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Abstract

By building on the stochastic search approach (George and McCulloch,
1993) we propose a strategy for performing constrained variable selec-
tion. We discuss hierarchical and grouping constraints; and introduce
anti-hierarchical constraints, in which the inclusion of a variable forces
another to be excluded from the model. We prove consistency results
about model receiving maximal posterior probability and about the
median model Barbieri and Berger (2004), and discuss extension to
generalized linear models. The model can be easily implemented and
fit using a standard Gibbs sampler.

Keywords: Constraints, Gibbs sampler, hierarchical models, variable
selection

1 Introduction

Consider the task of predicting a dependent variable Y from the values of
p predictors X1, . . . , Xp through some linear model. In this paper we will
refer to the predictor Xj as “variable”, irrespectively of it being a function
of any other predictors or not. There are many cases where one would se-
lect variables in groups or in hierarchy, thus satisfying constraints on the final
composition of a regression model. For instance one may like to include an in-
teraction or a transformation of variables only if the main effects are included
too (hierarchical variable selection); or include all or none of the dummies
in a corner point parameterization of a categorical variable (grouped variable
selection). This setting includes multi-factor ANOVA, and additive models
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with polynomial or nonparametric input variables, in which each component
is a linear combination of basis functions obtained from the original predictor.
More specific applications include genetics (inclusion of genes in pathways),
spatial statistics (inclusion of all or no direction, see Zhao et al. (2006)), and
others. Another situation in which a large number of hierarchical constraints
appear is hereditary wavelet thresholding (Autin et al., 2004), in which detail
coefficients are forced to enter into the model whenever higher level coeffi-
cients are not thresholded to zero. We note that in multi-factor ANOVA it
may not always be sensible to force a hierarchical structure for the model:
there may be factors that have an interaction but no main effect (see for
instance (Scheffè, 1963, Chap. 4, pag. 94)). Furhter, in certain cases only
partial inclusion of a categorical may be of interest (Meyer and Laud, 2002).

In this paper we introduce and model a third class of constraints not
previously considered in the literature, which we call anti-hierarchical con-
straints. We refer to an anti-hierarchical constraint between a variable Xi and
Xj if Xj need not be included in every model in which Xi is included. Anti-
hierarchical constraints may be useful for (i) cost/availability constraints in
further analyses: when the selected model is used for future prediction, it
may be the case that not all covariates can be simoultaneously measured
in future observations (for instance in medical diagnoses, industrial quality
control, etc), (ii) drug design and similar settings in which certain ingredi-
ents can’t be mixed (iii) collinearity problems: if two variables are almost
perfectly correlated, then only one of the two must be included in the model,
and (iv) following only a specific route of transformations for interpretability
reasons: we may want to consider powers of Xi larger or smaller than 1 (that
is, a square, cube, etc., or a square,cubic,quartic root).

While grouping constraints are easily embedded into stepwise methods,
until recently to the best of our knowledge there had not been attempts to
develop methods for automatic hierarchical variable selection. Yuan and Lin
(2006); Kim et al. (2006); Zhao et al. (2006) fill this gap using generaliza-
tions of Lasso (Tibshirani, 1996), that is relying on the maximization of a
penalized likelihood. The method of Yuan and Lin (2006) has been extended
to logistic regression by Meier et al. (2006). All the previous methods focus
on grouped variable selection, even if they can accomodate hierarchical con-
straints. While painstacking, and performing a simultaneous shrinkage and
selection, all of such methods involve maximization of the likelihood over
parameter sets that may be non-convex, and may not be easy to implement.
Another problem of Lasso-related methods is that they may not be consis-
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tent in model choice in certain situations (Meinshausen and Bühlmann, 2006;
Zou, 2006). The goal of this paper is to show that constrained model selec-
tion can be performed with a very simple strategy in a Bayesian framework,
which naturally embeds shrinkage of the estimates, and yields consistent
model choice under weak conditions. By building on the stochastic search
approach for Bayesian variable selection (George and McCulloch, 1993, 1997)
we propose a Bayesian method for performing grouped, hierarchical and anti-
hierarchical variable selection. Due to the stochastic nature of the search al-
gorithm, even when p is large the computational requirements are low, since
promising models will be soon sampled often (George and McCulloch, 1993);
thus allowing the user to specify a pletora of transformations and interactions
as candidate for the final regression model. To the best of our knowledge,
this is the first attempt to put constrained variable selection in an auto-
matic Bayesian framework. It is worth noting however that this possibility
is considered in different works (Lahiri (2001),Barbieri and Berger (2004)),
even if the common approach consists in the enumeration of the model space.
Further, King and Brooks (2001) propose an automatic reversible jump ap-
proach for hierarchical loglinear models and Zhao et al. (2006) provide an
interesting Bayesian interpretation of their Composite Absolute Penalties
method. The rest of the paper is as follows: in Section 2 we illustrate our
strategy for constrained selection. In Section 2.5 we discuss model choice,
while frequentist consistency results in model choice, valid also in the general
unconstrained framework, are proved in Section 3 We illustrate the method
using simulation and a data set in Section 4, and suggest an extension to
generalized linear models in Section 5. In Sections 5.1 and 5.2 we illustrate
two examples on GLM with canonical and non-canonical link functions.

2 A Bayesian model for constrained variable

selection

Bayesian model selection dates back at least to Atkinson (1978), and usually
involves a simple multivariate normal modelling. There has been a huge
amount of work on the subject since then, which we will not attempt to
review. We just point the reader to Lahiri (2001), Chipman et al. (2001),
and references therein.

We will focus in this paper on stochastic search variable selection
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Figure 1: Illustration on a simple model

(George and McCulloch, 1993), where each component of the regression pa-
rameter vector β is modelled as a mixture of two centered normal distri-
butions, with different variances. The key feature is the introduction of a
binary latent variable γj identifying the latent component, and consequently
whether the corresponding variable should be included in the final model or
not:

βj |γj ∼ (1 − γj)N(0, τ 2
0j) + γjN(0, τ 2

1j); (1)

with τ 2
1j slighly larger than τ 2

0j . Each model is then identified by a binary
vector γ, with prior probability π(γ), in which the variables corresponding
to non-zero components of γ are included and the other are excluded.

We introduce the problem of constrained variable selection with a very
simple example.

Example 1. Suppose we measure two covariates and a continuous response,
and consider the possibility to include the square of each measurement and
the interaction. The full model is then:

Y = β0 + β1x1 + β2x
2
1 + β3x2 + β4x

2
2 + β5x1x2.

While in certain cases it may be sensible to consider any possible submodel,
in many other cases one would like to preserve the hierarchical structure,
imposing constraints. The set of constraints can be visualized in Figure 1,
where a pointing arrow implies that the parameter cannot be included in the
model without the father.

Constrained variable selection could be embedded in this framework by
giving zero prior probability to models that do not satisfy the constraints.

This would be anyway a daunting task, that can be avoided with a simple
parameterization which we now describe.
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We assume the covariates are divided in g disjoint groups G1, . . . , Gg, and
define an indicator φk(j) which is 1 if j is member of k-th group. Then, for
each variable j we define an indicator function δj(i), i = 1, . . . p, which is 1 if
the j-th variable must be included in every model in which i-th is included,
and zero if there are no hierarchical constraints. At the same time, we define
another indicator ξj(i), which is 1 if the j-th variable must be excluded from
every model in which i-th is included. Note that φ, δ and xi are fixed and
specified by the user.

We introduce a second latent indicator η that identifies whether a group
is to be included in the final model or not.

Suppose now there is a hierarchical constraint between a “father” variable
j1 in group k1 and variable j2 in group k2. In order to impose this constraint,
it is sufficient to set γj2 = ηk2ηk1. In fact, variable j2 can be included only
if both groups k1 and k2 are included in the model. Since there can be more
than one hierarchical constraint, and from different groups, on variable j2,
we make use of indicators δ by setting γj2 = ηk2

∏

k 6=k2

∏

h 6=j2
η

δh(j2)φk(h)
k . The

last exponent is equal to 1 only if h is a father variable for j2 and h belongs
to the k-th group. A third way to impose the constraints is given by using

the other elements of vector γ, and setting: γj2 = ηk2

∏

j 6=j2
γ

δj(j2)
j .

Similar approaches can be taken in order to impose grouping and anti-
hierarchical constraints.

In the most general case, we link group indicators η to single-variable
indicators γ with the following parameterization:

γj(η) =

(

∏

j 6=i

(1 − γi(η))ξi(j)γi(η)δi(j)

)

g
∏

k=1

η
φk(j)
k ; (2)

and for ease of notation we will suppress the dependence of γj on η. The
indicators ξ, δ and φ are specified by the user to identify the constraints and
select a subclass of the set of all possible models; and parameterization (2)
then directly enforces the constraints. In fact, γj can be equal to 1 only if
the corresponding ηk is equal to 1 (and thus only together with the members
of the same group) and only if all the parent variables are already included
in the model. Furthermore, if the i-th variable is included in the model and
ξi(j) = 1, the j-th variable (and consequently its entire hierarchy) is certainly
excluded from the model.
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2.1 Constraint Specification

A set of constraints formally identifies a subclass of models, and we define:

Definition 1. A set of constraints given by a choice of φ, δ and ξ is called
compatible if for each variable Xj there exist a model in the subclass in
which Xj is included.

Definition 2. A set of constraints given by a choice of φ, δ and ξ is called
minimal if for all i and j any removal of constraints (i.e., changing ξi(j),
δi(j) or φk(j) from 1 to 0) leads to a different subclass of possible models.

In practice a set of compatible and minimal constraints allows the user to
select each of the variables in at least one model, and each given configuration
uniquely identifies a model; which we assume for the rest of the paper.

Since ξ, δ and φ are pre-specified, we leave to the user the task of making
sure the constraints do not contradict. Constraints contradict for instance if
we define an anti-hierarchical constraint between two variables belonging to
the same group, thereby excluding the group from the model with probability
1.

It is straightforward to check that problems in compatibility can be expe-
rienced only when using anti-hierarchical constraints. In all the other cases
the set of constraints is compatible.

For instance, if ξi(j)δi(j) = 1, there is a contradiction and both Xi and
Xj will never be selected, thereby having an incompatible set of constraints.

Unfortunately, a universal method to check for compatibility seems hard
to develop; and would include checking ξi(j)δi(j) = 0, ∀ i, j; ξi(j)φk(i)φk(j) =
0, ∀ i, j, k (i.e., two variables cannot be mutually exclusive and belong to the
same group); but also would include checking ξi(j)δi(j1)φk(j)φk(j1) = 0, and
so on.

Consequences of not using a compatible set of constraints include almost
sure exclusion of certain groups.

Minimality is much less important and aids only computational efficiency.
Checking for minimality involves checking for redundancies in constraint
specification. If for instance two variables belong to the same group, any
hierarchical constraint between them is a redundancy and removing it would
lead to the same set of possible models.

Example 2. In the model of Example 1, there are no grouping and anti-
hierarchical constraints, while there are hierarchical constraints. This leads to
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set φk(j) = 1k=j, where 1C is the indicator function of condition C, ξi(j) = 0
for all i, j; δ2(1) = δ4(3) = δ5(1) = δ5(3) = 1 and δi(j) = 0 in all other cases.

2.2 The model

In summary, we propose to fit the the following hierarchical model:


















Y | β, σ2 ∼ N(β0 +
∑

βkXk, σ
2I)

σ2 | η ∼ IG(νγ/2, νγλγ/2)

ηk ∼ Bernoulli < wk >

β | η ∼ N(0, ΓRΓ).

(3)

where Γ = diag(
√

γjτ 2
1j + (1 − γj)τ 2

0j), and R is a prior correlation matrix.

The prior for β leads to a marginal prior as in (1) for each βj . The only differ-
ence with model proposed in George and McCulloch (1993) is that the latent
variables γj enter into the model as function (2) of group latent variables ηk.

We have few remarks, and illustrate below the main ideas behind the
model.

Remark 1. Grouped and hierarchical constraints are very close in nature.
If we allow the groups to overlap, a hierarchical constraint can be specified by
inclusion of a group into a larger one. This is the route taken by other works
on constrained variable selection. The converse is also true: if we specify
that Xi is father of Xj (δi(j) = 1) and that Xj is father of Xi (δj(i) = 1),
then Xi and Xj belong to the same group, because they can be included in a
model only together. We prefer to use separate sets of indicators because it
is seen to provide a higher computational stability, and also because we find
it more intuitive.

Remark 2. The specification of the indicator functions δj(i) is very simple,
and is itself hierarchical: for instance, for a third order interaction only the
second order interactions should be marked as “parents”. Marking of the orig-
inal variables is a redundancy, and can be omitted. Further, anti-hierarchical
constraints are reciprocal: if Xj need not be included in every model in which
Xi is included, the converse is also true, and only one direction of the con-
straint needs to be specified.

Remark 3. Note that variables that are not constrained to enter in groups
go into a singleton Gj. If we only have hierarchical constraints, Gj = {j},
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j = 1, . . . , g and g = p. In the unconstrained case in which Gj = {j},
j = 1, . . . , p and δj = ξj = 0 for any j, model (3) reduces to the model
suggested in George and McCulloch (1993).

Remark 4. When considering a large number of transformations and in-
teractions, the number of prospective predictors p can get much larger than
n. In our Bayesian approach there are no particular problems due to the
presence of the prior, making the problem well-posed (see below).

Remark 5. In simple cases one can “explode” parameterization (2) and
explicitely define each element of the γ vector separately. This is important
when sampling with WinBUGS (Lunn et al., 2000) in order to provide a
parameterisation with improved orthogonality. As an example, WinBUGS
code for the model in Example 1 is given in Appendix B.

Our setting follows the usual approach of Bayesian variable selection, in
which the prior distribution for each βj coefficient has a spike at zero. In
general we set τ 2

0j << τ2
1j . When γj = 0 and τ 2

0j is small enough, the prior is
very concentrated around 0 and values of βj far from zero receive negligible
support. On the other hand, when γj = 1 and τ 2

1j is big enough, a non-zero
(posterior) estimate of βj will probably be included in the final model. The
parameter wk may be interpreted as the statistician’s prior probability that
variables belonging to group Gk should be included in the final model. We
can implicitly penalize the inclusion of variables by setting wk small enough.
The parameter γj is a simple parameterization, and is equal almost surely
(conditionally on η) to a function of η. Marginally, its prior is a Bernoulli

with parameter
∏

k w
φk(j)
k

∏

i6=j

∏

k w
φk(i)δj(i)
k (1 − wk)

φk(i)ξj (i); which can be
interpreted as the statistician’s prior probability that the predictor Xj is
included in the final model, given the constraints. The parameterization and
augmentation through the vector η allows to give zero prior probability to
models that do not satisfy the constrains in a simple and natural way.

2.3 Sampling from the posterior

The main target of our analysis is the posterior probability of the binary vec-
tor γ, π(γ | Y ). The vectors γ with higher posterior probability correspond
to models receiving higher support by data and prior information.

Sampling from the posterior can be done with the use of classical MCMC
methods (Robert and Casella, 1999), and namely by the implementation of
a simple Gibbs sampler.
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It is straightforward to check that the full conditional for the coefficient
vector is

β | Y, X, σ2, η ∼ N((X ′X + D−1R−1D−1)−1X ′Y, σ2(X ′X + D−1R−1D−1)−1),
(4)

where D = diag(
√

γjτ 2
1j + (1 − γj)τ 2

0j/σ). We note that (X ′X+D−1R−1D−1)

is positive definite, hence invertible, for any p.
The full conditional for the variance is instead:

σ2 | Y, X, β, η ∼ IG(
n + νγ

2
,
νγλγ + |Y − Xβ|2

2
) (5)

The latent variables η can instead be sampled from:

ηk|β, σ2 ∼ Bernoulli <
wka

wka + (1 − wk)b
>, (6)

where a = f(β | η−k, ηk = 1)f(σ2 | η−k, ηk = 1), b = f(β | η−k, ηk = 0)f(σ2 |
η−k, ηk = 0) and where η−k stands for the vector η to which the k-th compo-
nent was removed. It is interesting to note that the full conditional distribu-
tion of ηk does not depend on Y , since Y depends on η only through the vector
β. If we do not let νγ and λγ depend on γ, the parameter of the Bernoulli in

expression (6) further simplyfies to
f(β|η−k,ηk=1)wk

f(β|η−k,ηk=1)wk+f(β|η−k,ηk=0)(1−wk)
. Finally,

γj is set equal to the specified function of the vector η.
Even if exploration of all the possible models is not usually feasible,

George and McCulloch (1993) note that the fraction of models explored by
the MCMC sampling, albeit small, is large enough to narrow down the search
for promising variables to be included in the model, and hence for promising
models. That is, the models we never see are models we are not interested
in.

Note that in general our approach does not involve any transdimensional
sampling. There is the possibility to implement more efficient sampling
strategies like the one described in Clyde and Parmigiani (1994); Madigan and York
(1995); Geweke (1996); George and McCulloch (1997). We note that an ad-
ditional advantageous possibility is given by the use of adaptive rejection
sampling (Gilks and Wild, 1992), which is known to perform well when there
is possible multi-modality of the posterior (as in our case for the marginal
posteriors of the β parameters).
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2.4 Choice of prior parameters

For an informed choice of the prior variance of the coefficients, the same
comments in George and McCulloch (1997) apply here: let ∆i = ∆Y/∆Xi,
where ∆Y is the size of an insignificant change in Y and ∆Xi the size of a
maximum feasible change in Xi. ∆i is usually referred to as the “threshold of
practical significance”, since it is believed that whenever |βi| ≤ ∆i then there
is negligible linear relationship between Xi and Y . One can then choose the
prior variance so that ∆2

i = log(τ 2
1i/τ

2
0i)/(1/τ 2

0i−1/τ 2
1i), and τ 2

1i is large enough.
In general we want to set τ 2

0i small enough so to ensure a posterior estimate
close to zero whenever the variable is not relevant in the model, and τ 2

1i big
enough so to avoid too much shrinkage towards zero of the posterior estimate
if the variable is in fact relevant. The value of τ 2

1i depends then on the order
of magnitude of Xi. We have to note however that setting τ 2

0i/τ
2
1i too small

may slow down the convergence of the MCMC chain, so a long burn-in may
be recommended in order to get accurate estimates of β. Standardization can
also be used in order to allow for smaller values of τ 2

1i. A different possibility
is given by setting τ0i

∼= 0 and τ1i large (diffuse prior). This is along the
lines of the “spike and slab” approach described in Mitchell and Beauchamp
(1988), who put a prior probability mass at zero (i.e., τ 2

0i = 0). If τ 2
0i is

exactly zero, or too close, then different sampling strategies (for instance,
MC3) may be adopted in order to avoid computational problems and assure
convergence of the chain. See for instance Carlin and Chib (1995); Geweke
(1996).

If there is no prior information about the probability of inclusion of each
group, wk can be chosen as the indifference probability wk = 0.5. In models
with a very large number of predictors, lower values may be more appropriate
in order to give higher support to more parsimonius models. For the same
reason, another possible choice is anyway to let wk decrease with the size of
the group. If we set equal to p1 the probability of inclusion of a singleton,
the probability of inclusion of group Gk may be set equal to p

card(Gk)
1 . Note

that, due to the model specification, the inclusion of transformations and
interactions is directly penalized independently of the choice of wk. This
feature of the model enhances interpretability.

Two common choices are available for the prior correlation matrix. Prior
independence is often assumed, in which case R is the identity matrix. Pos-
terior correlations are shrunk towards zero. Another possibility is to have
R ∝ (X ′X)−1, in which case posterior correlations are equal to the design
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correlation. For further discussion see George and McCulloch (1997); Zellner
(1986).

Finally, νγ can be as usual interpreted as the prior sample size, and
νγλγ/(νγ − 2) as a prior estimate for σ2. One might let νγ and λγ depend
on γ, by having νγλγ/(νγ − 2) be decreasing with respect to

∑

γj , since it is
expected that models in which a larger number of variables is included will
be characterized by a smaller residual variance.

2.4.1 Default Priors

Since the main aim of this paper is to cast constrained variable selection in a
simple and computationally efficient framework, we proposed the hierarchical
model in its simplest form. Such model can be easily generalized to allow for
general priors, and additional levels in the hierarchy can be used in order to
learn prior parameters.

A particularly relevant setting though is the one given by the use of
default priors. The common approach is to combine an improper prior for
the intercept and variance of the error term with Zellner’s g-prior (Zellner,
1986), thereby having π(σ) ∝ σ−1 and fixing R = σ2(hX ′X)−1. This would
result in a variable specific g-parameter gj, set equal to h/(γjτ1jr+(1−γj)τ

2
0j).

The tuning parameter h can be chosen so that gj is equal to one between 1/n,
1/p2, or the smallest between the two. See Fernandez et al. (2001) for further
discussion. Liang et al. (2005) suggest moreover a class of hyperpriors for g
which still allow for closed form expressions for the marginal likelihoods. In
a similar spirit an hyperprior can be put on wk as suggested by Ley and Steel
(2007).

2.5 Alternative approaches to model choice

Common approaches to model choice rely on the posterior probability of
each possible vector γ. Of course, one could simply compute the posterior
expected predictive loss corresponding to each model and minimize, but the
computational burden (taking the expectation also with respect to future
predictors) may be too heavy. From a predictive point of view, it has re-
cently been shown by Barbieri and Berger (2004) that the median model,
that is, the model in which only variables with posterior probabilities above
1
2

are included, provides often better predictions than the model with highest
posterior probability. Barbieri and Berger (2004) show this result either in
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an orthogonal setting, or under conditions that are not very general; but note
that the median model is always promising and the only one satisfying op-
timality results in this sense. They also show that grouped and hierarchical
variable selection satisfies the graphical model structure, and thus the me-
dian model will always be in the class of possible models. On the other hand,
for certain choices of anti-hierarchical constraints, the collection of possible
models may violate their condition, and the median model may be outside
of the collection. In that case one has to choose the model with highest
posterior probability.

Another particularly simple and effective method for model selection is
suggested in Madigan and Raftery (1994). Invoking the principle of parsi-
mony and Occam’s razor, Madigan and Raftery (1994) suggest discarding all
the models for which there is a submodel receiving higher posterior proba-
bility, which is particularly appropriate in the setting of hierarchical variable
selection.

In the end, assuming the collection satisfy the graphical model structure,
this is the novel backward strategy we suggest for model choice:

1. Find the median model. Call it M0.

2. Set i := 0.

3. Consider all the models nested in Mi.

4. If no nested model receives higher posterior support than Mi, the final
choice is Mi.

5. If there are nested models receiving higher posterior probability than
Mi, consider the one receiving highest posterior probability among
them. Call it model Mi+1. Set i := i + 1.

6. Go to step 3.

This strategy can be applied also in the case of unconstrained variable selec-
tion.

Even if we focus here on model choice, we also give some considerations
on model averaging (Clyde, 1999; Hoeting et al., 1999). If prediction rather
than model choice is the primary goal, it may be more appropriate to use
a weighted average of the predictions obtained by conditioning on each pos-
sible model; with weight given by the posterior probability of the model.
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Constraints may be still useful for at least two reasons: first, a model that is
known a-priori not to hold should receive zero posterior probability. Secondly,
while many hierarchical constraints would probably be abandoned in model
averaging, it may still be appropriate to use anti-hierarchical constraints.

3 Frequentist Properties

We prove in this section certain relevant consistency results for Bayesian
variable selection. We point out that these results hold for Bayesian variable
selection methods both in the constrained and in the unconstrained case.

Theorem 1. Assume (X ′X)/n → C, where C is positive definite. We
use a short hand notation of M0 for the γ vector corresponding to the true
model and Mme|Y for the vector corresponding to the posterior median model.
Assume the true and median model are included in the collection of possible
models. Fix wk > 0, τ 2

0j < τ 2
1j and

(1 − wk)τ
2
1j > wkτ

2
0j (7)

for all k = 1, . . . , g and j = 1, . . . , p. Let νγ and λγ do not depend on γ.
Assume also the prior correlation R is such that β∗

j r
−1
ij β∗

i ≥ 0 for any i

and j, where r−1
ij is the ij-th element of R−1 and β∗ is the vector of true

parameters. Then,
lim

n→∞
Pr(Mme = M0|Y ) = 1.

If, further, we let maxj τ0j
n→ 0, then

lim
n→∞

Pr(M0|Y ) = 1.

Proof. Proof in Appendix A

The Theorem implies that with minor restrictions on the prior parameters
the posterior median model will eventually coincide with the right model, and
that the true model will receive posterior probability approaching 1 in the
“spike and slab” setting.

The condition (7) of Theorem 1 can be restated in many different con-
venient ways. A particularly interesting equivalent expression is 0 < wk <

minj
τ2
1j

τ2
1j+τ2

0j

, which shows that when τ 2
0j << τ2

1j there is very little restric-

tion on the available choices for wk. Common choices of wk ≤ 0.5 satisfy
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condition (7) for any τ1j > τ0j . On the other hand, the condition on R
cannot be practically checked, since it depends on the true parameters. It
is a sufficient condition requiring coherency between prior beliefs and truth,
and could be removed with some restrictions on the magnitude of the prior
correlations. Nevertheless, it is straightforward to check that the common
choices satisfy the condition: R = I satisfies the condition for any finite n;
and R ∝ (X ′X)−1 works asymptotically, which suffices for Theorem 1.

For consistency of the model with highest posterior probability we need
to let τ0j decrease to zero. As we pointed out above, there are no particular
problems even in setting τ0j = 0 for all n, if one uses an appropriate sampling
algorithm.

It is particularly surprising that the results hold without further condi-
tions on X. For instance, orthogonality or other restrictions are needed to
prove that the median model is optimal for prediction. The theorem provides
in many senses weaker results.

Consistency of the model receiving highest posterior probability has been
known for long in the literature. For instance, results dating back at least
to Berk (1966), together with Dmochowski (1996), show that under mild
conditions common Bayesian methods will choose the right model if it is in
the collection, or the closest to the right one in terms of Kullback-Leibler
divergence.

To our knowledge consistency results for the median model are instead
new also for the case of unconstrained variable selection.

4 Simulations

In order to check the ability of the constrained setting to pick the right model,
and prior sensitivity, we simulate different scenarios. First, we generate six
covariates X1, . . . , X6 from standard normals, and the response from the
following model:

Y = 1.5X1 + 2X2 + X3 − 1.5X2X3 + ε, (8)

where ε ∼ N(0, 9). The sample size is taken to be n = 250.
We consider the possibility to include any of the six available covariates,

and any of the 15 possible bivariate interactions.
We set wk = 0.5, R to be an identity matrix, and calibrate prior variance

parameters to be distant: we set τ 2
0 = 0.0625 and τ 2

1 = 1000.
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Scenario Correct
Scenario 1 0.93
Scenario 2 0.92
Scenario 3 0.96
Scenario 4 0.93
Scenario 5 0.94
Scenario 6 0.66
Scenario 7 0.91

Table 1: Percentage of correct model selection under different scenarios.

We generate the data and use the strategy in Section 2.5 for model choice
for B = 300 iterations. Percentage of correct model choice is reported in the
Scenario 1 row in Table 1.

In Scenario 2 we still simulate from model (8), but also impose an anti-
hierarchical constraint between X4 and X6. In Scenario 3 we impose two
anti-hierarchical constraints, one between X5 and X2, and another between
X4 and the interaction between X2 and X3. Note that this implies also an
anti-hierarchical constraints between X5 and the interaction.

The third setting is different from the second in that we impose anti-
hierarchical constraints between a variable in the true model and one outside.
As can be seen from Table 1, this raises the percentage of correct decision,
while anti-hierarchical constraints between variables not included in the true
model do not seem to have a significant effect.

In Scenario 4 we use the same constraints as in Scenario 1, but set X4 as
X4 = X5 + ε2, where ε2 ∼ N(0, 0.01). This introduces a strong collinearity
in the design matrix, but does not seem to alter the ability of the algorithm
to choose the right model.

In Scenario 5 we use the same hierarchical constraints as Scenario 1, and
also impose grouping constraints between X2 and X3, and between X5 and
X6.

In Scenario 6 we simulate as in Scenario 1 from model (8), only we consider
25 possible covariates and all their bivariate interactions, ending up with
p = 325 > n = 250. This is seen to decrease the probability of correct model
selection. If nevertheless we use τ1 = 100 and τ0 = 0.05 (Scenario 7) the
probability of correct model selection raises again (See Table 2 below).

In summary, putting (the right) constraints narrows down the search for
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the true model.
Finally, in order to evaluate the effect of the choice of prior parameters,

we simulate from Scenario 1 but we try different values for τ1 and τ0. Results
for B = 100 iterations for different combinations of prior parameters are
given in Table 2.

We note that a certain degree of dependence on prior choice is well known
in Bayesian variable selection, and confirmed by the simulation. Further,
τ1/τ0 should not be too high.

In conclusion, there is an effect of prior parameters, but a reasonable
range of choices lead to choose the correct model with high probability.

τ1 = 5 τ1 = 10 τ1 = 100 τ1 = 200 τ1 = 500 τ1 = 1000
τ0 = 0.1 1.00 1.00 0.90 0.83 0.75 0.59
τ0 = 0.05 0.99 1.00 1.00 1.00 1.00 0.98
τ0 = 0.02 0.98 0.98 1.00 1.00 1.00 0.99
τ0 = 0.005 0.97 0.99 0.99 0.99 1.00 1.00
τ0 = 0.001 0.96 0.97 0.98 0.98 0.99 1.00

Table 2: Percentage of correct model selection under Scenario 1 with different
priors.

4.1 Birthweight data

We illustrate the model on the birthweight data set from Hosmer and Lemeshow
(1989).

We have n = 189 observations collected by Baystate Medical Center,
Springfield, Massachusetts during 1986. Response is weight at birth, and we
have information about mother’s age, weight at last menstrual period, race
(white, black, other), smoking status during pregnancy, number of previous
premature labours, hypertension in the past, uterine irritability and number
of physician visits during the first trimester. We consider transformations
of numerical variables up to the fourth power, and all possible bivariate
interactions; imposing the natural hierarchical constraints. We also have
grouping constraints, since we adopt a corner point parameterization for
race.
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After a burn-in of 50000 iterations we let the Gibbs sampler run for
another 50000. The selected model is:

E[Y |X] = weight + weight2 + race + uterine irritability +

+hypertens + smoke + hypertens ∗ race.

In this example, the median model and the model with highest posterior
probability coincide.

The same data were analyzed by Yuan and Lin (2006). The selected
model substantially coincide with the one suggested by Yuan and Lin (2006),
and we also agree in identifying number of visits as the less important covari-
ate (posterior probability: 0.25) and uterine irritability as the most important
(posterior probability: 0.92). On the other hand, we include hypertension
and weight. Yuan and Lin (2006) considered weight, its square and its cube
as a group, concluding it was not important. By imposing hierarchical con-
straints on the transformation we find that the cube should be very likely
excluded, having marginal posterior probability of 0.003. Finally, we spec-
ulate the Bayesian hierarchical model selects hypertension because of the
presence of an interaction with race.

As seen, the posterior probability of included and excluded variables can
be easily evaluated from the MCMC output. We can also record the posterior
probability of each sampled model, and plot it in decreasing order. Results
are reported in Figure 2, and lead us to conclude that there is a moderate
uncertainty in model selection for these data: there does not appear to be a
sharp elbow between promising and less promising models, and the number
of models sampled at least once is high (872).

We also note that the model that would be chosen by stepwise methods is
rather different, and would not respect the hierarchical structure, for instance
including the squared weight without the original variable.

5 Extension to Generalized Linear Models

We illustrate now extension to Generalized Linear Models (GLM), see McCullagh and Nelder
(1989), also with an example. In GLM the response is assumed to belong to
the exponential family:

Y ∼ exp{yθ − b(θ)/a(φ) + c(y, φ)},
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Figure 2: Posterior probability of sampled models (decreasing order) for the
Birthweight data set.

with parameters θ and φ, and known functions a(·), b(·) and c(·, ·); and
a linear relationship is assumed with a function of the expectation of the
response:

g(E[Y |X]) = β0 +
∑

βkXk,

where g(·) is a specified “link function”.
It is straightforward to extend our framework to this setting by putting

the usual prior structure on the β parameters, and specifying additional pri-
ors on nuisance parameters if there are. As before a Gibbs sampler can be set
up to simulate from the posteriors. As pointed out by Dellaportas and Smith
(1993), also the adaptive rejection method can be used for all canonical link
functions (i.e., for g(·) = b

′−1(·)) and in certain other situations. In cases
in which the likelihood function may not be log-concave, one could use the
modified version in Gilks et al. (1995), which involves a Metropolis step.
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5.1 Titanic Data

We illustrate extension to GLM in the context of log-linear models, in which
a large number of high-order interactions naturally arise and in which the
hierarchical structure shall often be preserved.

Data come from British Board of Trade (1990), who recorded class (1st,
2nd, 3rd or Crew), Sex, Age (adult or child) and survival status for 2201
persons on board of the Titanic, in their investigation of the sinking. Interest
in these data stems from the fact that the “women and children first” policy
seem not to have been respected for the third class, as reflected by the survival
rates.

The class is recoded into three dummy variables (corner point reparam-
eterization), which are grouped, and the other three dummies form three
individual groups.

The saturated model includes all the main effects plus interactions up to
the fourth order, and can be formulated as:











Yijkh ∼ Poisson(λijkh)

log(λijkh) = β0 + β1class1i + . . . + β6survivalh

+β14class1i ∗ sexj + . . . + β3456class3i ∗ sexj ∗ agek ∗ survivalh.

We want to select a model nested in the saturated model, respecting a
hierarchical structure.

We fix τ0 = 0.045 and τ1 = 10 and fit the proposed log-linear model on
these data forcing a hierarchical structure, the presence of the main effect of
survival status; and allowing for interactions up to the fourth order. The pos-
terior median model and model with highest posterior probability coincide,
and agree in selecting a log-linear model with main effects, all second-order
interactions and all the third-order interactions except one between Sex, Age
and Survival.

There is very low uncertainty here in model choice. The selected model
has posterior probability 0.51, while the second most likely model only 0.20.

In order to further validate the model we use frequentist measures. The
chosen model has likelihood ratio test statistic 1.68, on 4 degrees of freedom
(p-value=0.79). The model with better likelihood ratio test statistic with all
second-order interactions but only two of the four third-order interactions has
likelihood ratio test statistic 21.95, on 7 degrees of freedom (p-value=0.003).
Moreover, stepwise methods would lead to select our same model in this case.
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5.2 Doctor Visits Data

GLM with noncanonical link functions are often used in practice. We il-
lustrate here an example from the doctor visits data described in Chapter
3 of Cameron and Trivedi (1998). The response is the number of consulta-
tions with a doctor or specialist in the previous two weeks, and there are
nine predictors: sex, age, age squared, income, health insurance (recoded
with three dummy variables), number of illness in the previous two weeks,
number of days of reduced activity in the pat two weeks because of illness,
general health questionnaire score using Goldberg’s method, chronic condi-
tions (recoded with two dummy variables). There are n = 5190 observations.
The categorical variables make groups, and there is a hierarchical constraint
between age and age squared.

The data were analyzed also in Wang and George (2007), who propose
the following model:

f(yi|µi, α) =
Γ(yi + α−1)

Γ(yi + 1)Γ(α−1)

(

α−1

α−1 + µi

)α−1 (

µi

α−1 + µi

)yi

with (noncanonical) log link function for the mean µj. The dispersion pa-
rameter α is fixed as its estimated value under the full model.

After MCMC sampling with 20000 iterations and a burn-in of 10000 the
median model and the model receiving highest posterior probability coin-
cide; and select sex, age, age squared, illness, days of reduced activity and
health score. These results are perfectly in agreement with Wang and George
(2007), with the only difference that the model chosen with their preferred
method contains the squared age alone in the model, as there is no require-
ment for a hierarchical structure, while we choose both age and its square
because of our constraints.
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A Proof of Theorem 1

We begin with one preparatory lemma:

Lemma 1. Suppose wk > 0 for all k, let Mk be an indicator of the k-th
model, with k = 0, . . . , 2p − 1. Let XMk

denote the matrix made of the
columns of X corresponding to the variables selected in model Mk, and as-
sume 1

n
X ′

Mk
XMk

→ CMk
, where CMk

is positive definite. Denote also with
β∗

Mk
the subvector of β∗ with components corresponding to the variables se-

lected in model Mk. Note also that with β | Mk we refer to the subset of pa-
rameters included in model Mk. We have that there exist a product measure
P∞

Mk
on (R∞,B(R∞)) such that there exist Ω ∈ B(R∞)), of P∞

Mk
-probability

1, such that: √
n(β | Mk, Y − β∗

Mk
)

d→ N(0, σ2C−1
Mk

).

Further, √
n(E[β | Mk, Y ] − β∗

Mk
)

d→ N(0, σ2C−1
Mk

),

where note that E[β | Mk, Y ] is a random variable as a function of Y .

Proof. It is well known (see for instance Gelman et al. (1995)) that the poste-
rior for β | Mk, Y can be asymptotically approximated by a N(β∗

Mk
, J(β∗

Mk
)−1),

where J(β∗) = (X ′
Mk

XMk
)/σ2

Mk
is the Fisher information; provided only that
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(i) β is not on the boundary of the parameter space, which is unbounded
in our model, and (ii) the likelihood is a continuous function of β. By as-
sumptions we have that limn J(β∗

Mk
)/n = CMk

/σ2. The second result follows
immediately.

Note that since τ1j > 0 and wk > 0, we essentially are considering the
model with all the variables inside. Lemma 1 implies that we have

βj|Y P→ β∗. (9)

We will repeatedly use the fact that if each element of a finite dimensional
vector of random variables converges in probability, then also the vector will
converge (see e.g. (Ferguson, 1996, Theorem 6’)).

Without loss of generality, let νγ and λγ not depend on γ; and suppose
Gk0 is a “father” group, that is, a group of variables for which there are no
hierarchical constraints:

∏∏

δj(i)φk0(i) = 0. Suppose for simplicity there
are no anti-hierarchical constraints in the model.

It is straightforward to check that Pr(ηk0 = 1|Y ) =
∫

Pr(ηk0 = 1|β)dF (β|Y ).
Let the prior correlation R be the identitity matrix. With straightforward
computations it can be proved that:

Pr(ηk0 = 1|β) =

wk0

p
∏

j=1

(

1/τ1je
− 1

2τ2
1j

β2
j

)φk0
(j)

wk0

p
∏

j=1

(

1/τ1je
− 1

2τ2
1j

β2
j

)φk0
(j)

+ (1 − wk0)
p
∏

j=1

(

1/τ0je
− 1

2τ2
0j

β2
j

)φk0
(j)

=
1

1 +
1−wk0

wk0

p
∏

j=1

(

τ1j

τ0j
e

β2
j
2

(τ2
0j

−τ2
1j

)

τ2
0j

τ2
1j

)φk0
(j)

.

If the prior correlation is an arbitrary positive definite matrix, it can be
then seen that this only adds an exponential term:

1

1 +
1−wk0

wk0

p
∏

j=1

(

τ1j

τ0j
e

β2
j
2

(τ2
0j

−τ2
1j

)

τ2
0j

τ2
1j

)φk0
(j)

∑

η

∏

j:φk0
(j)=1

∏

i6=j

e
1
2
βj

(τ0j−τ1j )

τ0jτ1j
r−1
ji

βi
γiτ1i+(1−γi)τ0i P (η|ηk0 = 1)

,

where r−1
ji is the ji-th element of R−1, and we average over all the possible

allowed configurations for η (recall that γi is function of the vector η).
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Suppose now that the k0-th group is not to be included in the true model.
This implies that β∗

j = 0 for all variables belonging to group Gk0. We need

to prove that Pr(ηk0 = 1 | Y ) < 1/2 asymptotically. By (9), βj
P→ 0 for all

j such that φk0(j) = 1. It is then straightforward to see that Pr(ηk0 = 1|Y )
converges to:

1

1 +
1−wk0

wk0

∏

j:φk0
(j)=1

(

τ1j

τ0j

) . (10)

The parameters are tuned by hypothesis so that the previous expression is
below 1/2.

If the group corresponding to ηk0 must be included in the true model,
then β∗

j 6= 0 for at least one variable belonging to group Gk0. Let j0 be one
of the indices for which β∗

j 6= 0. We need to prove that Pr(ηk0 = 1 | Y ) > 1/2
asymptotically.

Define

θj =
∑

η

∏

i6=j

e
1
2
β∗

j

(τ0j−τ1j )

τ0jτ1j
r−1
ji

β∗

i
γiτ1i+(1−γi)τ0i P (η|ηk0 = 1).

Since by hypothesis β∗
j r

−1
ij β∗

i ≥ 0 for every i and j, it is seen that θj ≤ 1 for
every j. We then have:

Pr(ηk0 = 1 | Y ) → 1

1 +
1−wk0

wk0

∏

j:φk0
(j)=1

(

τ1j

τ0j

)

∏

j:φk0
(j)=1∩β∗

j 6=0

e

(β∗

j
)2

2

(τ2
0j

−τ2
1j

)

τ2
0j

τ2
1j θj

(11)

≥ 1

1 +
1−wk0

wk0

∏

j:φk0
(j)=1∩β∗

j 6=0

(

τ1j

τ0j

)

e

(β∗

j
)2

2

(τ2
0j

−τ2
1j

)

τ2
0j

τ2
1j

≥ 1

1 +
(1−wk0

)τ1j0

wk0
τ0j0

∏

j:φk0
(j)=1∩β∗

j 6=0

e

(β∗

j
)2

2

(τ2
0j

−τ2
1j

)

τ2
0j

τ2
1j

,

where at the first step we used the fact that θj ≤ 1 and then repeatedly used
the condition that τ 2

0j ≤ τ 2
1j .
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Last expression is not smaller than 1/2 if and only if

(1 − wk0)τ1j0

wk0τ0j0

∏

j:φk0
(j)=1∩β∗

j 6=0

e

(β∗

j )2

2

(τ2
0j−τ2

1j )

τ2
0j

τ2
1j < 1/2 ⇐

∏

j:φk0
(j)=1∩β∗

j 6=0

e

(β∗

j )2

2

(τ2
0j−τ2

1j )

τ2
0j

τ2
1j < 1 ⇔

∑

j:φk0
(j)=1∩β∗

j 6=0

(β∗
j )

2

2

(τ 2
0j − τ 2

1j)

τ 2
0jτ

2
1j

≤ 0 ⇐

τ 2
0j ≤ τ 2

1j ,

which is true by hypothesis. Note that at the second step we used condition
(7).

The same results directly follow also for groups for which there are vari-
ables with hierarchy constraints, since the probability of selecting the group
will only have additional multiplicative terms depending on the probabiliy
of selecting the groups in which there are the father variables. Similarly,
anti-hierarchical constraints will only lead to the presence of additional mul-
tiplicative terms depending on the probability of not selecting groups in which
there are the corresponding variables.

The thesis follows: Pr(Mme = M0|Y ) → 1.
To prove the second part, note that τ0j

∼= 0 implies that whenever ηk = 0
all the corresponding βs are zero with probability approaching 1.

By looking at expressions (10) and (11), it is straightforward to check
that Pr(ηk = 1|Y ) converges to 1 if the k-th group shall be included in the
final model and to 0 otherwise since τ0j is infinitesimal.

Without loss of generality assume the true model M0 is identified by the
inclusion in the model of the first k0 groups and exclusion of the remaining
groups.

lim
n

Pr(M0|Y ) = lim
n

Pr(∩k0
k=1ηk = 1 ∩g

k=k0+1 ηk = 0|Y ), (12)

and the right hand side converges to 1 because each element of the vector
converges.
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B Sample WinBUGS Code for Example 1

model

{

for(j in 1:N) {

Y[j] ~ dnorm(mean[j] , S);

mean[j] <- beta0 + beta1*X[j,1]+ beta2*X[j,1]*X[j,1]

+ beta3*X[j,2] + beta4*X[j,2]*X[j,2] + beta5*X[j,1]*X[j,2];

}

beta0 ~ dnorm(0, tau1);

p1 <- (1-eta1)*tau0+eta1*tau1;

eta1 ~ dbern( w1);

beta1 ~ dnorm(0, p1);

p2 <- (1-gamma2)*tau0+gamma2*tau1;

gamma2 <- eta1*eta2;

eta2 ~ dbern( w2);

beta2 ~ dnorm(0, p2);

p3 <- (1-eta3)*tau0+eta3*tau1;

eta3 ~ dbern( w3);

beta3 ~ dnorm(0, p3);

p4 <- (1-gamma4)*tau0+gamma4*tau1;

gamma4 <- eta3*eta4;

eta4 ~ dbern( w4);

beta4 ~ dnorm(0, p4);

p5 <- (1-gamma5)*tau0+gamma5*tau1;

gamma5 <- eta1*eta3*eta5;

eta5 ~ dbern( w5);

beta5 ~ dnorm(0, p5);

S ~ dchisqr( ds );

}
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