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Abstract

Given an i.i.d. sample {(Xi, Yi)}i∈{1,...,n} from the random design regression
model Y = f(X) + ε with (X,Y ) ∈ [0, 1]× [−M,M ], in this paper we consider
the problem of testing the (simple) null hypothesis “f = f0”, against the alter-
native “f 6= f0” for a fixed f0 ∈ L2([0, 1], GX), whereGX(·) denotes the (known)
marginal distribution of the design variable X. The procedure proposed is an
adaptation to the regression setting of a multiple testing technique introduced
by Fromont and Laurent [5], and it amounts to consider a suitable collection
of unbiased estimators of the L2–distance d2(f, f0) =

∫
[f(x)− f0(x)]2dGX(x),

rejecting the null hypothesis when at least one of them is greater than its
(1 − uα) quantile, with uα calibrated to obtain a level–α test. To build these
estimators, we will use the warped wavelet basis recently introduced by Picard
and Kerkyacharian [7]. We do not assume that the errors are normally distri-
buted, and we do not assume that X and ε are independent but, mainly for
technical reasons, we will assume, as in most part of the current literature in
learning theory, that |f(x)− y| is uniformly bounded (almost everywhere). We
show that our test is adaptive over a particular collection of approximation
spaces linked to the classical Besov spaces.

1. Introduction
Consider the usual nonparametric regression problem with random de-

sign. In this model we observe an i.i.d. sample Dn = {Zi = (Xi, Yi)}i∈{1...n}
from the distribution of a vector Z = (X,Y ) where

Y = f(X) + ε, (1)

for (X, ε) a random vector with E(ε|X) = 0 and E(ε2|X) < ∞ almost surely.
The regression function is known to belong to a subset F of L2([0, 1], GX)
for GX the marginal distribution of X, which will be assumed known. Let
f0 ∈ F be fixed. In this paper we consider the problem of testing the (simple)
null hypothesis “H0 : f = f0” against the alternative “H1 : f 6= f0”. Since f ∈
L2([0, 1], GX), it seems natural to consider a test statistic somehow linked to an
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estimator of the (weighted) L2–distance d2(f, f0) =
∫

[f(x)− f0(x)]2dGX(x).
The approach considered in the present paper is an adaptation to the regression
setting with random design of the work by Fromont and Laurent (2006) for
density models, and it amounts to consider a suitable collection of unbiased
estimators for d2(f, f0), rejecting the null hypothesis when at least one of them
is greater than its (1 − uα) quantile, with uα calibrated to obtain a level–α
test. Similar problems have been widely studied in the testing literature. See,
for example, the nice review provided by Hart [6]. From a more theoretical
point of view, Spokoiny [10] considers a Gaussian white noise model dX(t) =
f(t)dt+ εdW (t), and propose to test “f ≡ 0” adaptively using a wavelet based
procedure. He also study the (asymptotic) properties of his approach and show
that, in general, adaptation is not possible without some loss of efficiency of
the order of an extra log log(n) factor, where n is the sample size. In the
same setting, Ingster (see Ingster and Suslina [8]) builds an adaptive test based
on chi–square statistics, and study its asymptotic properties. The literature
regarding goodness–of–fit testing in a density model is also vast (see [5] and
references therein).

The pre–testing approach considered here has been initiated by Baraud,
Huet and Laurent [2] for the problem of testing linear or qualitative hypotheses
in the Gaussian regression model. One nice feature of their approach is that
the properties of the procedures are non asymptotic.

2. A Goodness–of–Fit Test
Consider again the regression model in Equation 1. We do not assume

that the errors are normally distributed, and we do not assume that X and ε
are independent but, mainly for technical reasons, we will assume, as in most
part of the current literature in learning theory (see Cucker and Smale [3]), that
|f(x)−y| is uniformly bounded (almost everywhere) by a positive constant M .
Doing so, all the proofs will be greatly simplified without moving too far away
from a realistic (although surely not minimal) set of assumptions (in particular
considering the finite–sample scope of the analysis). What we propose is a
goodness–of–fit test similar to the one introduced in [5]. To describe it, let
f0(·) be some fixed function in L2([0, 1], GX) and α ∈ (0, 1). Now suppose that
our goal is to build a level–α test of the null hypothesis H0 : f ≡ f0 against
the alternative H1 : f 6= f0 from the data {Zi}i∈{1,...,n}. The test is based on
an estimation of

‖f − f0‖2
L2(GX) = ‖f‖2

L2(GX) + ‖f0‖2
L2(GX) − 2〈f, f0〉L2(GX).

Since the last (linear) term 〈f, f0〉L2(GX) can be easily estimated by the empi-
rical estimator 1

n

∑n
i=1 Yi f0(Xi), the key problem is the estimation of the first

term ‖f‖2
L2(GX)

. Adapting the arguments in Laurent [9], we can consider an
at most countable collection of linear subspaces of L2([0, 1], GX) denoted by
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S = {Sk}k∈K. For all k ∈ K, let {e`}`∈Ik
be some orthonormal basis of Sk.

The estimator

θ̂n,k =
1

n(n− 1)

n∑
i=2

n−1∑
j=1

[∑
`∈Ik

{
Yie`(Xi)

}
·
{
Yje`(Xj)

}]
, (2)

is a U–statistic of order two for ‖ΠSk
(f)‖2

L2(GX)
– where ΠSk

(·) denotes the
orthogonal projection onto Sk – with kernel

hk(z1, z2) =
∑
`∈Ik

{y1e`(x1)} · {y2e`(x2)}, zi = (xi, yi), i ∈ {1, 2}.

Then, for any k ∈ K, ‖f − f0‖2
L2(GX)

can be estimated by

R̂n,k = θ̂n,k + ‖f0‖2
L2(GX) −

2
n

n∑
i=1

Yi f0(Xi). (3)

Now that we have an estimator R̂n,k, lets denote by rn,k(u) its 1 − u
quantile under H0, and consider

uα = sup
{
u ∈ (0, 1) : P⊗n

f0

[
sup
k∈K

{
R̂n,k − rn,k(u)

}
> 0

]
6 α

}
,

where P⊗n
f0
{·} is the law of the observations {Zi}i∈{1,...,n} under the the null

hypothesis. Then introduce the test statistics Rα defined by

Rα = sup
k∈K

{
R̂n,k − rn,k(uα)

}
,

so that we reject the null whenever Rα is positive.
This method amounts to a multiple testing procedure. Indeed, for all

k ∈ K, we construct a level–uα test by rejecting H0 : f ≡ f0 if R̂n,k is greater
than its (1− uα) quantile under H0. After this, we are left with a collection of
tests and we decide to reject H0 if, for some of the tests in the collection, the
hypothesis is rejected.

3. Power of the Test
Both the practical and theoretical performances of the proposed test,

depend strongly on the orthogonal system we adopt to generate the collection
of linear subspaces {Sk}k∈K. A basis that fit perfectly in the present framework,
is the so–called warped wavelet basis studied by Kerkyacharian and Picard [7].
The idea is to start from a standard wavelet basis {ψ(·)j, k}(j,k) and build
by composition a new system {ψj,k(G(·))}(j,k), where G(·) is adapting to the
design: it may be the distribution function of the design GX(·) itself, or its
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estimation when it is unknown. An appealing feature of this method is that it
does not need a new algorithm to be implemented.

At this point, for each J ∈ N, we have a system of scaling functions
{φJ,k(G)}k that we can use to generate the subspaces S = {SJ}J∈N where we
have slightly changed the indexing notation: from k to J.

The following theorem, describes the class of alternatives over which the
test has a prescribed power.

Theorem 3.1 Let {Zi = (Xi, Yi)}i∈{1,...,n} be an i.i.d. sequence from the
distribution of a vector Z = (X,Y ) described structurally by the nonparametric
regression model

Y = f(X) + ε,

for (X, ε) a random vector with E(ε|X) = 0 and E(ε2|X) < +∞. Assume furt-
her that f0(·) and the unknown regression function f(·) belong to L2([0, 1], GX)
for GX(·) the marginal distribution of X, assumed know and absolutely conti-
nuous with density gX(·) bounded from below and above. Finally assume that
|f(x)− y| is uniformly bounded (almost everywhere) by a positive constant M .

Now let β ∈ (0, 1). For all γ ∈ (0, 2), there exist positive constants
C1 ≡ C1(β) and C2 ≡ C2(β, γ, τ∞,M, ‖f0‖∞) such that, defining

Vn,J(β) =
C1

n

{
τ∞ ·

√
2J +

M2

n
2J

}
+
C2

n
,

with τ∞ = ‖f‖2
∞ + ‖σ2‖∞, then, for every f(·) such that

‖f − f0‖2
L2(GX) > (1 + γ) inf

J∈Jn

{
‖f −ΠSJ(f)‖2

L2(GX) + rn,J(uα) + Vn,J(β)
}
,

the following inequality holds: P⊗n
f

{
Rα 6 0

}
6 β.

4. Uniform Separation Rates
Now that we know against what kind of alternatives our multiple testing

procedure has guaranteed power, we can move on, and examine the problem of
establishing uniform non–asymptotic separation rates (see Ingster and Suslina
[8] and Baraud [1]) over well–suited functional classes included in L2([0, 1], GX).
We will start by defining for all s > 0, R > 0, and M > 0, the following (linear)
approximation space (see the review by Devore [4]):

As(R,M,GX) =
{
w ∈ L2(GX) : ‖w‖∞ 6 M, ‖w−ΠSJ(w)‖2

L2(GX) 6 R22−2J s
}
.

When dGX(x) = dx is the Lebesgue measure, As(R,M,dx) is strictly related
to a well–known Besov body. In our case, instead, it is a bit less clear how
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to “visualize” the content of As(R,M,GX) in terms of common smoothness
classes. The easiest way, is to notice that, for each w ∈ L2([0, 1], GX)

‖w −ΠSJ(w)‖2
L2(GX) =

∥∥w(G−1
X )−ΠSJ

(
w(G−1

X )
)∥∥2

L2(dx)
,

where
G−1

X (x) = inf{t ∈ R : GX(t) > x}
is the quantile function of the design distribution GX(·). Consequently,

f ∈ As(R,M,GX) ⇔ f(G−1
X ) ∈ As(R,M,dx),

so that the regularity conditions that hide behind the definition of the appro-
ximation space As(R,M,GX) could be expressed more explicitly in terms of
the warped function f ◦ G−1

X (·), mixing the smoothness of f(·) with the (very
regular, indeed) design GX(·) (see [7]).

From here we can prove that, under suitable conditions, our procedure
adapts over the approximation space As(R,M,GX) at a rate known to be
optimal for a particular scale of Besov spaces (Spokoiny [10]).
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