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Abstract

The aim of this paper is to analyze a class of random motions which models the motion of a particle
on the real line with random velocity and subject to the action of the friction. The speed randomly
changes when a Poissonian event occurs. We study the characteristic and the moment generating func-
tion of the position reached by the particle at time t > 0. We are able to derive the explicit probability
distributions in few cases for which discuss the connections with the random flights. The moments are
also widely analyzed.

For the random motions having an explicit density law, further interesting probabilistic interpreta-
tions emerge if we deal with them varying up a random time. Essentially, we consider two different
types of random times, namely Bessel and Gamma times, which contain, as particular cases, some
important probability distributions (e.g. Gaussian, Exponential). In particular, for the random pro-
cesses built by means of these compositions, we derive the probability distributions fixed the number
of Poisson events.

Some remarks on the possible extensions to the random motions in higher spaces are proposed. We
focus our attention on the persistent planar random motion.

Keywords: Bessel process, Gamma process, iterated Brownian motion, Laplace distribution, Struve
function, random flight, random time, telegraph process.
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1 Introduction
Diffusion processes have a central position in the theory of probability. Nevertheless, their main short-
coming is the unboundeness of the first variation. For this reason a diffusion process is often not suitable
to describe the real motion and many researchers have proposed alternative models having finite speed.

The prototype of the random motions with finite velocity is the telegraph process. By assuming that
the change of direction is governed by a homogeneous Poisson process N(t) with rate λ > 0, we can
define the telegraph process as follows

T (t) = V (0)
N(t)+1∑
j=1

(sj − sj−1)(−1)j−1, (1.1)
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where V (0) is the initial velocity assuming the values +c or−cwith probability 1
2 and the times sj are the

instants in which the j-th Poisson event occurs. Furthermore, T (t) is linked with the hyperbolic partial
differential equations, because its density law is the fundamental solution of the equation

∂2u

∂t2
+ λ

∂u

∂t
= c2

∂2u

∂x2
. (1.2)

The telegraph process has been studied by several authors; for example Orsingher (1990), Foong and
Kanno (1994), Di Crescenzo (2001), Stadje and Zacks (2004) and Zacks (2004). This model seems to be
suitable to describe the real motion and it emerges in different fields. In the following, we provide a brief
review of the possible applications of the telegraph process and its generalizations.

• Physics. In the physical mathematics the connection between the telegraph process and the elec-
tromagnetic theory strongly emerges. In particular, the equation (1.2) describes the propagation of
a damped wave along a wire. Weiss (2002) provided an interesting review of the physical applica-
tions of the process T (t).

• Biology. Models governed by hyperbolic differential equations and in particular the telegraph
equation have been used to describe the movement of chemotaxis (see Hillen et al., 2000).

• Ecology. The telegraph process is useful in ecology to model the displacement of wild animals on
the soil (see Holmes et al., 1994). In fact, this model preserves the property of animals to move at
finite velocity along the same direction.

• Finance. Di Masi et al. (1994) proposed to model the volatility of financial markets in terms of
T (t). Di Crescenzo and Pellerey (2002) introduced the geometric telegraph process as a model to
describe the dynamics of the price of risky assets, i.e. the authors replaced the standard Brownian
motion with the standard telegraph process. Ratanov (2007, 2008) proposed to model financial
markets using the telegraph process with two different velocities (as the risky asset tends upward
or downward) and jumps occurring at switching velocities.

• Actuarial Sciences. Mazza and Rulliere (2004) established a link between hitting times associated
with the risk process (time of ruin of the insurance company) and the telegrapher’s motion.

A statistical analysis of the random model T (t) has been performed by De Gregorio and Iacus (2008)
and Iacus and Yoshida (2009), when the sample path is observed at discrete times.

In this paper we will analyze a one-dimensional random motion which in somehow generalized T (t).
At time t > 0, the random speed of the motion is defined by v = c cos θ, where c is a positive constant
and θ is a random variable with density law given by

fν(θ) =
Γ(ν + 1)
√
πΓ(ν + 1

2 )
sin2ν θ, θ ∈ (0, π), ν ≥ 0.

So, we consider a particle starting from the origin, choosing initially a velocity c cos θ1 with probability
law given by fν(θ). The particle travels maintaining its motion with the same velocity until a Poisson
event happens. Now, the particle changes velocity independently to the previous one according to fν(θ)
again and so on. At time t, we indicate the particle position on the real line with Xν(t).

The function fν(θ) allows us to define a random motion in which the small displacements have bigger
probability than large ones. Therefore, we have the physical phenomenon called inertia. Indeed, every
object or particle moving on a surface suffers an effect due to the friction of the surface itself. Then, the
particle will tend to go away from the starting point slowly. If ν = 0, one has that f0(θ) = 1

π becomes
the uniform distribution on the semicircle with radius one. In this last case the particle moves without
inertia.
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In the same spirit of Orsingher and De Gregorio (2007b), we study the conditional characteristic
and moment generating function of Xν(t). We are able to derive the explicit probability distribution,
conditioned to number of Poisson event, in few cases: ν = 0 and ν = 1. Therefore, let N(t) denote the
underlying Poisson process governing the changes of the velocity, we have that

P (X0(t) ∈ dx|N(t) = n)
dx

=
Γ
(
n
2

)
Γ
(
n
2 + 1

)
2πΓ(n)

(
2
ct

)n
(c2t2 − x2)

n−1
2 ,

P (X1(t) ∈ dx|N(t) = n)
dx

=
Γ (n+ 1) Γ (n+ 2)

2πΓ(2n+ 2)

(
2
ct

)2n+2

(c2t2 − x2)n+ 1
2 ,

with n ≥ 1. These results, permit us to put in light the relationship between X0(t) and X1(t) and
the random flights studied by Orsingher and De Gregorio (2007b). A random flight is a continuous
time random walk defined similarly to Xν(t), but with direction chosen uniformly on an hypersphere.
By means of the above probabilities, we can claim that, in distribution, X0(t) and X1(t) correspond
respectively to the projection onto real axis of a planar and four dimensional random flight.

In Section 3 we derive the first two moments of Xν(t), while for ν = 0, 1, we are able to explicit the
moments of order p by means of special functions. Moreover, we will point out some connections with
the related random motions on hyperbolic spaces.

In the second part of this paper, we focus our attention on the random motions X0(t) and X1(t)
evolving up a random time, leading to interesting interpretations of the related conditional density laws.
In other words, we will introduce families of random times, containing some important random variables.
In the probabilistic literature there are several papers devoted to analyze the properties of stochastic
processes with random times. For example, the Brownian motion with Brownian time (iterated Brownian
motion) has been studied by Burdzy (1993), Khoshnevisan and Lewis (1996), Allouba (2002), DeBlassie
(2004) and Nane (2006). A link between the solution of fractional partial differential equations and the
iterated Brownian motion has been extensively investigated by Orsingher and Beghin (2009). The iterated
Brownian motion has been proposed as a model for a diffusion in a crack (see Burdzy and Khoshnevisan,
1998). Beghin and Orsingher (2009) have studied a planar random motion with Brownian times; the
authors have provided the conditional probability on the number of the events of a fractional Poisson
process.

It is interesting to consider random times derived by Brownian motion. For example, the Bessel

process Rd(t) =
√∑d

j=1Bj(t), where Bj are independent Brownian motions. Under the condition

vm > d
2 − 1, m = 0, 1, the following result holds

P
{
Xm(Rd(t)) ∈ dx|N(t) = n

}
=

dx

B
(
d
2 , vm −

d
2 + 1

) ∫ 1

0

w
d
2−1(1− w)vm−

d
2
e−

x2

2c2tw
√

2πtwc
dw

where v0 = n
2 , v1 = n + 1, n ≥ 1 and B(a, b) is a Beta function of parameters a and b. Hence, the

random motion Xm stopped at Bessel random time changes drastically its probability distribution which
becomes a Gaussian with variance given by a Beta random variable (up the scale factor c2t). These results
can be generalized by considering a l-times interated Bessel processRdl (t) = Rd1(Rd2(...(Rdl+1(t)...))).

For d = 1, the Bessel process becomes a reflected (around zero) Brownian motion |B(t)|, that is the
Brownian time arising in the iterated Brownian motion. Then, the above condition is always satisfied and
the following distribtional equality emerges

Xm(|B(t)|) d= B

(
1
t
X2
m(t)

)
.

For d = 2, we obtain a time distributed as a Rayleigh random variable and vm is strictly positive for each
n ≥ 1. This last fact permits us to provide the density law of Xm(R2(t)).
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Other relationships will be point out considering the composition with the sojourn time of a Brownian
motion on the positive axis.

Let Gα(t) be a Gamma process with parameters α > 0, that is a random process with probability
law given by a gα(s, t) = tα

Γ(α) t
α−1e−ts, s > 0, t > 0. The Gamma random variable arising in various

applications and it is useful to model the lifetime of a phenomena. For this reason, we deal with a Gamma
time and for Xm(Gα(t)) obtain that

P {Xm(Gα(t)) ∈ dx|N(t) = n}

=
dx

Γ(α+1
2 )B(α2 , vm −

α
2 + 1)

∫ 1

0

dww
α
2−1(1− w)vm−

α
2

t√
πwc

(
t|x|

2c
√
w

)α
2

K−α2

(
t|x|
c
√
w

)
with vm > α

2 −1. As for the Bessel process, this result can be extended considering the l-iterated Gamma
random times Gl(t) = Gα1(Gα2(. . . (Gαl+1(t)) . . .)).

For α = 1, G1(t) becomes an exponential process andXm(G1(t)) is distributed as a Laplace random
variable with parameter t2

|Xm(t)| .
To complete the discussion on the random times, we deal with a clock obtained mixing Rd(t) and

Gα(t) and studying the effect on the probabilistic structure of the random motion Xm(t).
It is not an hard task to extend the previous results to the planar and four dimensional random flights

with randomly varying time. Moreover, in the last Section, we will discuss the possibility to consider a
random flight with drift, that is persistent along a portion of the surface.

2 Moving randomly with friction
Let us consider a random motion which describes the displacements of a particle starting from the origin
of the real axis. The particle moves forward or backward with random velocity v = c cos θ, where c is a
positive constant, while θ is a random variable having density law

fν(θ) =
Γ(ν + 1)
√
πΓ(ν + 1

2 )
sin2ν θ, (2.1)

with θ ∈ (0, π) and ν ≥ 0. Therefore, the particle moves with a velocity, randomly chosen on x-
component of the unit semicircle according to (2.1), and it performs its motion until a Poisson event
happens when another velocity will be chosen independently from the previous one. The position at time
t of the particle is defined as follows

Xν(t) = c

N(t)+1∑
j=1

(sj − sj−1) cos θj (2.2)

where N(t) represents the underlying homogenous Poisson process with rate λ > 0 governing the
changes of velocity, sj , j = 1, ..., N(t) + 1(s0 = 0, sN(t)+1 = t), is the time of occurrence of the
j-th Poisson event and θj’s are independent random variables distributed as in (2.1). Furthermore, also
N(t) and θj are independent. From (2.2) emerges that Xν(t) is a telegraph-type process similar to T (t)
defined in (1.1). We note thatXν(t) has an infinite number of possible velocities and it has no necessarily
alternating directions. Further, the particle at time t is located inside the interval (−ct, ct), and Xν(t)
has a fully absolutely continuous probability distribution, whilst in the law of T (t) a singular component
appears (see Orsingher, 1990).

We underline that for values of θ close to π
2 the density law fν(θ) assigns probability mass greater than

ones near 0 or π. This means that the process moves away slowly from the starting point. This represents

4



0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

θ

f v(
θ)

v = 0

v = 1

v = 2

v = 3

Figure 1: The behavior of fν(θ) for ν = 0, 1, 2, 3.

the effect of the friction of the surface on which the particle performs its motion. When ν assumes high
values, the density fν(θ) is highly concentrated aroung π

2 (see Figure 1) and then the motion is slowed
down. For this reason ν represents the level of friction to which is subject the motion. In other words,
Xν(t) defines a whole class of random motions indexed by the parameter ν, namely the level of inertia.
For ν = 0, we reobtain the uniform distribution on the semicircle with radius one andX0(t) is exactly the
x-component of the planar random flights studied in Orsingher and De Gregorio (2007b) or equivalently
the projection onto real line of the sample path of a planar random flight.

Our first result concerns the characteristic function of Xν(t) conditioned on the number of Poisson
events during the time interval [0, t].

Theorem 2.1. The conditional charactersitic function of Xν(t) is equal to

E
{
eiαXν(t)|N(t) = n

}
=
n!
tn

(2νΓ(ν + 1))n+1

∫ t

0

ds1 · · ·
∫ t

sn−1

dsn

n+1∏
j=1

Jν(αc(sj − sj−1))
(αc(sj − sj−1))ν

, (2.3)

for n ≥ 1, while for n = 0, one has

E
{
eiαXν(t)|N(t) = 0

}
=
(

2
αct

)ν
Γ(ν + 1)Jν(αct), (2.4)

where Jν(x) =
∑∞
k=0(−1)k (x/2)2k+ν

Γ(k+1)Γ(k+ν+1) is the well-known Bessel function.
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Proof. In order to prove (2.3) and (2.4), we observe that the Bessel function Jν(x) admits the following
integral representation

Jν(z) =

(
z
2

)ν
Γ
(
ν + 1

2

)
Γ
(

1
2

) ∫ π

0

eiz cosφ sin2ν φdφ (2.5)

with Re(ν) > 0. For n ≥ 1,we get that

E
{
eiαXν(t)|N(t) = n

}
=
n!
tn

∫ t

0

ds1 · · ·
∫ t

sn−1

dsn
Γ(ν + 1)
√
πΓ(ν + 1

2 )

∫ π

0

sin2ν θ1dθ1 · · ·
Γ(ν + 1)
√
πΓ(ν + 1

2 )

∫ π

0

sin2ν θn+1dθn+1

× exp

iαc
n+1∑
j=1

(sj − sj−1) cos θj


=
n!
tn

∫ t

0

ds1 · · ·
∫ t

sn−1

dsn

n+1∏
j=1

{
Γ(ν + 1)
√
πΓ(ν + 1

2 )

∫ π

0

eiαc(sj−sj−1) cos θj sin2ν θjdθj

}

=
n!
tn

(2νΓ(ν + 1))n+1

∫ t

0

ds1 · · ·
∫ t

sn−1

dsn

n+1∏
j=1

Jν(αc(sj − sj−1))
(αc(sj − sj−1))ν

where in the last step we have used the integral representation (2.5). For N(t) = 0, the position of the
particle at time t is X(t) = ct cos θ and then

E
{
eiαXν(t)|N(t) = 0

}
=

Γ(ν + 1)
√
πΓ(ν + 1

2 )

∫ π

0

eiαct cos θ sin2ν θdθ =
(

2
αct

)ν
Γ(ν + 1)Jν(αct).

It is interesting to observe that the charecterstic function of Xν(t) has the same structure of the
one emerging in the problem of d-dimensional random flights (see formula (2.3) in Orsingher and De
Gregorio, 2007b), where the parameter ν is replaced by d

2 − 1.
For the moment generating function we present the following Theorem.

Theorem 2.2. The conditional moment generating function of Xν(t) becomes

E
{
eβXν(t)|N(t) = n

}
=
n!
tn

(2νΓ(ν + 1))n+1

∫ t

0

ds1 · · ·
∫ t

sn−1

dsn

n+1∏
j=1

Iν(βc(sj − sj−1))
(βc(sj − sj−1))ν

(2.6)

given n ≥ 1, while if n = 0 the following expression yields

E
{
eβXν(t)|N(t) = 0

}
=
(

2
βct

)ν
Γ(ν + 1)Iν(βct) (2.7)

where Iν(x) =
∑∞
k=0

(x/2)2k+ν

Γ(k+1)Γ(k+ν+1) represents the modified Bessel function.

Proof. The proof for (2.7) and (2.6) follows analogously to the one developed for (2.3) and (2.4), noticing
that

Iν(z) =

(
z
2

)ν
Γ
(
ν + 1

2

)
Γ
(

1
2

) ∫ π

0

ez cosφ sin2ν φdφ
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The random motions obtained by setting ν = 0 and ν = 1 in the density law fν(θ) have a special role
in this paper. Indeed, for X0(t) and X1(t), we are able to explicit in closed form their characteristic and
moment generating functions and successively the density laws. In order to distinguish these important
particular cases from the general random model Xν(t), ν ≥ 0, we will indicate them in the rest of paper
with Xm(t),m = 0, 1. Moreover, we will use the following notation: v0 = n

2 and v1 = n+ 1.

Corollary 2.1. For Xm(t), m = 0, 1, and n ≥ 1, we have that

E
{
eiαXm(t)|N(t) = n

}
=

Γ (vm + 1) 2vm

(αct)vm
Jvm(αct), (2.8)

E
{
eβXm(t)|N(t) = n

}
=

Γ (vm + 1) 2vm

(βct)vm
Ivm(βct). (2.9)

Proof. We only give some sketches of the proof. Starting from (2.3), we prove (2.8) for m = 0. It is
possible to use the same approach used by Orsingher and De Gregorio (2007b), noticing that the n-fold
integral ∫ t

0

ds1 · · ·
∫ t

sn−1

dsn

n+1∏
j=1

J0(αc(sj − sj−1))

can be worked out by applying recursively the following formula (see Gradshteyn and Ryzhik, 1980,
formula 6.533(2))∫ a

0

xµ(a− x)νJµ(x)Jν(a− x)dx =
Γ(µ+ 1

2 )Γ(ν + 1
2 )

√
2πΓ(µ+ ν + 1)

aµ+ν+ 1
2 Jµ+ν+ 1

2
(a) (2.10)

with Re(µ) > − 1
2 , Re(ν) > − 1

2 . Analogously, for m = 1, by taking into account the formula (see
Gradshteyn and Ryzhik, 1980, formula 6.581(3))∫ a

0

Jµ(x)
x

Jν(a− x)
a− x

dx =
(

1
µ

+
1
ν

)
Jµ+ν(a)

a
, (2.11)

with Re(µ) > 0, Re(ν) > 0, it is possible to compute the exact value of the following quantity∫ t

0

ds1 · · ·
∫ t

sn−1

dsn

n+1∏
j=1

J1(αc(sj − sj−1))
αc(sj − sj−1)

.

Hence, the result (2.8) for v1 = n+ 1 emerges.
For the moment generating function, we need to prove that the following semigroup-type property

holds ∫ a

0

xµ(a− x)νIµ(x)Iν(a− x)dx =
Γ(µ+ 1

2 )Γ(ν + 1
2 )

√
2πΓ(µ+ ν + 1)

aµ+ν+ 1
2 Iµ+ν+ 1

2
(a) (2.12)

Indeed, since (see Gradshteyn and Ryzhik, 1980)∫ ∞
0

eβxxµIµ(x)dx =
2µΓ(µ+ 1

2 )
√
π(β2 − 1)µ+ 1

2
, Re(µ) > −1

2
,

we have that∫ ∞
0

eβada

∫ a

0

xµ(a− x)νIµ(x)Iν(a− x)dx =
∫ ∞

0

eβxxµIµ(x)dx
∫ ∞

0

eβyyνIν(y)dy

= 2µ+νπ−1 Γ
(
µ+ 1

2

)
Γ
(
ν + 1

2

)
(β2 − 1)µ+ν+1

=
Γ(µ+ 1

2 )Γ(ν + 1
2 )

√
2πΓ(µ+ ν + 1)

∫ ∞
0

eβaaµ+ν+ 1
2 Iµ+ν+ 1

2
(a)da
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Furthermore, being (see Gradshteyn and Ryzhik, 1980)∫ ∞
0

eβxx−1Iµ(x)dx =
µ

[β + (β2 − 1)]µ
, Re(µ) > 0

with the similar steps used to obtain (2.12), it is possible to show that∫ a

0

Iµ(x)
x

Iν(a− x)
a− x

dx =
(

1
µ

+
1
ν

)
a−1Iµ+ν(a) (2.13)

In conclusion, by means of (2.12) and (2.13), and the same considerations done for the proof of (2.8), the
proof (2.9) of immediately follows.

Remark 2.1. We are able to give an integral representation of the unconditional characteristic function
of X0(t). Indeed, we have that

E
{
eiαX0(t)

}
= e−λt

∞∑
n=0

(λt)n

n!
Γ
(
n
2 + 1

)
2
n
2

(αct)
n
2

Jn
2

(αct)

= e−λt
∞∑
n=0

(λt)n

n!
Γ
(
n
2 + 1

)
√
πΓ(n+1

2 )

∫ π

0

eiαct cos θ sinn θdθ

= e−λt
∞∑
n=0

(λt)n

2nΓ2
(
n+1

2

) ∫ π

0

eiαct cos θ sinn θdθ

= e−λt

{ ∞∑
m=0

(λt)2m+1

22m+1Γ2 (m+ 1)

∫ π

0

eiαct cos θ sin2m+1 θdθ

+J0(αct) +
∞∑
m=0

(λt)2m+2

22m+2Γ2
(
m+ 3

2

) ∫ π

0

eiαct cos θ sin2m+2 θdθ

}

= e−λt
{
J0(αct) +

λt

2

∫ π

0

eiαct cos θ (I0(λt sin θ) + L0(λt sin θ)) sin θdθ
}

where Lµ(x) =
∑∞
k=0

(x/2)2k+µ+1

Γ(k+ 3
2 )Γ(k+µ+ 3

2 )
is the modified Struve function.

For X1(t) we get that

E
{
eiαX1(t)

}
= e−λt

∞∑
n=0

(λt)n

n!
Γ (n+ 2) 2n+1

(αct)n+1
Jn+1(αct)

= e−λt
∞∑
n=0

(λt)n√
π

(n+ 1
2 −

1
2 ) + 1

Γ(n+ 3
2 )

∫ π

0

eiαct cos θ sin2(n+1) θdθ

=
e−λt√
π

∫ π

0

eiαct cos θ

{
E1, 12

(λt sin2 θ) +
1
2
E1, 32

(λt sin2 θ)
}

sin2 θdθ

where Eα,β(x) =
∑∞
k=0

xk

Γ(αk+β) is the Mittag-Leffler functon.

As stated before X0(t) and X1(t) represent two important particular cases of the class of random
motions Xν(t). This is due to the fact that by means of (2.8) we derive their probability distributions.
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Theorem 2.3. The following conditional density laws hold

pν0(x, t) =
P (Xν(t) ∈ dx|N(t) = 0)

dx
=

Γ (ν) Γ (ν + 1)
2πΓ(2ν)

(
2
ct

)2ν

(c2t2 − x2)ν−
1
2 (2.14)

pmn (x, t) =
P (Xm(t) ∈ dx|N(t) = n)

dx
=

Γ (vm) Γ (vm + 1)
2πΓ(2vm)

(
2
ct

)2vm

(c2t2 − x2)vm−
1
2 (2.15)

with |x| < ct and m = 0, 1.

Proof. We only prove (2.15) for m = 0, because the other results follow by means of similar steps.
Instead of inverting (2.8), we show that the characteristic function of the probability distribution p0

n(x, t)
corresponds to (2.8) for m = 0. Therefore, we have that

E
{
eiαX0(t)|N(t) = n

}
=

Γ
(
n
2

)
Γ
(
n
2 + 1

)
2πΓ(n)

(
2
ct

)n ∫ ct

−ct
eiαx(c2t2 − x2)

n−1
2 dx

=
Γ
(
n
2

)
Γ
(
n
2 + 1

)
πΓ(n)

(
2
ct

)n ∫ ct

0

cos(αx)(c2t2 − x2)
n−1

2 dx

=
Γ
(
n
2

)
Γ
(
n
2 + 1

)
πΓ(n)

(
2
ct

)n ∞∑
k=0

(−1)k
α2k

(2k)!

∫ ct

0

x2k(c2t2 − x2)
n−1

2 dx

=
Γ
(
n
2

)
Γ
(
n
2 + 1

)
2n−1

πΓ(n)

∞∑
k=0

(−1)k
(αct)2k

(2k)!

∫ 1

0

yk−
1
2 (1− y)

n−1
2 dy

=
Γ
(
n
2

)
Γ
(
n
2 + 1

)
Γ
(
n+1

2

)
2n−1

πΓ(n)

∞∑
k=0

(−1)k
(αct)2k

(2k)!
Γ
(
k + 1

2

)
Γ
(
k + n

2 + 1
)

=
Γ
(
n
2

)
Γ
(
n
2 + 1

)
Γ (n)

√
π

πΓ(n)Γ
(
n
2

) ∞∑
k=0

(−1)k
(αct)2k

(2k)!
Γ (2k)

√
π21−2k

Γ (k) Γ
(
k + n

2 + 1
)

= Γ
(n

2
+ 1
) ∞∑
k=0

(−1)k
(
αct

2

)2k 1
Γ (k + 1) Γ

(
k + n

2 + 1
)

=
Γ
(
n
2 + 1

)
2
n
2

(αct)
n
2

Jn
2

(αct).

Remark 2.2. Theorem 2.3 permits us to point out the existing connection between X0(t), X1(t) and
the random flights. Indeed, by setting ν = 0 in fν(θ), we reobtain the uniform distribution on a unit
semicircle and (as expected) X0(t) represents the projection onto the x-axis of a planar random flight.
Then,

p0
n(x, t) =

Γ
(
n
2

)
Γ
(
n
2 + 1

)
2πΓ(n)

(
2
ct

)n
(c2t2 − x2)

n−1
2

corresponds to the distribution (4.4) obtained Orsingher and De Gregorio (2007b). For ν = 1, the
probability law

p1
n(x, t) =

Γ (n+ 1) Γ (n+ 2)
2πΓ(2n+ 2)

(
2
ct

)2n+2

(c2t2 − x2)n+ 1
2

is the same of the one obtained by means of the projection of a random flight in R4 onto the real line (see
(4.1c) in Orsingher and De Gregorio, 2007b). In other words, the shadow on R of a four-dimensional
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random flight is perceived by an observer located on the real line, as a slowed down motion. Therefore,
in distribution, we have the following equality

X1(t) d= c

N(t)+1∑
j=1

(sj − sj−1) sin θ1,j sin θ2,j sinφ

where (θ1,jθ2,j , φ) is uniformly distributed on the four-dimensional hypersphere.

Remark 2.3. Theorem 2.3 says us that pν0(x, t) = pmn (x, t) if and only if ν = vm. This means thatX0(t)
(absence of inertia) and X1(t) is equivalent in distribution to a random model representing a particle
slowly moving with the same speed until t.

The unconditional density laws of X0(t) and X1(t) are given by the following expressions

p0(x, t) =
λe−λt

2c

∞∑
k=0

(
λ

2c

√
c2t2 − x2

)k−1 1
Γ2(k+1

2 )
(2.16)

=
λe−λt

2c

[
I0

(
λ

c

√
c2t2 − x2

)
+ L0

(
λ

c

√
c2t2 − x2

)]
+

e−λt

π
√
c2t2 − x2

p1(x; t) =
e−λt

c
√
λπt3

∞∑
k=0

(
λ

c2t
(c2t2 − x2)

)k+ 1
2 k + 1

Γ(k + 3
2 )

(2.17)

=
e−λt
√
c2t2 − x2

(ct)2
√
π

{
E1, 12

(
λ

c2t
(c2t2 − x2)

)
+

1
2
E1, 32

(
λ

c2t
(c2t2 − x2)

)}
with |x| < ct.

We point out that the first term in (2.16), that is I0
(
λ
c

√
c2t2 − x2

)
, is equal to the one presents in the

absolutely continuous component of the law of a telegraph process (see Orsingher, 1990), that is

e−λt

2c

[
λI0

(
λ

c

√
c2t2 − x2

)
+
∂

∂t
I0

(
λ

c

√
c2t2 − x2

)]
,

while the derivative with respect to the time of the Bessel function is replaced by the modified Struve
function L0

(
λ
c

√
c2t2 − x2

)
(up the constant λ).

3 On the moments and some relationships with random motions on
hyperbolic spaces

In this section we analyze the moments of the random motion Xν(t). In particular, we are able to provide
the first two moments ofXν(t) by applying the results contained in Section 3 of Stadje and Zacks (2004).
Therefore, fixed n ≥ 0, for the mean value one has

E {Xν(t)|N(t) = n} = ctE {cos θ}

=
ctΓ(ν + 1)
√
πΓ(ν + 1

2 )

∫ π

0

cos θ sin2ν θdθ

=
ctΓ(ν + 1)
√
πΓ(ν + 1

2 )

{∫ π
2

0

cos θ sin2ν θdθ −
∫ π

2

0

sin θ cos2ν θdθ

}
= 0

10



where in the last step we have used the well-known integral∫ π
2

0

sina θ cosb θdθ =
1
2

Γ(a+1
2 )Γ( b+1

2 )
Γ(a+b

2 + 1)
, Re(a) > −1, Re(b) > −1. (3.1)

Remark 3.1. The mean value can also be derived from Theorem 2.1 (or equivalently from Theorem 2.2).
It is clear that

Jν(αc(sj − sj−1))
(αc(sj − sj−1))ν

∣∣∣
α=0

=
1

2νΓ(ν + 1)

while it is not hard to prove that

d

dα

Jν(αc(sj − sj−1))
(αc(sj − sj−1))ν

=
∞∑
k=0

k

k!Γ(k + ν + 1)

(
αc(sj − sj−1)

2

)2k+ν−1
c(sj − sj−1)

(αc(sj − sj−1))ν

which calculated at α = 0 is equal to 0. Then

E {Xν(t)|N(t) = n} = i−1 d

dα
E
{
eiαXν(t)|N(t) = n

} ∣∣∣
α=0

= 0 (3.2)

For the the second moment we have that

E
{
X2
ν (t)|N(t) = n

}
=

2
n+ 2

c2t2E{cos2 θ}

=
2

n+ 2
c2t2

Γ(ν + 1)
√
πΓ(ν + 1

2 )

∫ π

0

cos2 θ sin2ν θdθ

=
2

n+ 2
c2t2

Γ(ν + 1)Γ( 3
2 )

√
πΓ(ν + 2)

=
c2t2

(ν + 1)(n+ 2)

and after some calculations

E
{
X2
ν (t)

}
= e−λt

(ct)2

(ν + 1)

∞∑
n=0

(λt)n

n!(n+ 2)

= e−λt
(ct)2

(ν + 1)
{E1,2(λt)− E1,3(λt)}

=
(ct)2

(ν + 1)
1
λt

(
1− 1− e−λt

λt

)
(3.3)

where in the last step we have used the following relationships: E1,2(x) = ex−1
x and E1,3 = ex−1−x

x2 .
As expected, if ν increases the action of the friction is stronger and the value of E

{
X2
ν (t)

}
tends to

decrease. Indeed, for growing values of ν the particle maintains itself close the starting point, so that the
probability distribution of Xν(t) will be less sparse.

Further, it is not difficult to show that

E{Xp
ν (t)|N(t) = 0} =

∫ ct

−ct
xppν0(x, t)dx =

{
0 p is odd ,
Γ(ν+1)Γ( p+1

2 )√
πΓ( p2 +ν+1)

(ct)p p is even.
(3.4)

For ν = 0, 1, we present the following result.
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Theorem 3.1. The p-th moment of X0(t) and X1(t) are respectively given by

E{Xp
0 (t)} = e−λt

(
2
λt

) p−1
2

(ct)pΓ
(
p+ 1

2

){
I p+1

2
(λt) + L p+1

2
(λt)

}
+
e−λt(ct)pΓ

(
p+1

2

)
√
πΓ(p2 + 1)

(3.5)

E{Xp
1 (t)} =

e−λt√
π

Γ
(
p+ 1

2

)
(ct)p

{
E1, p2 +1(λt)− p

2
E1, p2 +2(λt)

}
(3.6)

for p even, whilst E{Xp
0 (t)} = E{Xp

1 (t)} = 0 if p is odd.

Proof. Let p be even, we get that

E{Xp
0 (t)} =

λe−λt

c

∞∑
k=0

(
λ

2c

)k−1 1
Γ2(k+1

2 )

∫ ct

0

xp(c2t2 − x2)
k−1
2 dx

= (x = ct
√
y)

=
λe−λt

2c

∞∑
k=0

(
λ

2c

)k−1 (ct)p+k

Γ2(k+1
2 )

∫ 1

0

y
p+1
2 −1(1− y)

k+1
2 −1dy

=
λe−λt

2c
(ct)pΓ

(
p+ 1

2

) ∞∑
k=0

(
λ

2c

)k−1 (ct)k

Γ(k+1
2 )Γ(k+p

2 + 1)
(3.7)

Now, we splitting the above sum in order to carry out separately the even and the odd elements.

E{Xp
0 (t)} =

λe−λt

2c
(ct)pΓ

(
p+ 1

2

){ ∞∑
k=0

(
λ

2c

)2k (ct)2k+1

Γ(k + 1)Γ(k + p+1
2 + 1)

+
∞∑
k=0

(
λ

2c

)2k−1 (ct)2k

Γ(k + 1
2 )Γ(k + p

2 + 1)

}

=
λe−λt

2c
(ct)pΓ

(
p+ 1

2

){
ct

∞∑
k=0

(
λt

2

)2k 1
Γ(k + 1)Γ(k + p+1

2 + 1)

+
(
λ

2c

)−1 1√
πΓ(p2 + 1)

+
(
λ

2c

)−1 ∞∑
k=1

(
λt

2

)2k 1
Γ(k + 1

2 )Γ(k + p
2 + 1)

}

=
λe−λt

2c
(ct)pΓ

(
p+ 1

2

){
ct

∞∑
k=0

(
λt

2

)2k 1
Γ(k + 1)Γ(k + p+1

2 + 1)

+
(
λ

2c

)−1 1√
πΓ(p2 + 1)

+
(
λ

2c

)−1 ∞∑
k=0

(
λt

2

)2k+2 1
Γ(k + 3

2 )Γ(k + p+1
2 + 3

2 )

}

=
λe−λt

2c
(ct)pΓ

(
p+ 1

2

){
ct

(
λt

2

)− p+1
2

(I p+1
2

(λt) + L p+1
2

(λt)) +
(
λ

2c

)−1 1√
πΓ(p2 + 1)

}
.

12



For X1(t) one has that

E{Xp
1 (t)} =

2e−λt

c
√
λπt3

∞∑
k=0

(
λ

c2t

)k+ 1
2 k + 1

Γ(k + 3
2 )

∫ ct

0

xp(c2t2 − x2)k+ 1
2 dx

= (x = ct
√
y)

=
e−λt

c
√
λπt3

∞∑
k=0

(
λ

c2t

)k+ 1
2 k + 1

Γ(k + 3
2 )

(ct)p+2k+2

∫ 1

0

y
p−1
2 (1− y)k+ 1

2 dy

=
e−λt

c
√
λπt3

(
λ

c2t

) 1
2

Γ
(
p+ 1

2

)
(ct)p+2

∞∑
k=0

(λt)k
k + 1

Γ(k + p
2 + 2)

=
e−λt√
π

Γ
(
p+ 1

2

)
(ct)p

∞∑
k=0

(λt)k
k + p

2 + 1− p
2

Γ(k + p
2 + 2)

=
e−λt√
π

Γ
(
p+ 1

2

)
(ct)p

{
E1, p2 +1(λt)− p

2
E1, p2 +2(λt)

}
If p is odd, immediately follows that E{Xp

0 (t)} = E{Xp
1 (t)} = 0.

Remark 3.2. From (3.6) we immediately reobtain the expression (3.3) for ν = 1, by setting p = 2. For
E{X2

0 (t)}, starting from (3.7) and using the duplication formula, one has that

E{X2
0 (t)} = e−λt(ct)2

∞∑
k=0

(λt)k

k!(k + 2)

=
e−λt

2c
(ct)2Γ

(
3
2

) ∞∑
k=0

(
λ

2c

)k−1 (ct)k

Γ(k+1
2 )Γ(k2 + 2)

=
(ct)2

2

∞∑
k=0

(λt)k

Γ(k + 1)
Γ(k2 + 1)
Γ(k2 + 2)

= (ct)2
∞∑
k=0

(λt)k

Γ(k + 1)(k + 2)

= (ct)2
∞∑
k=0

(λt)k(k + 2− 1)
Γ(k + 1)(k + 1)(k + 2)

= e−λt(ct)2 {E1,2(λt)− E1,3(λt)}

corresponding to (3.3) for ν = 0.

Remark 3.3. Since, for x > 0 and µ ≥ 0, Iµ(x), Lµ(x) and E1,µ are monotone increasing functions as
x→∞, the following approximations hold as x→ 0

Iµ(x) ∼ xµ

2µΓ(µ+ 1)
,

Lµ(x) ∼ 0,

E1,β(x) ∼ 1
Γ(β)

.
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Therefore, for λt→ 0, we have that

E{Xp
0 (t)} ∼ e−λt(ct)p

{
λt

2
+

Γ(p+1
2 )

√
πΓ(p2 + 1)

}

E{Xp
1 (t)} ∼ e−λt√

π
Γ
(
p+ 1

2

)
(ct)p

1
Γ(p2 + 2)

We conclude this Section discussing some connections between the previous results and the random
motions moving on a Non-Euclidean plane. The upper half-plane H+

2 = {(x, y) : y > 0, x ∈ R}
endowed with the metric √

dx2 + dy2

y

is a model of Non-Euclidean (hyperbolic) space. The geodesic curves in this space are eiher the vertical
half lines or half-circles whose centers lie on the x-axis. Similarly to Orsingher and De Gregorio (2007a),
we consider a motion

Yν(t) = eXν(t) (3.8)

developing on the y-axis of the space H+
2 , starting from the origin O = (0, 1) at time t = 0. The

probability distribution of Ym(t) with m = 0, 1, is equal to

pm(log y, t)
1
y
, y > 0

and by means of Corollary 2.1, the conditional mean values of Y0(t) and Y1(t) become

E {Y0(t)|N(t) = n} = E
{
eβX0(t)|N(t) = n

} ∣∣∣
β=1

=
Γ
(
n
2 + 1

)
2
n
2

(ct)
n
2

In
2

(ct)

E {Y1(t)|N(t) = n} = E
{
eβX1(t)|N(t) = n

} ∣∣∣
β=1

=
2n+1Γ(n+ 2)

(ct)n+1
In+1(ct)

Furthermore, by considering at time t the hyperbolic distance ην(t) from the origin O of Yν(t), we have
that (see Orsingher and De Gregorio, 2007a)

ην(t) =
∫ max(1,Yν(t))

min(1,Yν(t))

dy

y
= |Xν(t)| (3.9)

We are able to obtain a lower bound for the distribution function of ην(t). Indeed, we get that

P (ην(t) < η) = P (|Xν(t)| < η)

> 1− 1
η2
E{X2

ν (t)}

where E{X2
ν (t)} is given by the formula (3.3). Clearly, for ν = 0, 1, we obtain the exact expression of

the distribution function of the hyperbolic distance, namely

P (ηm(t) < η) = 2
∫ η

0

pm(x, t)dx

with 0 < η ≤ ct and m = 0, 1.
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4 Randomly varying time stochastic motions
So far, we have analyzed a random motion Xν(t) evolving up to no-random time t > 0, deriving its exact
probability distribution in two particular cases. In this Section, we focus our attention on the random
motion Xm(t), m = 0, 1, defined as in (2.2), with randomly varying time.

In order to develop our analysis , we take into account families of random times which include some
well-known random variables. In particular, we consider Bessel and Gamma processes as random times.
Our choice falls on these two processes because at this way, we are able to include a wide range of
probability distributions often used to model the time in many theoretical and real situations. Clearly,
every random variable successively used as random clock will be supposed independent from Xm(t) and
N(t). Therefore, we analyze the effect due to the composition of these random times with the random
motion Xm(t) on the related density laws.

4.1 Random times involving Brownian motions
Let us consider a Bessel process starting from zero

Rd(t) =

√√√√ d∑
i=1

B2
i (t), t > 0, d ≥ 1,

where Bi(t)s are independent standard Brownian motions. It is well-known that the probability density
law of Rd(t) is equal to

fd(r) =
1

Γ(d2 )
rd−1

2
d
2−1t

d
2
e−

r2
2t , r > 0. (4.1)

At time t, we deal with a random motion Xm(t), m = 0, 1, with a Bessel random time Rd(t). Since
Xm(Rd(t)) is located inside (−cRd(t), cRd(t)), its support is the whole real line. Recalling that v0 = n

2 ,
v1 = n+ 1 and by indicating with B(a, b) = Γ(a)Γ(b)

Γ(a+b) , a > 0, b > 0 a Gamma function and with B(t) a
standard Brownian motion at time t, we are able to provide the following theorem.

Theorem 4.1. Given N(t) = n, with n ≥ 1, such that vm > d
2 − 1, we have the following conditional

distribution

P
{
Xm(Rd(t)) ∈ dx|N(t) = n

}
=

dx

B
(
d
2 , vm −

d
2 + 1

) ∫ 1

0

w
d
2−1(1− w)vm−

d
2
e−

x2

2c2tw
√

2πtwc
dw (4.2)

with x ∈ R.

Proof. By using a similar approach to that adopted by Beghin and Orsingher (2009), we can write that

P
{
Xm(Rd(t)) ∈ dx|N(t) = n

}
=
∫ ∞

0

P
{
Xm(Rd(t)) ∈ dx|N(t) = n,Rd(t) = s

}
P{Rd(t) ∈ ds}

=
dx

2π
Γ(vm + 1)Γ(vm)

Γ(2vm)
1

Γ(d2 )2
d
2−1t

d
2

∫ ∞
0

(
2
cs

)vm
(c2s2 − x2)vm−

1
2 1{|x|<cs}sd−1e−

s2
2t ds

Therefore, by means of Corollary 2.1 and for any n ≥ 1 such that vm > d
2 − 1, we are able to explicit the
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Fourier transform of Xm(Rd(t)) as follows

E
{
eiαXm(Rd(t))|N(t) = n

}
=

∫ +∞

−∞
eiαxP {Xm(R(t)) ∈ dx|N(t) = n}

= Γ(vm + 1)
(

2
αc

)vm 1

Γ(d2 )2
d
2−1t

d
2

∫ ∞
0

Jvm(αcs)sd−vm−1e−
s2
2t ds

=
Γ(vm + 1)

Γ(d2 )2
d
2−1t

d
2

∞∑
k=0

(−1)k

k!Γ(k + vm + 1)

(αc
2

)2k
∫ ∞

0

s2k+d−1e−
s2
2t ds

=
(
y =

s2

2t

)
=

Γ(vm + 1)
Γ(d2 )

∞∑
k=0

(−1)k

k!Γ(k + vm + 1)

(
α2c2t

2

)k ∫ ∞
0

yk+ d
2−1e−ydy

=
Γ(vm + 1)

Γ(d2 )

∞∑
k=0

(−1)kΓ(k + d
2 )

k!Γ(k + vm + 1)

(
α2c2t

2

)k

=
Γ(vm + 1)

Γ(d2 )Γ
(
vm − d

2 + 1
) ∞∑
k=0

(−1)k

k!
B

(
k +

d

2
, vm −

d

2
+ 1
)(

α2c2t

2

)k

=
1

B
(
d
2 , , vm −

d
2 + 1

) ∞∑
k=0

(−1)k

k!

(
α2c2t

2

)k ∫ 1

0

wk+ d
2−1(1− w)vm−

d
2 dw

=
1

B
(
d
2 , vm −

d
2 + 1

) ∫ 1

0

w
d
2−1(1− w)vm−

d
2 e−

α2c2tw
2 dw

Finally, by inverting E
{
eiαXm(Rd(t))|N(t) = n

}
the result (4.2) emerges.

The probability (4.2) claims that, conditionally on the number of Poisson events such that vm > d
2−1,

the random process Xm(Rd(t)), is distributed as a centered Gaussian with variance c2tW , where W ∼
B(d2 , vm −

d
2 + 1).

Remark 4.1. By using the same approach of the previous proof and bearing in mind the Theorem 2.1,
under the condition ν > d

2 − 1, we get that

P
{
Xν(Rd(t)) ∈ dx|N(t) = 0

}
=

dx

B
(
d
2 , ν −

d
2 + 1

) ∫ 1

0

w
d
2−1(1− w)ν−

d
2
e−

x2

2c2tw
√

2πtwc
dw (4.3)

In particular, we are interested to the random motions obtained by setting ν = 0 and ν = 1. It is clear
that for ν = 0, the condition ν > d

2 − 1 is satisfied only for d = 1, whilst for d = 2 one has

P
{
X0(R2(t)) ∈ dx|N(t) = 0

}
= dx

e−
x2

2c2t
√

2πtc
. (4.4)

If ν = 1, the above condition and the representation (4.3) hold for both d = 1 and d = 2.

From (4.1), we can derive some well-known probability distributions. Indeed, for d = 1, we get
R1(t) = |B(t)|, that is a reflected Brownian motion around the x-axis and the its density law becomes
f1(r) =

√
2√
πt
e−

r2
2t . Furthermore, |B(t)| represents the Brownian time used in the definition of the
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iterated Brownian motion (see, Allouba, 2002). For d = 2, we obtain a Rayleigh random variable with
f2(r) = r

t e
− r22t , which also emerges analyzing the distribution of the maximum of a Brownian bridge.

Moreover, the probability (4.2) holds for each n ≥ 1, being the conditions vm > − 1
2 (d = 1) and

vm > 0 (d = 2) always satisfied. Actually, for the process X1, the representation (4.2) also yields when
d = 3, 4, 5. Nevertheless, we restrict us to the cases d = 1, 2. Therefore, we are able to explicit the
unconditional probability distributions for Xm(|B(t)|) and Xm(R2(t)).

Theorem 4.2. For d = 1, the following probability yields

P {Xm(|B(t)|) ∈ dx} = dx

∫ ct

−ct

√
te
− x2t

2y2√
2πy2

pm(y, t)dy, x ∈ R, (4.5)

where p0(y, t) and p1(y, t) are defined respectively by (2.16) and (2.17). Furthermore, for d = 2, one
has

P
{
X0(R2(t)) ∈ dx

}
= dxe−λt

λt2
∫ 1

0

eλt
√

1−w
√

1− w
e−

x2

2c2tw
√

2πtwc
dw +

e−
x2

2c2t
√

2πtc

 (4.6)

P
{
X1(R2(t)) ∈ dx

}
= dx

∫ 1

0

e−λtw[1 + λt(1− w)]
e−

x2

2c2tw
√

2πtwc
dw (4.7)

Proof. By taking into account (4.2) and (4.3), if m = 0 (v0 = n
2 ) and d = 1, we get that

1
dx
P {X0(|B(t)|) ∈ dx} = e−λt

∞∑
n=0

(λt)n

n!
1

B( 1
2 ,

n+1
2 )

∫ 1

0

w−
1
2 (1− w)

n−1
2
e−

x2

2c2tw
√

2πtwc
dw

=
e−λt√
π

∫ 1

0

w−
1
2 (1− w)−

1
2
e−

x2

2c2tw
√

2πtwc

∞∑
n=0

(λt)n

n!
(1− w)

n
2

Γ(n2 + 1)
Γ(n+1

2 )
dw

= e−λt
∫ 1

0

w−
1
2 (1− w)−

1
2
e−

x2

2c2tw
√

2πtwc

∞∑
n=0

1
Γ2(n+1

2 )

(
λt

2
√

1− w
)n

dw

=
λte−λt

2

∫ 1

0

w−
1
2
e−

x2

2c2tw
√

2πtwc

∞∑
n=0

1
Γ2(n+1

2 )

(
λt

2
√

1− w
)n−1

dw

= (y = ct
√
w)

=
λe−λt

c

∫ ct

0

√
te
− tx2

2y2√
2πy2

∞∑
n=0

1
Γ2(n+1

2 )

(
λ

2c

√
c2t2 − y2

)n−1

dy

=
∫ ct

−ct

√
te
− tx2

2y2√
2πy2

λe−λt

2c

∞∑
n=0

1
Γ2(n+1

2 )

(
λ

2c

√
c2t2 − y2

)n−1

dy

17



For m = 1 (v1 = n+ 1) and d = 1, we have that

1
dx
P {X1(|B(t)|) ∈ dx} = e−λt

∞∑
n=0

(λt)n

n!
1

B( 1
2 , n+ 3

2 )

∫ 1

0

w−
1
2 (1− w)n+ 1

2
e−

x2

2c2tw
√

2πtwc
dw

=
e−λt√
π

∫ 1

0

w−
1
2
e−

x2

2c2tw
√

2πtwc

∞∑
n=0

(λt)n

n!
(1− w)n+ 1

2
Γ(n+ 2)
Γ(n+ 3

2 )
dw

=
e−λt√
πλt

∫ 1

0

w−
1
2
e−

x2

2c2tw
√

2πtwc

∞∑
n=0

n+ 1
Γ(n+ 3

2 )
(λt(1− w))n+ 1

2 dw

= (y = ct
√
w)

=
2
c

e−λt√
λπt3

∫ ct

0

√
te
− x2t

2y2√
2πy2

∞∑
n=0

n+ 1
Γ(n+ 3

2 )

(
λ

c2t
(c2t2 − y2)

)n+ 1
2

dy

=
∫ ct

−ct

√
te
− x2t

2y2√
2πy2

e−λt

c
√
λπt3

∞∑
n=0

n+ 1
Γ(n+ 3

2 )

(
λ

c2t
(c2t2 − y2)

)n+ 1
2

dy

Therefore, the result (4.5) is proved. Developing the quantity

e−λt
∞∑
n=1

(λt)n

n!
P
{
Xm(R2(t)) ∈ dx|N(t) = n

}
form = 0, 1, and by taking into account the Remark 4.1, it is not hard to prove the results (4.6), (4.7).

We point out that the probability distribution (4.5) says us that the process Xm(t) stopped at reflected
Brownian time is equivalent in distribution to a Brownian motion with variance 1

tX
2
m(t), i.e.

Xm(|B(t)|) d= B

(
1
t
X2
m(t)

)
(4.8)

Remark 4.2. Recalling that for a centered Gaussian with variance σ2 the moments are given by

σp
Γ(p+ 1)

2
p
2 Γ(p2 + 1)

if p is even, while are 0 if p is odd, we obtain that

E{Xp
m(|B(t)|)} =

Γ(p+ 1)
(2t)

p
2 Γ(p2 + 1)

E{Xp
m(t)} = E

{
Bp
(

1
t

)}
E{Xp

m(t)}

where E{Xp
m(t)} is defined as in Theorem 3.1.

The result (4.8) is more general. Indeed, let N (t) be a Gaussian process with mean 0 and variance
σ2(t), it is not hard to prove by using the same argument adopted in the proof of Theorem 4.1 and
Corollary 4.2, that Xm(|N (t)|) is distributed as a Gaussian random variable with variance σ2(t)

t2 X2
m(t).

In other words, the following distributional relationship holds

Xm(|N (t)|) d= B

(
σ2(t)
t2

X2
m(t)

)
.

For example, if:

18



• N (t) = BH(t), that is a fractional Brownian motion with Hurst index H ∈ (0, 1), we have that
σ2(t) = t2H and then Xm(|BH(t)|) d= B

(
t2H−2X2

m(t)
)
, which contains as particular case the

result (4.8) for H = 1
2 ;

• N (t) =
∫ t

0
h(s)dB(s), where h(s) is a well-defined deterministic function, the variance is σ2(t) =∫ t

0
h2(s)ds and then Xm(|

∫ t
0
h(s)dB(s)|) d= B

( R t
0 h

2(s)ds

t2 X2
m(t)

)
. Clearly, for h(s) = 1, we

reobtain the equality (4.8);

• N (t) =
∫ t

0
B(s)ds, the variance is given by σ2(t) = t3

3 , therefore we obtain thatXm(
∫ t

0
B(s)ds) d=

B( t3X
2
m(t)).

Theorem 4.1 can also be generalized by dealing with an l-times interated Bessel process, namely

Rdl (t) = Rd1(Rd2(...(Rdl+1(t)...))), t > 0,

where Rdj s, j = 1, 2, ..., l, are independent Bessel processes. The random process Rdl (t) has density law
given by

fdl (r) =
1

(Γ(d2 )2
d
2−1)l+1

∫ ∞
0

· · ·
∫ ∞

0

rd−1e−
r2
2t1

t
d
2
1

td−1
1 e−

t21
2t2

t
d
2
2

· · ·
td−1
l e−

t2l
2t

t
d
2

dt1dt2 · · · dtl

and leads to the next result.

Theorem 4.3. Given N(t) = n, with n ≥ 1, such that vm > d
2 − 1, we have that

P
{
Xm(Rdl (t)) ∈ dx|N(t) = n

}
(4.9)

=
dx

B(d2 , vm −
d
2 + 1)

1

(Γ(d2 )2( d2−1))l

∫ ∞
0

td−1
1 e−

t21
2t2

t
d
2
2

dt1

∫ ∞
0

td−1
2 e−

t22
2t3

t
d
2
3

dt2 · · ·
∫ ∞

0

td−1
l e−

t2l
2t

t
d
2

dtl

×
∫ 1

0

w
d
2−1(1− w)vm−

d
2
e
− x2

2c2t1w

√
2πt1wc

dw

with x ∈ R.

Proof. Since Xm(Rdl (t)) has support on the interval (−cRdl (t), cRdl (t)) and then on R, we can write
that

P
{
Xm(Rdl (t)) ∈ dx|N(t) = n

}
=
∫ ∞

0

P
{
Xm(Rdl (t)) ∈ dx|N(t) = n,Rdl (t) = s

}
P{Rdl (t) ∈ ds}

=
dx

2π
Γ(vm + 1)Γ(vm)

Γ(2vm)

∫ ∞
0

(
2
cs

)vm
(c2s2 − x2)vm−

1
2 1{|x|<cs}sd−1fdl (s)ds.
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The conditional characteristic function becomes

E
{
eiαXm(Rdl (t))|N(t) = n

}
= Γ(vm + 1)

∫ ∞
0

(
2
αcs

)vm
Jvm(αcs)fdl (s)ds

=
Γ(vm + 1)

(Γ(d2 )2
d
2−1)l+1

∫ ∞
0

dt1 · · ·
∫ ∞

0

dtl

l+1∏
j=2

td−1
j−1

t
d
2
j

e
−
t2j−1
2tj


× 1

t
d
2
1

∞∑
k=0

(−1)k

k!Γ(k + vm + 1)

(αc
2

)2k
∫ ∞

0

s2k+d−1e−
s2
2t1 ds

=
(
y =

s2

2t1

)

=
Γ(vm + 1)

(Γ(d2 ))l+12( d2−1)l

∫ ∞
0

dt1 · · ·
∫ ∞

0

dtl

l+1∏
j=2

td−1
j−1

t
d
2
j

e
−
t2j−1
2tj

 ∞∑
k=0

(−1)kΓ(k + d
2 )

k!Γ(k + vm + 1)

(
α2c2t1

2

)k

=
Γ(vm + 1)

(Γ(d2 ))l+12( d2−1)l

∫ ∞
0

dt1 · · ·
∫ ∞

0

dtl

l+1∏
j=2

td−1
j−1

t
d
2
j

e
−
t2j−1
2tj

 ∞∑
k=0

(−1)kB(k + d
2 , vm −

d
2 + 1)

k!Γ(vm − d
2 + 1)

(
α2c2t1

2

)k

=
Γ(vm + 1)

Γ(vm − d
2 + 1)(Γ(d2 ))l+12( d2−1)l

∫ ∞
0

dt1 · · ·
∫ ∞

0

dtl

l+1∏
j=2

td−1
j−1

t
d
2
j

e
−
t2j−1
2tj


×
∫ 1

0

w
d
2−1(1− w)vm−

d
2 e−

α2c2t1w
2 dw

with tl+1 = t. By inverting the so-obtained characteristic function the proof is completed.

Similarly to the simple Bessel time, conditionally on N(t) = n, such that the constraint vm >
d
2 − 1 is satisfied, Xm(Rdl (t) is distributed as a Gaussian random variable with variance given by
c2Rd1(Rd2(· · · (Rdl (t)) · · · ))W , W ∼ B(d2 , vm −

d
2 + 1).

Obviously, also the result contained in the Remark 4.1 can be generalized as well. Indeed, by means
of the same approach used in the proof of the Theorem 4.3, if ν > d

2 − 1, we obtain that

P
{
Xν(Rdl (t)) ∈ dx|N(t) = 0

}
(4.10)

=
dx

B(d2 , ν −
d
2 + 1)

1

(Γ(d2 )2( d2−1))l

∫ ∞
0

td−1
1 e−

t21
2t2

t
d
2
2

dt1

∫ ∞
0

td−1
2 e−

t22
2t3

t
d
2
3

dt2 · · ·
∫ ∞

0

td−1
l e−

t2l
2t

t
d
2

dtl

×
∫ 1

0

w
d
2−1(1− w)ν−

d
2
e
− x2

2c2t1w

√
2πt1wc

dw.

For ν = 0 and d = 2, it is easy to show that

P
{
X0(R2

l (t)) ∈ dx|N(t) = 0
}

(4.11)

= dx

∫ ∞
0

t1e
− t21

2t2

t2
dt1

∫ ∞
0

t2e
− t22

2t3

t3
dt2 · · ·

∫ ∞
0

tle
− t

2
l

2t

t
dtl

e
− x2

2c2t1
√

2πt1
.
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By setting d = 1,Rdl (t) becomes an l-iterated Brownian motion , namelyR1
l (t) = |B1(|B2(| · · · (|Bl+1(t)|) · · · |)|)|,

where Bjs are independent Brownian motions. Then, for each n ≥ 1, we get that

P
{
Xm(R1

l (t)) ∈ dx|N(t) = n
}

(4.12)

=
dx2

l
2

B( 1
2 , vm + 1

2 )

∫ ∞
0

e−
t21
2t2

√
πt2

dt1

∫ ∞
0

e−
t22
2t3

√
πt3

dt2 · · ·
∫ ∞

0

e−
t2l
2t

√
πt
dtl

×
∫ 1

0

w−
1
2 (1− w)vm−

1
2
e
− x2

2c2t1w

√
2πt1wc

dw.

Furthermore, after some calculations similar to those of the proof of Theorem 4.2, we are able to explicit
the following unconditonal distribution

P {Xm(|B1(|B2(| · · · (|Bl+1(t)|) · · · )|)|)|) ∈ dx} (4.13)

= dx2
l
2

∫ ∞
0

e−
t21
2t2

√
πt2

dt1

∫ ∞
0

e−
t22
2t3

√
πt3

dt2 · · ·
∫ ∞

0

e−
t2l
2t

√
πt
dtl

∫ ct

−ct

te
− x2t2

2t1y2√
2πt1y2

pm(y, t)dy

which allows us to claim that

Xm(R1
l (t))

d= B

(
|B1(| · · · (|Bl(t)|) · · · )|)|

X2
m(t)
t2

)
.

Now, we analyze the effect due to the random clock defined as the time spent on the positive axis
(sojourn time) by a standard Brownian motion B(t), t > 0, namely

Γ(t) =
∫ t

0

1{B(s)>0}(s)ds.

The density function of Γ(t) is γ(s) = 1

π
√
s(t−s)

, 0 < s < t, that it is also known as arcsin law. We have

the following result concerning Xm(Γ(t)).

Theorem 4.4. For n ≥ 1, the following probability distribution holds

P{Xm(Γ(t)) ∈ dx|N(t) = n} =
dx

B(1, vm)π

∫ t

0

ds√
s(t− s)

∫ 1

0

(1− w)vm−1dw
1

2π
1√

c2s2w − x2
.

Proof. In this case

P{Xm(Γ(t)) ∈ dx|N(t) = n} =
dx

2π
Γ(vm + 1)Γ(vm)

Γ(2vm)

∫ t

0

(
2
cs

)vm
(c2s2 − x2)vm−

1
2 γ(s)ds
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As done so far, we consider the Fourier transform for Xm(Γ(t)). Hence, we get

E{eiαXm(Γ(t))|N(t) = n} =
Γ(vm + 1)

π

∞∑
k=0

(−1)k

k!Γ(k + vm + 1)

(αc
2

)2k
∫ t

0

s2k− 1
2 (t− s)− 1

2 ds

= (s = ty)

=
Γ(vm + 1)

π

∞∑
k=0

(−1)k

k!Γ(k + vm + 1)

(
αct

2

)2k ∫ 1

0

y2k− 1
2 (1− y)−

1
2 dy

=
Γ(vm + 1)√

π

∞∑
k=0

(−1)kΓ(2k + 1
2 )

k!Γ(k + vm + 1)Γ(2k + 1)

(
αct

2

)2k

=
vm
π

∞∑
k=0

(−1)kΓ(2k + 1
2 )Γ(k + 1)Γ(vm)Γ( 1

2 )
k!Γ(k + 1)Γ(k + vm + 1)Γ(2k + 1)

(
αct

2

)2k

=
vm
π

∞∑
k=0

(−1)k

(k!)2
B

(
2k +

1
2
,

1
2

)
B (k + 1, vm)

(
αct

2

)2k

=
vm
π

∫ 1

0

z−
1
2 (1− z)− 1

2 dz

∫ 1

0

(1− w)vm−1dwJ0(αctz
√
w)

Therefore, by taking into account the Theorem 2.1-2.3, we obtain that

1
dx
P{Xm(Γ(t)) ∈ dx|N(t) = n} =

vm
π

∫ 1

0

z−
1
2 (1− z)− 1

2 dz

∫ 1

0

(1− w)vm−1dw
1

2π
1√

c2t2z2w − x2

= (s = tz)

=
vm
π

∫ t

0

ds√
s(t− s)

∫ 1

0

(1− w)vm−1dw
1

2π
1√

c2s2w − x2

From Theorem (4.14) we conclude that the random motions Xm(t) with random time Γ(t) is equiv-
alent in distribution, to the random motion X0(t) with a random time given by Γ(t)

√
W , where W ∼

B(1, vm), which maintains the velocity initially chosen until t. Then, one has that

P{Xm(Γ(t)) ∈ dx|N(t) = n} = P{X0(Γ(t)
√
W ) ∈ dx|N(t) = 0}.

Remark 4.3. The random process Γ(t) is also connected with Xm(Rd(t)). Indeed, recalling that

P{Γ(t) ∈ ds|B(t) > 0} =
2
πt

√
s√

(t− s)
ds, P{Γ(t) ∈ ds|B(t) < 0} =

2
πt

√
t− s√
s

ds,

0 < s < t, from (4.2) and (4.3) the following equalities hold:

P{X0(|B1(t)|) ∈ dx|N(t) = 0} = P{B1(c2Γ(t)) ∈ dx}

=
dx

π

∫ t

0

1√
s(t− s)

e−
x2

2c2s
√

2πsc
ds,

P{X0(R3(t)) ∈ dx|N(t) = 2} = P{X1(R3(t)) ∈ dx|N(t) = 0}
= P{B1(c2Γ(t)) ∈ dx|B(t) > 0}

=
dx2
πt

∫ t

0

√
s√

(t− s)
e−

x2

2c2s
√

2πsc
ds,
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P{X0(|B1(t)|) ∈ dx|N(t) = 2} = P{X1(|B1(t)|) ∈ dx|N(t) = 0}
= P{B1(c2Γ(t)) ∈ dx|B(t) < 0}

=
dx2
πt

∫ t

0

√
t− s√
s

e−
x2

2c2s
√

2πsc
ds,

where B1(t) is a independent Brownian motion with respect to B(t).

4.2 Compositions with Gamma random times
In this part of the paper, we deal with a second class of random times different with respect to the previous
one. We indicate with Gα(t) a Gamma random process, with parameter α > 0, governed by the density
law gα(s, t) = tα

Γ(α)s
α−1e−ts, s > 0. Analogously to the Bessel case, first of all we study the conditional

probability distribution.

Theorem 4.5. Given N(t) = n ≥ 1, such that vm > α
2 − 1, the random process Xm(Gα(t)) has the

following conditional probabilities

P {Xm(Gα(t)) ∈ dx|N(t) = n} (4.14)

=
dx

Γ(α+1
2 )B(α2 , vm −

α
2 + 1)

∫ 1

0

dww
α
2−1(1− w)vm−

α
2

t√
πwc

(
t|x|

2c
√
w

)α
2

K−α2

(
t|x|
c
√
w

)
where Kµ(x) is the second type modified Bessel function.

Proof. The random process Xm(Gα(t)) admits as support the real line, hence we get that

P {Xm(Gα(t)) ∈ dx|N(t) = n}

=
∫ ∞

0

P {Xm(Gα(t)) ∈ dx|N(t) = n,Gα(t) = s}P{Gα(t) ∈ ds}

=
dx

2π
Γ(vm + 1)Γ(vm)

Γ(2vm)
tα

Γ(α)

∫ ∞
0

(
2
cs

)vm
(c2s2 − x2)vm−

1
2 1{|x|<cs}sα−1e−tsds
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Then

E
{
eiαXm(Gα(t))|N(t) = n

}
= Γ(vm + 1)

(
2
αc

)vm tα

Γ(α)

∫ ∞
0

Jvm(αcs)
svm

sα−1e−tsds

= Γ(vm + 1)
tα

Γ(α)

∞∑
k=0

(−1)k

k!Γ(k + vm + 1)

(αc
2

)2k
∫ ∞

0

s2k+α−1e−tsds

=
Γ(vm + 1)

Γ(α)

∞∑
k=0

(−1)kΓ(2k + α)
k!Γ(k + vm + 1)

(αc
2t

)2k

= (by duplication formula)

=
Γ(vm + 1)√
πΓ(α)

∞∑
k=0

(−1)kΓ(k + α
2 )Γ(k + α+1

2 )22k+α−1

k!Γ(k + vm + 1)

(αc
2t

)2k

=
Γ(vm + 1)2α−1

√
πΓ(α)Γ(vm − α

2 + 1)

∞∑
k=0

(−1)k

k!

(αc
t

)2k

Γ
(
k +

α+ 1
2

)
B
(
k +

α

2
, vm −

α

2
+ 1
)

=
Γ(vm + 1)

Γ(α2 )Γ(α+1
2 )Γ(vm − α

2 + 1)

∞∑
k=0

(−1)k

k!

(αc
t

)2k

Γ
(
k +

α+ 1
2

)
B
(
k +

α

2
, vm −

α

2
+ 1
)

=
1

Γ(α+1
2 )B(α2 , vm −

α
2 + 1)

∞∑
k=0

(−1)k

k!

(αc
t

)2k
∫ ∞

0

e−zzk+α+1
2 −1dz

∫ 1

0

wk+α
2−1(1− w)vm−

α
2 dw

=
1

Γ(α+1
2 )B(α2 , vm −

α
2 + 1)

∫ ∞
0

e−zz
α+1

2 −1dz

∫ 1

0

w
α
2−1(1− w)vm−

α
2 dwe−(αct )2

zw.

By inverting the above quantity, we obtain that

1
dx
P {Xm(Gα(t)) ∈ dx|N(t) = n} (4.15)

=
1

Γ(α+1
2 )

∫ ∞
0

dze−zz
α+1

2 −1 1
B(α2 , vm −

α
2 + 1)

∫ 1

0

dww
α
2−1(1− w)vm−

α
2
te−

t2x2

4c2zw
√

4πzwc

=
1

Γ(α+1
2 )

1
B(α2 , vm −

α
2 + 1)

∫ 1

0

dww
α
2−1(1− w)vm−

α
2

t√
πwc

(
t|x|

2c
√
w

)α
2

K−α2

(
t|x|
c
√
w

)
where in the last step we have used the following integral representation

Kµ(x) =
1
2

(x
2

)µ ∫ ∞
0

e−z−
x2
4z z−µ−1dz.

Moreover, from (4.15) it is easy to verify that∫ ∞
−∞

P {Xm(Gα(t)) ∈ dx|N(t) = n} = 1.

Remark 4.4. From (4.15) it is straightforward to observe that

P {Xm(Gα(t)) ∈ dx|N(t) = n}
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is equal to the density of a Gaussian random variable with variance 2c2

t2 ZW where Z is gamma variable
with parameter α+1

2 and 1, while W ∼ B(α2 , vm −
α
2 + 1).

Remark 4.5. analogously to the Bessel case, the approach developed in the previous proof is enought to
show that

P {Xν(Gα(t)) ∈ dx|N(t) = 0} (4.16)

=
dx

Γ(α+1
2 )B(α2 , ν −

α
2 + 1)

∫ 1

0

dww
α
2−1(1− w)ν−

α
2

t√
πwc

(
t|x|

2c
√
w

)α
2

K−α2

(
t|x|
c
√
w

)
with ν > α

2 − 1.

For α = 1, G1(t) becomes an exponential random process. The exponential clock permits us to
derive an interesting interpretation of the probability (4.14). Indeed, since

K± 1
2
(x) =

√
π

2x
e−x

we get that

P {Xm(G1(t)) ∈ dx|N(t) = n} =
1

B( 1
2 , vm + 1

2 )

∫ 1

0

dww−
1
2 (1− w)vm−

1
2

t

2c
√
w
e
− t|x|
c
√
w (4.17)

for n ≥ 0, being the condition vm > − 1
2 always satisfied. It means that the conditioned probability of

Xm(G1(t)) is equivalent to the distribution of a Laplace random variable with parameter t
2c
√
W

, where
W ∼ B( 1

2 , vm + 1
2 ).

Remark 4.6. The process X0(G1(t)) and the occupation time Γ(t) are linked by the following relation-
ships

P {X0(G1(t)) ∈ dx|N(t) = 0} =
dx

π

∫ t

0

P{Γ(t) ∈ ds} 1
2cs

e−
|x|
cs ds

P {X0(G1(t)) ∈ dx|N(t) = 2} = P {X1(G1(t)) ∈ dx|N(t) = 0}

=
dx2
πt

∫ t

0

P{Γ(t) ∈ ds|B(t) < 0} 1
2cs

e−
|x|
cs ds

as it is possible to derive by (4.16) and (4.17).

Now, by means of the same steps used in the proof of Theorem 4.2, it in not hard to prove the result
contained in the next Theorem. Therefore, we omitted the proof.

Theorem 4.6. For α = 1, we have that

P {Xm(G1(t)) ∈ dx} = dx

∫ ct

0

t2

2y
e−

t2|x|
y qm(y, t)dy (4.18)

where qm(y, t) = 2pm(y, t), m = 0, 1.

Theorem 4.6 claims that Xm(t) with exponential time, is equivalent, in distribution, to a Laplace
random variable with parameter t2

|Xm(t)| .
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As for the Bessel random time, also in this case we consider a random time obtained iterating l times
a Gamma random variable. Hence, we indicate the iterated Gamma process with

Gl(t) = Gα1(Gα2(. . . (Gαl+1(t)) . . .))

having density law given by

gl(s, t) =
∫ ∞

0

tα1
1

Γ(α1)
sα1−1e−t1sdt1

∫ ∞
0

tα2
2

Γ(α2)
tα2−1
1 e−t2t1dt2 . . .

∫ ∞
0

tαl+1

Γ(αl+1)
t
αl+1−1
l e−tltdtl

where αj+1, j = 0, 1, ..., n, is strictly positive. Therefore, by using the same approach contained in the
proof of Theorem 4.5, the following result yields.

Theorem 4.7. Given N(t) = n, such that vm > α1
2 − 1, we have that

P {Xm(Gl(t)) ∈ dx|N(t) = n} (4.19)

=
dx

Γ(α1+1
2 )B(α1

2 , vm −
α1
2 + 1)

∫ ∞
0

tα2
2

Γ(α2)
tα2−1
1 e−t2t1dt1 . . .

∫ ∞
0

tαl+1

Γ(αl+1)
t
αl+1−1
l e−tltdtl

×
∫ 1

0

w
α1
2 −1(1− w)vm−

α1
2

t1√
πwc

(
t1|x|

2c
√
w

)α1
2

K−α1
2

(
t1|x|
c
√
w

)
dw

with x ∈ R.

Furthermore, at this point also the probability P {Xν(Gl(t)) ∈ dx|N(t) = 0} immediately follows.
By setting α1 = 1, it is not an hard task to provide the following unconditonal distribution

P
{
Xm(G1(Gα2(· · · (Gαl+1(t)) · · · ))) ∈ dx

}
(4.20)

= dx

∫ ∞
0

tα2
2

Γ(α2)
tα2−1
1 e−t2t1dt1 . . .

∫ ∞
0

tαl+1

Γ(αl+1)
t
αl+1−1
l e−tltdtl

∫ ct

0

t2

2t1y
e−

t2|x|
t1y qm(y, t)dy.

Hence, Xm(G1(Gα2(· · · (Gαl+1(t)) · · · ))) is distributed as a Laplace random variable with parameter
given by

t2

Gα1(· · · (Gαl(t)) · · · )|Xm(t)|
.

In order to conclude the discussion on the random times, we note that Rd(t) and Gα(t) can be mixed
obtaining a new class of random times. Obviously, Rd(t) and Gα(t) are thought to be mutually indepen-
dent. Now, we present the following Theorem.

Theorem 4.8. For n ≥ 1 and vm > d
2 − 1, we have that

P
{
Xm(Rd(Gα(t))) ∈ dx|N(t) = n

}
(4.21)

=
dx

Γ(α)B
(
d
2 , vm −

d
2 + 1

) ∫ 1

0

dww
d
2−1(1− w)vm−

d
2

√
2t√
πwc

(√
t|x|

c
√

2w

)α− 1
2

K−α+ 1
2

(√
2t|x|
c
√
w

)

Proof. Since Rd(Gα(t)) has density given by

tα

Γ(α)Γ(d2 )2
d
2−1

∫ ∞
0

rd−1

z
d
2
e−

r2
2z zα−1e−tzdz,
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we can write that

P
{
Xm(Rd(Gα(t))) ∈ dx|N(t) = n

}
=
∫ ∞

0

P
{
Xm(Rd(Gα(t))) ∈ dx|N(t) = n,Rd(Gα(t)) = s

}
P{Rd(Gα(t)) ∈ ds}

=
Γ(vm + 1)Γ(vm)

2πΓ(2vm)
tαdx

Γ(α)Γ(d2 )2
d
2−1

×
∫ ∞

0

ds

∫ ∞
0

dz

(
2
cs

)vm
(c2s2 − x2)vm−

1
2 1{|x|<cs}

sd−1

z
d
2
e−

s2
2z zα−1e−tz.

Therefore, by means of the Corollary 2.1, we are able to explicit the Fourier transform of the previous
probability distribution as follows∫ +∞

−∞
eiαxP

{
Xm(Rd(Gα(t))) ∈ dx|N(t) = n

}
= Γ(vm + 1)

(
2
αc

)vm tα

Γ(α)Γ(d2 )2
d
2−1

∫ ∞
0

zα−
d
2−1e−tzdz

∫ ∞
0

Jvm(αcs)sd−vm−1e−
s2
2z ds

=
tαΓ(vm + 1)

Γ(α)Γ(d2 )2
d
2−1

∫ ∞
0

zα−
d
2−1e−tzdz

∞∑
k=0

(−1)k

k!Γ(k + vm + 1)

(αc
2

)2k
∫ ∞

0

s2k+d−1e−
s2
2z ds

=
(
y =

s2

2z

)
=
tαΓ(vm + 1)

Γ(α)Γ(d2 )

∫ ∞
0

zα−1e−tzdz

∞∑
k=0

(−1)k

k!Γ(k + vm + 1)

(
α2c2z

2

)k ∫ ∞
0

yk+ d
2−1e−ydy

=
tαΓ(vm + 1)

Γ(α)Γ(d2 )

∫ ∞
0

zα−1e−tzdz

∞∑
k=0

(−1)kΓ(k + d
2 )

k!Γ(k + vm + 1)

(
α2c2z

2

)k

=
tαΓ(vm + 1)

Γ(α)Γ(d2 )Γ
(
vm − d

2 + 1
) ∫ ∞

0

zα−1e−tzdz

∞∑
k=0

(−1)k

k!
B

(
k +

d

2
, vm −

d

2
+ 1
)(

α2c2z

2

)k

=
tα

Γ(α)B
(
d
2 , , vm −

d
2 + 1

) ∫ ∞
0

zα−1e−tzdz

∞∑
k=0

(−1)k

k!

(
α2c2z

2

)k ∫ 1

0

wk+ d
2−1(1− w)vm−

d
2 dw

=
tα

Γ(α)B
(
d
2 , , vm −

d
2 + 1

) ∫ ∞
0

zα−1e−tzdz

∫ 1

0

w
d
2−1(1− w)vm−

d
2 e−

α2c2zw
2 dw

By inverting the above characteristic function, we obtain that

P
{
Xm(Rd(Gα(t))) ∈ dx|N(t) = n

}
=

tα

Γ(α)B
(
d
2 , , vm −

d
2 + 1

) ∫ 1

0

w
d
2−1(1− w)vm−

d
2 dw

∫ ∞
0

zα−1 e
−tz− x2

2c2zw
√

2πzwc
dz

= (u = tz)

=
1

Γ(α)B
(
d
2 , , vm −

d
2 + 1

) ∫ 1

0

w
d
2−1(1− w)vm−

d
2 dw

∫ ∞
0

uα−
1
2−1

√
te−u−

x2t
2c2uw

√
2πwc

du

=
1

Γ(α)B
(
d
2 , , vm −

d
2 + 1

) ∫ 1

0

dww
d
2−1(1− w)vm−

d
2

√
2t√
πwc

(√
t|x|

c
√

2w

)α− 1
2

K−α+ 1
2

(√
2t|x|
c
√
w

)
.
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Remark 4.7. For α = 1, one has

P{Xm(Rd(G1(t))) ∈ dx|N(t) = n} =
dx

B
(
d
2 , , vm −

d
2 + 1

) ∫ 1

0

dww
d
2−1(1−w)vm−

d
2

√
2t

2c
√
w
e
−
√

2t|x|
c
√
w

and for d = 1, after some calculations, the following distribution yields

P{Xm(|B(G1(t))|) ∈ dx} = dx

∫ ct

0

√
2t

3
2

2y
e−
√

2t
3
2 |x|
y qm(y, t)dy.

Remark 4.8. Let X and Y be two independent random variables distributed as a Gaussian with mean
zero and variance respectively equal to σ2 and 1. It is well-known that V = XY has the following
density law

fV (v) =
∫ +∞

−∞

e−
x2

2σ2

√
2πσ

e−
v2

2x2

√
2π

dx =
1
πσ

K0

(
|v|
σ

)
.

These considerations and Theorem 4.8 permit us to state that for α = 1
2 and d = 1,

P
{
Xm(|B(G 1

2
(t))|) ∈ dx|N(t) = n

}
=

dx

B( 1
2 ,

n+1
2 )

∫ 1

0

dww
d
2−1(1−w)vm−

d
2

√
2t

πc
√
w
K0

(√
2t|x|
c
√
w

)
holds for each n. In other words, conditionally on the number of Poisson events during the interval
[0, t], the law of Xm(|B(G 1

2
(t))|) is equivalent to the distribution of the product of a standard Gaussian

and a Normal random variable, indipendent from previous one, with mean zero and variance c
√
W√
2t

, with
W ∼ B( 1

2 ,
n+1

2 ).

5 Some remarks on random motions in higher spaces
Let X2(t) = (X1(t), X2(t)) and X4(t) = (X1(t), X2(t), X3(t), X4(t)) be respectively a planar and
four-dimensional random flight, then the results presented in the Section 4 can be extended to these
random processes.

We also use the follwing notations: α2 = (α1, α2), α4 = (α1, α2, α3, α4), x2 = (x1, x2), x4 =
(x1, x2, x3, x4). Futhermore, let || · || be the euclidean norm and < ·, · > the scalar product. As proved
in Orsingher and De Gregorio (2007b) the characteristic function and the conditional probabilities of the
random flights in the plane are given by

E
{
ei<α2,X2(t)>|N(t) = n

}
=

Γ
(
n
2 + 1

)
2
n
2

(ct||α2||)
n
2
Jn

2
(ct||α2||),

pn(||x2||, t) =
n

2π(ct)n
(c2t2 − ||x2||2)

n
2−1,

while for X4(t), one has

E
{
ei<α4,X4(t)>|N(t) = n

}
=

Γ (n+ 2) 2n+1

(ct||α4||)n+1
Jn+1(ct||α4||),

pn(||x4||, t) =
n(n+ 1)
π2(ct)2n+2

(c2t2 − ||x4||2)n−1.
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Therefore, for the planar random flights at Bessel random time, namely (X1(Rd(t)), X2(Rd(t))), by
following the same steps of the proof of Theorem 4.2, we have that

P
{
X1(Rd(t)) ∈ dx1, X2(Rd(t)) ∈ dx2|N(t) = n

}
(5.1)

=
dx1dx2

B
(
d
2 ,

n
2 −

d
2 + 1

) ∫ 1

0

w
d
2−1(1− w)

n
2−

d
2
e−
||x2||

2

2c2tw

2πtwc2
dw

P {X1(Gα(t)) ∈ dx1, X2(Gα(t)) ∈ dx2|N(t) = n} (5.2)

=
dx1dx2

Γ(α+1
2 )B(α2 , vm −

α
2 + 1)

∫ 1

0

dww
α
2−1(1− w)vm−

α
2

t√
πwc

(
t||x2||
2c
√
w

)α
2

K−α2

(
t||x2||
c
√
w

)
which hold if vm > d

2 −1 again. We observe that from the probability (5.1) for d = 1, we reobtain the re-
sult (3.3) showed in Beghin and Orsingher (2009). Similar considerations yield for the four-dimensional
random flights.

The random flights in higher spaces have directions uniformly distributed on a multidimensional
hypersphere. It would be interesting to consider a model, for example in the plane, with a different
density law with respect to the uniform one. Let us consider a planar random flight with density law
similar to (2.1), for example

f(θ) =
1

2π
sin2 θ, θ ∈ [0, 2π].

In this case, we obtain a random process describing a motion tending to move in a land of the plane with
high probability. Therefore, we obtain a random motion with drift, which is persistent along a specific
portion of the plane. Hence, in order to calculate the characteristic function, we need of the following
integral ∫ 2π

0

exp{iz(α cos θ + β sin θ)} sin2 θdθ

which it is work out as follows

∫ 2π

0

exp{iz(α cos θ + β sin θ)} sin2 θdθ

=
∞∑
k=0

(iz)k

k!

∫ 2π

0

(α cos θ + β sin θ)k sin2 θdθ

=
∞∑
k=0

(iz)k

k!

k∑
r=0

(
k

r

)
αrβk−r

∫ 2π

0

cosk θ sink−r+2 θdθ.

Now, the last integral has to be splitted in two parts:
∫ 2π

0
=
∫ π

0
+
∫ 2π

π
. Hence, by performing a change

of variable θ′ = θ − π in the second integral, we observe by (3.1) that the previous sum is equal to zero
if k and r are odd. By splitting the first integral on (0, π2 ) and after a change of variable analogous to the
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previous one, we can write that∫ 2π

0

exp{iz(α cos θ + β sin θ)} sin2 θdθ

= 4
∞∑
k=0

(iz)2k

(2k)!

k∑
r=0

(
2k
2r

)
α2rβ2(k−r)

∫ π/2

0

cos2r θ sin2(k−r+1) θdθ

= 2
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k=0

(−1)k
z2k

(2k)!
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r=0

(
2k
2r

)
α2rβ2(k−r) Γ(r + 1
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2 )

Γ(k + 2)

= 2π
∞∑
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(−1)k
z2k

(2k)!

k∑
r=0

(
2k
2r

)
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(−1)k
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2(k − r) + 1
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= 2π
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k=0

(−1)k
z2k

(k + 1)!22k

{
k∑
r=0

α2rβ2(k−r)

2(r!)(k − r)!
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r=0

α2rβ2(k−r)

r!(k − r − 1)!

}

= 2π
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k=0

(−1)k
z2k

(k + 1)!22k

{
1

2(k!)

k∑
r=0

(
k

r

)
α2rβ2(k−r) +

β2

(k − 1)!

k−1∑
r=0

(
k − 1
r

)
α2rβ2(k−1−r)

}

= 2π
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k=0

(−1)kz2k

2(k + 1)!k!22k
(
√
α2 + β2)2k + β2
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k=1

(−1)kz2k

(k + 1)!(k − 1)!22k
(
√
α2 + β2)2(k−1)

}

= 2π

{
J1(z

√
α2 + β2)

z
√
α2 + β2

− β2
∞∑
l=0

(−1)l

l!(l + 2)!

(z
2

)2l+2

(
√
α2 + β2)2l

}

= 2π

{
J1(z

√
α2 + β2)

z
√
α2 + β2

− β2

α2 + β2
J2(z

√
α2 + β2)

}
.

Then, the characteristic function becomes

E
{
ei<α2,X2(t)>|N(t) = n

}
(5.3)

=
n!
tn

∫ t

0

ds1 · · ·
∫ t

sn−1

dsn

n+1∏
j=1

{
J1(c(sj − sj−1)||α2||)
c(sj − sj−1)||α2||

− α2
2

||α2||2
J2(c(sj − sj−1)||α2||)

}
.

From (5.3) emerges that as expected an asimmetry is introduced by f(θ), because the particle will tend
to maintains the same direction. Moreover, the inversion of the characteristic function is quite difficult,
therefore seem to be not possible to obtain the explicit probability distribution of X2 at time t by means
of this approach.
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