to model and sample-size. 
 

 Mean of apparent error Mean of extra-sample error Ratio 

TREE  
 

120 91.37 462.37 0,208 
500 125.97 340.14 0,384 

PPR  120 141.33 395.22 0,358 
500 209.78 262.54 0,799 

NEU  
 

120 189,36 444,31 0,435 

500 121,53 151,98 0,810 

 
 

The ratio Err
err  in table 10.1 can be interpreted as level of  model overfitting: small values of 

the ratio correspond to high overfitting. 
 
These results imply a significative level of overfitting, which is a quite common problem in 
data mining applications. It should be noted that presence of overfitting does not imply 
necessarely that we should use a simpler model, for example a tree with a smaller number of 
nodes. 
To illustrate the problem, consider fig. 10.1. It shows the performance of a regression tree 
with sample size 120 with respect to the minimum splitting size of a node (splitmin). Larger 
the splitting size lesser the number of nodes. We have drawn one sample from 200 generating 
distributions with a strong signal (S/n= 4.5) and we have evaluated the performance of the 
regression tree for each value of splitmin. 
The lowest values of extra-sample error has been obtained for the largest number of nodes, 
i.e. splitmin near the minimum value 2, but in this case the apparent error is near zero, to 
indicate presence of overfitting. This apparent incongruence is due to the high level of signal 
compared to the error. 

 
Fig. 10.1 – Err and err vs minimum splitting size, 200 generating distributions wit S/n ratio=4.5, for each 
splitting size. Regression Tree with sample size n=120. 
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From the table 10.1 we could also note that a greater sample-size reduces the difference 
between extra-sample error and apparent error. PPR and NEU with sample size = 500 do not 
show overfitting, in the other cases there is a significative level of overfitting. 
 

Let us now consider the indices defined in the previous paragraph. In the following figures 
10.2-10.10, we can see the values of rbh (44)  for RCV, RCV*, PB, B632,B632+, LOO, 
(computed as the mean of 30 samples for each of the 1000  generating distributions), by S/n 
ratio. Note the strong dependence of  PB, B632, B632+ on the S/n ratio. In the presence of 
severe overfitting and unstable models (TREE 120), we can see the remarkable improvement 
on B632 obtained by B632+ for small values of the S/n ratio. However, for the other models, 
B632+ were worse than B632. Conversely, we did not observe any remarkable influence of 
the level of linearity (measured by R2) with respect to the estimator performance (see fig. 
10.11 and 10.12).  

Considering the more stable model PPR with the larger sample, we obtain fig. 10.9 and 
10.10.  Note the good performance of RCV*, PB and LOO with respect to the biased B632. 

 
 
 

 
Fig. 10.2 – rb(h,k) vs S/n ratio of RCV* and B632+  for 30.000 samples, 1000 generating distributions. 

TREE with sample size n=120. 
 

In this plot we can see the sample value components of rbh (44)  for B632 and RCV*, for each of 30.000  
samples. The predictive model is the Regression Tree model (for details see section 9). Given the S/n ratio, we 
can see that RCV* has small bias but large variability. 
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Fig. 10.3 – rb vs S/n ratio. TREE with sample size n=120 

 

 
Fig. 10.4 – rb vs S/n ratio. TREE with sample size n=120 
 
In these plots we can see the value of rb (44)  for RCV, RCV*, PB, B632,B632+, LOO, computed as mean of 30 
samples for each of 1000  generating distributions. The predictive model is the Tree Regression model with 
sample size=120 (for details see section 9). PB, B632, B632+ show a strong dependence by S/n ratio. 
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Fig. 10.5 – rb vs S/n ratio. TREE with sample size n=500 

 

 
Fig. 10.6 – rb vs S/n ratio. TREE with sample size n=500 
 
In these plots we can see the value of  rb for RCV, RCV*, PB, B632,B632+, LOO computed as mean of 30 
samples for each of 1000 generating distributions. The predictive model is the Tree Regression model (for 
details see section 9). B632,B632+ show a strong dependence by S/n ratio. 
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Fig. 10.7 – It is represented the difference between RCV and PB estimate with Extra Sample Error. 
We reported also the value of Extra Sample Error (red points). The model used is Regression Tree 
with sample size=120. 
 

 

 
Fig. 10.8 – It is represented the difference between RCV and PB estimate with Extra Sample Error. 
We reported also the value of Extra Sample Error (red points). The model used is Projection Pursuit 
Regression with sample size=120. 
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Fig. 10.9 – rbh vs S/n ratio. PPR with sample size n=500 

 

 
Fig. 10.10 – rbh vs S/n ratio. PPR with sample size n=500 

 
 

In table 10.2 and 10.3 we show for each estimator the value of arb , measuring the absolute 
relative bias, and the value of rse , which is an overall bias-variance relative index. A good 
estimator should have arb  and rse  as small as possible. The results are reported for both 
simulations, the first with sample-size 120 and the second with sample-size 500. 
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Table 10.2.  
Mean absolute relative bias arb . Mean on all generating distributions with respect to estimator, model and 
sample-size. 

 

arb  

TREE PPR NEU 

sample size sample size sample size 

120 500 120 500 120 500 

RCV 0.014 0.010 0.030 0.019 0.079 0.023 

RCV* 0.043 0.030 0.022 0.008 0.036 0.010 

PB 0.074 0.045 0.062 0.012 0.057 0.010 

B632 0.109 0.080 0.124 0.074 0.057 0.021 

B632+ 0.056 0.055 0.182 0.082 0.080 0.022 

LOO 0.018 0.008 0.023 0.013 -------- -------- 

RHO 0.037 0.034 0.122 0.045 0.210 0.071 
 
 
Table 10.3.  
Mean relative root squared error rse . Mean on all generating distributions with respect to estimator, model and 
sample-size. 
 

rse  

TREE PPR NEU 
sample size sample size sample size 

120 500 120 500 120 500 

RCV 1.658 1.828 1.181 1.315 1.271 1.271 

RCV* 1.733 2.149 1.091 0.962 0.937 0.829 

PB 1.956 2.485 1.183 0.945 0.948 0.780 

B632 2.286 3.486 1.563 1.773 1.051 1.054 

B632+ 1.732 2.669 2.185 1.961 1.206 1.079 

LOO 1.856 2.038 1.260 1.323 -------- -------- 

RHO 1.807 2.341 1.674 1.562 2.182 1.947 

 
Table 10.4. 
The estimators’ comparative performance: estimator mean ranks. Lower values indicate better estimators. 

 

 

TREE PPR NEU 
sample size sample size sample size 

120 500 120 500 120 500 

RCV 2.87 2.63 3.21 3.54 3.73 3.93 

RCV* 3.16 2.87 2.89 2.74 2.63 2.64 

PB 3.67 3.40 3.30 2.75 2.71 2.45 

B632 4.88 5.42 3.99 4.52 3.09 3.16 

B632+ 3.13 3.86 5.14 5.39 3.68 3.60 

LOO 3.30 2.82 3.35 3.50 ------ ------ 

AE 6.99 7.00 6.11 5.57 5.17 5.22 
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Fig. 10.11 –  rb vs R2 . TREE with sample size n=120 

 

 
Fig. 10.12 – rb vs R2 . TREE with sample size n=120 

 
In these plots we can see the value of rbh (44)  for RCV, RCV*, PB,B632, B632+, LOO, computed as mean of 30 
samples for each of 1000 generating distributions. The predictive model is the Tree Regression model (for 
details see section 9). 
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Fig. 10.13 –  hrse   vs  S/n ratio, RCV, B632+, LOO. PPR with sample size n=120 

 
 

 
Fig. 10.14 –  hrse   vs  S/n ratio, err, PB, B632, B632+. PPR with n=120 
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In the following tables we compared the variability of the different estimators. In particular 
we considered the mean of the standard deviation of each estimator.  
 
Table 10.5. 
Comparison of the estimator variability. Sample size = 120. 

 Err RCV err RCV* PB B632 B632+ LOO
TREE 45.8098    74.1814  21.4261  69.0100  57.8333  50.6303  66.1099  84.8805
PPR 75.1120    62.0773  36.5505  66.2129 59.9678  62.0658  82.1610  73.3496
NEU 111.6404    73.5409  59.1412  86.7476  75.8818  54.4213  68.3934 NA 

 
Table 10.6. 
Comparison of the estimator variability. Sample size = 500. 

 Err RCV err RCV* PB B632 B632+ LOO
TREE 15.4128    25.9033  12.1516  24.9253  22.6055  19.2520  22.8302  30.3857
PPR 23.6408    19.6600  23.8004  27.0591  26.3019  20.9158  21.9575  21.9735
NEU 14.0461     8.7822  10.5144  12.1127  11.5127  8.4300  8.5865 NA 

 
 

11. Extimator’s behaviour for ill-specified models 
 
What happen when we have more complex data or the model is ill-specified? 
Consider the following case (inspired from Friedman, 1991): 
 

( ) επ ++⎟
⎠
⎞

⎜
⎝
⎛ −+= 4321 5

2
120sin10 xxxxy     (46) 

where the covariates were randomly generated from a uniform distribution. 
We want ε  to be dependent from ( )xf , so we introduced a “non-observable” random 
variable τ : ( ) ( ) 2.02

4 ⋅⋅= xfχτ , then, given the random s/n ratio and εσ  as described in the 
section 4, we set 

τ

ε

σ
σ

τε =       (47) 

As an example, we show the bias introduced by ε  in the following plot (a sample of 1000 
cases for one generating distribution with S/n=2.0). 
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Fig. 11.1 –  Noise  vs  Signal, one sample (1000 cases) from one generating distribution 

 
Finally we have obtained the results showed in the following tables. Note that the number of 
generating distributions considered is not high (300), but this is a useful test to confirm and 
consider more reliable the previous results. 

In table 11.1 and 11.2 they are reported the results which can be compared with the values 
shown in tables 10.2-10.3.   

 
Table 11.1.  
Mean absolute relative bias arb . Mean on all generating distributions with respect to estimator, model and 
sample-size. 

 

arb  

TREE PPR 

sample size sample size 

120 500 120 500 

RCV 0.015 0.013 0.030 0.026 
RCV* 0.033 0.025 0.019 0.010 

PB 0.074 0.052 0.035 0.033 
B632 0.104 0.080 0.106 0.102 

B632+ 0.059 0.061 0.147 0.107 
LOO 0.013 0.007 0.024 0.017 
RHO 0.047 0.042 0.125 0.053 
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Table 11.2.  
Mean relative root squared error rse . Mean on all generating distributions with respect to estimator, model and 
sample-size. 
 

rse  

TREE PPR 

sample size sample size 

120 500 120 500 

RCV 1.588 1.542 1.090 1.049 
RCV* 1.646 1.748 0.979 0.485 

PB 1.980 2.375 1.028 0.600 
B632 2.320 3.130 1.381 1.412 

B632+ 1.759 2.561 1.766 1.489 
LOO 1.830 1.777 1.170 1.034 
RHO 1.810 2.285 1.556 1.189 

 
 

12. Conclusions 
 

The simulations were based on samples drawn from 1000 generating distributions with 
different characteristics, considering different levels of signal-to-noise ratio, overfitting, and 
non-linearity of data. The comparison between the estimated and the true prediction error, 
calculated on such a large number of samples, allows us to investigate the performance of the 
estimators better than, for example, in Kohavi (1995). The choice of three models with 
different levels of fitting casts new light upon estimator performance, as it is know that the 
stability of the model influences significantly the performance of the estimators (Elisseeff et 
al., 2003). From this point of view Projection Pursuit Regression, for a small number of terms, 
and Neural Networks, with few hidden nodes, are stable methods while Regression Trees, 
without pruning, is unstable. Moreover the use of two different sample sizes allows to 
evaluate their effect on the prediction error estimators.  

With these simulations, we have studied the effect of the S/n ratio and level of overfitting 
on the performance of the estimators, which had not previously been considered in the 
literature. The most evident result is that the repeated corrected 10-fold cross-validation 
RCV* proposed by Burman (1989) outperformed the other estimators overall. The only 
estimator which appears to be competitive is the Parametric Bootstrap (Efron, 2004), 
especially with large samples and stable models.  

We should also note the poor performance of the estimators based on non-parametric 
bootstrap B632 and B632+, or on repeated Hold-Out, RHO, and the unsatisfactory results 
obtained by the leave-one-out. Despite the substantial computational resources required, LOO 
appears to be quite unbiased but is never the most convenient estimator to use essentially due 
to its high variability. It could be observed that B632 and B632+ would have a better 
performance with a larger number of bootstrap sub-samples, but this would be true also for 
the other estimators RCV, RCV*, PB, RHO. Moreover B632+ outperforms B632 only in case 
of severe overfitting. 

The positive performance of RCV on Regression Trees is due, paradoxically, to a known 
defect of k-fold Cross-Validation which tends to overestimate the extra-sample error. Since 
Regression Trees highly overfit our data and all estimators tend to underestimate Err, this 
behaviour makes RCV, in this case, the least biased estimator. 
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In the same way, we have also analysed non-Normal heteroskedastic data in section 11, 
relaxing the hypothesis ( )2,0~ εσε N  we made in Section 10. As expected, the main result is 
the downgrade of the performance of Parametric Bootstrap which requires this hypothesis in 
order to estimate the bootstrap density. 

 
Summarizing, from the two simulations, we obtained the following results: 

• Level of overfitting and signal/noise ratio influence the performance of some 
estimators, while the level of linearity is not relevant. 

• The best performance was obtained by RCV*. 
• Leave-one out is not always the less biased estimator and it has relevant variability 

and heavy computational time. 
• Resampled estimators RCV, RCV*, RHO have lower variability than the simple 

estimators CV, CV*, HO 
• Stability of the model and sample size influence the results 
• Non-parametric B632 and B632+ have complessively a poor performance, Parametric 

Bootstrap is undoubtedly a better estimator (in particular with large sample and stable 
models). 
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