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Abstract

Fractional diffusion equations of order ν ∈ (0, 2) are examined and
solved under different types of boundary conditions. In particular, for the
fractional equation on the half-line [0, +∞) and with an elastic boundary
condition at x = 0, we are able to provide the general solution in terms of
the density of the elastic Brownian motion. This permits us, for equations
of order ν = 1

2n , to write the solution as the density of the process obtained
by composing the elastic Brownian motion with the (n− 1)-times iterated
Brownian motion. Also the limiting case for n → ∞ is investigated and
the explicit form of the solution is expressed in terms of exponential.

Moreover, the fractional diffusion equations on the half-lines [0, +∞)
and (−∞, a] with additional first order space derivatives are analyzed also
under reflecting or absorbing conditions. The solutions in this case lead to
composed process where only the driving one is affected from drift, while
the role of time is played by iterated Brownian motions.

Key words and phrases: Fractional diffusion equations; Iterated
Brownian motions; Mittag-Leffler functions; Elastic Brownian motion.
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1 Introduction

Fractional diffusion equations represent extensions of basic equations of math-
ematical physics (i.e. the heat and wave equations) and, in some sense, they
inherit their main qualitative features, which reverberate on the form of their
solutions. This kind of equations have been intensively studied since the Eight-
ies: see, for example, Schneider and Weyss (1989), Fujita (1990, I-II), Podlubny
(1999), Gorenflo et al. (2000).

Telegraph-type fractional equations have been studied and resolved under
different initial or boundary-value conditions by Beghin and Orsingher (2003),
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Orsingher and Beghin (2004), Saxena et al. (2006), Chen et al (2007), Zhang
(2007).

The relationship between initial-value problems for fractional equations and
the distribution of processes obtained composing independent Brownian motions
(or other processes) has been introduced in Orsingher and Beghin (2004) and
subsequently extended and applied in Orsingher and Beghin (2007).

We consider here time-fractional equations on half-lines subject to different
kinds of boundary conditions. Also in this case the corresponding stochastic
processes can be constructed explicitly by means of well-known processes, as
Brownian motion or stable processes.

A particularly interesting case is the fractional diffusion equation

∂νu

∂tν
= λ2 ∂2u

∂x2
, x, t > 0, (1.1)

for 0 < ν < 2, on the half line [0,+∞) subject to the elastic boundary condition
at x = 0

u(0, t) + γ
∂u(x, t)

∂x

∣∣∣∣
x=0+

= 0, γ < 0, (1.2)

where
∂u(x, t)

∂x

∣∣∣∣
x=0+

= lim
ε→0

u(ε, t)− u(0, t)
ε

and to the initial condition

u(x, 0) = δ(x− x0). (1.3)

The fractional derivative appearing in (1.1) must be understood in the
Dzherbashyan-Caputo sense, as

∂νu

∂tν
(x, t) =

{
1

Γ(m−ν)

∫ t

0
∂mu(x,z)

∂tm
dz

(t−z)1+ν−m , for m− 1 < ν < m
∂mu(x,z)

∂tm , for ν = m
,

where m− 1 = bαc
For γ = 0 condition (1.2) corresponds to an absorbing barrier, while, for γ →

∞ we get a reflecting behavior at x = 0. If we consider equations on half-lines
with rather general conditions like the elastic one (1.2), we are able to obtain
explicit solutions which can be interpreted as distributions of compositions of
processes. The role of the guiding process is played by the elastic Brownian
motion which adequately represents the heat diffusion on semi-infinite bars,
when an adiabatic and reflecting behavior of the heat flow is envisaged.

The explicit law of the elastic Brownian motion was obtained by means
of probabilistic arguments in Ito and McKean (1965) while in Gallavotti and
McKean (1972) some additional information on its behavior is given.

When the time-derivative is of fractional order a more analytic approach
must be used: we write the solution of (1.1) under the conditions (1.2)-(1.3),
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for 0 < ν ≤ 1, in terms of the Wright function

Wα,β(x) =
∞∑

k=0

xk

k!Γ(αk + β)
, α > −1, β > 0, x ∈ R,

as

uel
ν (x, t; x0, 0) (1.4)

=
1

λtν

∫ +∞

0

W−ν,1−ν(− y

λtν
){ e−

(x−x0)2

2(2λy)

√
2π(2λy)

+

− e−
(x+x0)2

2(2λy)

√
2π(2λy)

+ 2e−
(x+x0)

γ

∫ +∞

x+x0

ve−
v2

2(2λy)+
v
γ

√
2π(2λy)3

dv}dy

=
1

λtν

∫ +∞

0

W−ν,1−ν(− y

λtν
){ e−

(x−x0)2

2(2λy)

√
2π(2λy)

+

+
e−

(x+x0)2

2(2λy)

√
2π(2λy)

+
2
γ

e−
(x+x0)

γ

∫ +∞

x+x0

e−
v2

2(2λy)+
v
γ

√
2π(2λy)

dv}dy.

The kernel of (1.4) is the distribution pel(x, t; x0, 0) of an elastic Brownian
motion Bel on [0, +∞) with starting point at x = x0.

Clearly

pel(x, t;x0, 0)dx (1.5)
= Pr

{
Bel(t) ∈ dx

∣∣ B(0) = x0

}

= Pr
{

B(t) ∈ dx
∣∣ B(0) = x0

}
+ 2e−

(x+x0)
γ dx

∫ +∞

x+x0

ve−
v2
2t + v

γ

√
2πt3

dv

= Pr
{

+

B(t) ∈ dx

∣∣∣∣ B(0) = x

}
+

2
γ

e−
(x+x0)

γ dx

∫ +∞

x+x0

e−
v2
2t + v

γ

√
2πt

dv,

where B denotes the Brownian motion with absorbing barrier and
+

B the Brow-
nian motion with reflecting barrier.

The integrals in (1.5) represent the reflecting effect of the elastic boundary
condition. It is easy to check that (1.5) for γ →∞ becomes the distribution of
the reflecting Brownian motion.

For ν = 1
2n and λ2 = 2

1
2n−2 it is well known that the solution to

{
∂

1
2n u

∂t
1

2n
= 2

1
2n−2 ∂2u

∂x2

u(x, 0) = δ(x)

can be written as

u 1
2n

(x, t) =
1

(2t)
1

2n+1
W− 1

2n+1 ,1− 1
2n+1

(
− 2|x|

(2t)
1

2n+1

)
.
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and it has been proved in Orsingher and Beghin (2007) that it coincides with
the distribution of the n-times iterated Brownian motion

In(t) = B1(|B2(...|Bn+1(t)|...)|)

(where Bj , j = 1, ..., n + 1 are independent Brownian motions).
Therefore (1.4) can be interpreted as the distribution of

T el
n (t) = Bel(|In−1(t)|), t > 0

or, alternatively, in terms of free iterated Brownian motions emanating from the
sources placed at x = x0 and x = −x0 and from the continuum of sources on
the half-line (−∞,−x0) .

In light of (1.4) we can thus write that

Pr
{T el

n (t) ∈ dx
}

(1.6)
= Pr {In(t) ∈ dx|B1(0) = x0}+ Pr {In(t) ∈ dx|B1(0) = −x0}

+
2
γ

e−
(x+x0)

γ dx

∫ +∞

x+x0

e
v
γ Pr {In(t) ∈ dv|B1(0) = 0} .

Since γ < 0 the third term of (1.6) represents the contribution of negative
sources exerting their action in (x0 + x,∞) .

The effect of the elastic barrier is played by the sources with exponentially
decaying intensity distributed on (−∞,−x0) and this is similar to what happens
in the case of classical Brownian motion whose role is here played by the n-times
iterated Brownian motion.

It is also interesting to note that for ν = 1
2n and letting n →∞ the solution

(1.4) to equation (1.1) with the elastic boundary condition takes the following
simple form

lim
n→∞

uel
1

2n
(x, t; x0, 0) = e−2|x−x0| +

2γ + 1
2γ − 1

e−2|x+x0|, x, x0 > 0, (1.7)

which is an asymmetric function, does not integrate to one (because of the
partially absorbing nature of the elastic barrier at x = 0) and does not depend
on t.

Section 3 is devoted to different types of iterated processes (or compositions
of processes) constructed by means of the elastic Brownian motion and their
mutual relationships. In particular, we are able to show that the distribution of
Bel

1 (Bel
2 (t)), t > 0 (with starting point at x0 = 0) is the solution of

∂1/2u

∂t1/2
= 2

1
22
−2 ∂2u

∂x2

subject to the non-homogeneous boundary-value condition

u(0, t) + γ1
∂u(x, t)

∂x

∣∣∣∣
x=0+

+
2γ1

γ2
E 1

2 ,1

( √
t√

2γ2

)
= 0
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for γ1, γ2 < 0.
The Mittag-Leffler function appears also in the relationship between the

distributions of Bel
1 (Bel

2 (t)) and Bel
1 (|B2(t)|), which reads

Pr
{
Bel

1 (Bel
2 (t)) ∈ dx

}

=
1

2γ2
2

∫ t

0

Pr
{
Bel

2 (s) > 0
}

Pr
{
Bel

1 (|B2(t− s)|) ∈ dx
}

ds,

for x > 0, where

Pr
{
Bel

2 (s) > 0
}

=
1

2γ2
2s

E 1
2 ,0

(
1
γ2

√
s

2

)
,

for s > 0 and γ2 < 0. An analogous relationship holds also between Bel
1 (Bel

2 (...Bel
n+1(t)...))

and Bel
1 (Bel

2 (...|Bn+1(t)|...)).
A key role for the analysis of Bel

1 (Bel
2 (...Bel

n+1(t)...)), t > 0 is played by the
Laplace transform

∫ +∞

0

e−ηt Pr
{
Bel

1 (Bel
2 (...(Bel

n+1(t))...)) ∈ dx
}

dt (1.8)

=
dx2n+1e−2

1− 1
2n+1 η

1
2n+1 x

n+1∏
j=1

(
21− 1

2n−j+2 η
1

2n−j+2 − 1
γj

) , η > 0..

As γ1, γ2, ...γn+1 →∞ we get from (1.8) that

∫ +∞

0

e−ηt Pr {|B1(|B2(...|Bn+1(t)|...)|)| ∈ dx} dt (1.9)

=
dxe−2

1− 1
2n+1 η

1
2n+1 x

(
η
2

)1− 1
2n+1

and this shows that the absolute value of the n-times iterated Brownian motion
|In(t)| is just a particular case of the iterated elastic Brownian motion. More-
over from (1.9) it is clear that it converges in distribution, for n → ∞, to an
exponential r.v. with parameter 2 (compare with formula (3.12) of Orsingher
and Beghin (2007)).

In section 4 we analyze the fractional diffusion equation with drift µ

∂νu

∂tν
= λ2 ∂2u

∂x2
− µ

∂u

∂x
, x, t > 0, (1.10)

for 0 < ν < 2, either without any barrier or subject to the reflecting condition

λ2 ∂u(x, t)
∂x

∣∣∣∣
x=0+

− µu(0, t) = 0. (1.11)
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We also study the case where equation (1.10) is subject to an absorbing
condition

u(0, t) = 0. (1.12)

Moreover, the case of equation (1.10) on the half-line (−∞, a] , for a > 0,
and reflecting or absorbing conditions at point x = a is examined.

The solution to (1.10) without restricting barriers coincides with the distri-
bution of a process of the form

T µ
ν (t) = Bµ/λ (|T2ν(t)|) , t > 0,

where Bµ/λ is a Brownian motion with drift µ/λ independent from the process
T2ν , which is not affected by the drift.

2 Fractional diffusion equations subject to elas-
tic boundaries: general results

In this section we consider the time-fractional diffusion equation (1.1) on the
half line [0, +∞) subject to the elastic boundary condition (1.2) and the initial
condition (1.3). It is well-known (see Weyss (1986), Fujita (1990), Orsingher
and Beghin (2007)) that the solutions uν(x, t) to this kind of equations are non-
negative for 0 < ν ≤ 2 and can be interpreted as probability distributions since∫ +∞
−∞ uν(x, t)dx = 1.

Moreover their explicit form is given as

uν(x, t) =
1

2λtν/2
W− ν

2 ,1− ν
2

(
− |x|

λtν/2

)
. (2.1)

For the case 0 < ν ≤ 1 we have the following general result where the
solutions are expressed in terms of the transition density of the elastic Brownian
motion Bel(t), t > 0 running on the half-line (0, +∞) , which reads, for x, x0 > 0,

pel(x, t; x0, 0) (2.2)

=
e−

(x−x0)2

2t√
2πt

− e−
(x+x0)2

2t√
2πt

+ 2e−
(x+x0)

γ

∫ +∞

x+x0

ve−
v2
2t + v

γ

√
2πt3

dv.

Theorem 2.1
The solution to the Cauchy problem





∂νu
∂tν = λ2 ∂2u

∂x2 , x, t > 0
u(0, t) + γ ∂u(x,t)

∂x

∣∣∣
x=0+

= 0

u(x, 0) = δ(x− x0)

γ < 0 (2.3)
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for 0 < ν ≤ 1, is given by

uel
ν (x, t; x0, 0) (2.4)

=
1

λtν

∫ +∞

0

W−ν,1−ν(− y

λtν
)pel(x, 2λy;x0, 0)dy

=
∫ +∞

0

û2ν(y, t)pel(x, 2λy;x0, 0)dy

where by û2ν(y, t) we denote

û2ν(y, t) =
{

2u2ν(y, t), y > 0
0, y < 0 (2.5)

and u2ν(y, t) is the solution to
{

∂2νu
∂t2ν = λ2 ∂2u

∂y2

u(y, 0) = δ(y)
, y ∈ R, t > 0. (2.6)

Proof The general solution to (2.3) can be obtained by means of the method
of separation of variables, i.e. by assuming that u(x, t) = y(x)s(t). This leads
to the ordinary differential equations

1
λ2

dνs(t)
dtν

1
s(t)

=
d2y(x)
dx2

1
y(x)

= −β2, β ∈ R. (2.7)

By resolving (2.7) and taking into account the linearity of (1.1) we have the
general solution of (2.3) in the form

uν(x, t;x0, 0) =
∫ +∞

−∞
Eν,1(−λ2β2tν)

{
A(β)eiβx + B(β)e−iβx

}
dβ, (2.8)

where

Eν,1(x) =
∞∑

k=0

xk

Γ(νk + 1)
, ν > 0,

is the Mittag-Leffler function. For the linear ordinary fractional equations and
their solutions consult Podlubny (1999), Ch. V.

The elastic boundary condition (1.2) implies that

u(0, t) + γ
∂u(x, t)

∂x

∣∣∣∣
x=0+

=
∫ +∞

−∞
Eν,1(−λ2β2tν) {A(β) (iβγ + 1) + B(β) (−iβγ + 1)} dβ = 0

and thus
B(β) =

iβγ + 1
iβγ − 1

A(β). (2.9)

7



The initial condition (1.3) is satisfied if

A(β) =
1
2π

e−iβx0 (2.10)

and thus we obtain the following solution to problem (2.3) as

uel
ν (x, t; x0, 0) =

1
2π

∫ +∞

−∞
Eν,1(−λ2β2tν)

{
eiβ(x−x0) +

iβγ + 1
iβγ − 1

e−iβ(x+x0)

}
dβ.

(2.11)
The second integral in (2.11) can be worked out as

1
2π

∫ +∞

−∞
Eν,1(−λ2β2tν)

{
iβγ + 1
i(βγ + i)

e−iβ(x+x0)

}
dβ (2.12)

= [βγ + i = w]

=
2
γ

e−
(x+x0)

γ

∫ +∞

−∞

e−i w
γ (x+x0)

2πiw
Eν,1

(
−λ2tν

γ2

[
w2 − 1− 2iw

])
dw

+
1
γ

e−
(x+x0)

γ

∫ +∞

−∞

e−i w
γ (x+x0)

2π
Eν,1

(
−λ2tν

γ2

[
w2 − 1− 2iw

])
dw.

By taking into account the representation of the Mittag-Leffler function as
contour integral on the Hankel path Ha, the first term in the r.h.s. of (2.12)
becomes

2e−
(x+x0)

γ

γ

∫ +∞

−∞

e−i w
γ (x+x0)

2πiw

dw

2πi

∫

Ha

ezzν−1

zν + λ2tν

γ2 [w2 − 1− 2iw]
dz (2.13)

=
2e−

(x+x0)
γ

γ

∫ +∞

0

dy

{∫ +∞

−∞

e−i w
γ (x+x0)

2πiw
e
−y λ2tν

γ2 (w2−1−2iw)dw

}
1

2πi

∫

Ha

ezzν−1e−yzν

dz

=
2e−

(x+x0)
γ

γ

∫ +∞

0

e
y λ2tν

γ2

{
1
2π

∫ +∞

−∞

e−i w
γ (x+x0)

iw
e
−y λ2tν

γ2 (w2−2iw)dw

}
W−ν,1−ν(−y)dy.

In the last step we have applied the following representation of the Wright
function as contour integral on Ha (see Podlubny (1999), p.37)

W−ν,1−ν(x) =
1

2πi

∫

Ha

ez+xzν

zν−1dz.

The integral representation

Hη(x) =
1
2π

∫ +∞

−∞

eiwx−iwη

iw
dw (2.14)

of the Heaviside function

Hη(x) =
{

1 x > η
0 x < η
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permits us to develop the integral with respect to w in (2.13) as

1
2π

∫ +∞

−∞

e−i w
γ (x+x0)

iw
e
−y λ2tν

γ2 (w2−2iw)
dw (2.15)

=
1
2π

∫ +∞

−∞

e−i w
γ (x+x0)

iw
dw

∫ +∞

−∞
eiwv e

−
(

v− 2λ2tν y

γ2

)2
γ2

2(2λ2tν y)

√
2π 2λ2tνy

γ2

dv

=
∫ +∞

−∞

e
−

(
v− 2λ2tν y

γ2

)2
γ2

2(2λ2tν y)

√
2π 2λ2tνy

γ2

dv

2π

∫ +∞

−∞

eiwv−i w
γ (x+x0)

iw
dw

=
∫ +∞

−∞

e
−

(
v− 2λ2tν y

γ2

)2
γ2

2(2λ2tν y)

√
2π 2λ2tνy

γ2

H x+x0
γ

(v)dv

=
∫ +∞

x+x0
γ

e
−

(
v− 2λ2tν y

γ2

)2
γ2

2(2λ2tν y)

√
2π 2λ2tνy

γ2

dv =
∫ +∞

x+x0

e
−

(
v− 2λ2tν y

γ

)2
1

2(2λ2tν y)

√
2π(2λ2tνy)

dv.

By inserting (2.15) into (2.13) we can rewrite it as

2
γ

e−
(x+x0)

γ

∫ +∞

0

e
y λ2tν

γ2





∫ +∞

x+x0

e
−

(
v− 2λ2tν y

γ

)2
1

2(2λ2tν y)

√
2π(2λ2tνy)

dv



W−ν,1−ν(−y)dy

=
2
γ

e−
(x+x0)

γ

∫ +∞

0

W−ν,1−ν(−y)dy

∫ +∞

x+x0

e
− v2

2(2λ2tν y)
+ v

γ

√
2π(2λ2tνy)

dv (2.16)

=
∫ +∞

0

W−ν,1−ν(−y)dy



−

2e
− (x+x0)2

2(2λ2tν y)

√
2π(2λ2tνy)

+ 2e−
(x+x0)

γ

∫ +∞

x+x0

ve
− v2

2(2λ2tν y)
+ v

γ

√
2π(2λ2tνy)3

dv



 ,

where, in the last step we have integrated by parts with respect to v.
We now focus our attention on the second integral in (2.12) and by perform-

ing similar steps we have that

1
γ

e−
(x+x0)

γ

∫ +∞

−∞

e−i w
γ (x+x0)

2π
Eν,1

(
−λ2tν

γ2

[
w2 − 1− 2iw

])
dw(2.17)

=
e−

(x+x0)
γ

2πγ

∫ +∞

−∞
e−i w

γ (x+x0) dw

2πi

∫

Ha

ezzν−1

zν + λ2tν

γ2 [w2 − 1− 2iw]
dz

9



=
e−

(x+x0)
γ

2πγ

∫ +∞

0

e
y λ2tν

γ2
dy

2πi

∫

Ha

ezzν−1e−yzν

dz

∫ +∞

−∞
e
− iw

γ (x+x0)− yλ2tν

γ2 (w2−2iw)
dw

=
e−

(x+x0)
γ

γ

∫ +∞

0

e
y λ2tν

γ2 W−ν,1−ν(−y)
e
−

(
x+x0

γ − 2λ2tν y

γ2

)2
γ2

2(2λ2tν y)

√
2π 2λ2tνy

γ2

dy

=
∫ +∞

0

e
− (x+x0)2

2(2λ2tν y)

√
2π(2λ2tνy)

W−ν,1−ν(−y)dy.

In order to complete the calculations we need to evaluate also the first inte-
gral in (2.11) as follows

1
2π

∫ +∞

−∞
Eν,1(−λ2β2tν)eiβ(x−x0)dβ (2.18)

=
∫ +∞

0

dy

2πi

∫

Ha

ezzν−1e−yzν dz

2π

∫ +∞

−∞
eiβ(x−x0)−λ2β2tνydβ

=
∫ +∞

0

W−ν,1−ν(−y)
e
− (x+x0)2

2(2λ2tν y)

√
2π(2λ2tνy)

dy.

By collecting together (2.16), (2.17) and (2.18) we finally have that the
solution reads

uel
ν (x, t; x0, 0) (2.19)

=
∫ +∞

0

W−ν,1−ν(−y){ e
− (x−x0)2

2(2λ2tν y)

√
2π(2λ2tνy)

+

− e
− (x+x0)2

2(2λ2tν y)

√
2π(2λ2tνy)

+ 2e−
(x+x0)

γ

∫ +∞

x+x0

ve
− v2

2(2λ2tν y)
+ v

γ

√
2π(2λ2tνy)3

dv}dy

=
2

2λtν

∫ +∞

0

W−ν,1−ν(− y

λtν
){ e−

(x−x0)2

2(2λy)

√
2π(2λy)

+

− e−
(x+x0)2

2(2λy)

√
2π(2λy)

+ 2e−
(x+x0)

γ

∫ +∞

x+x0

ve−
v2

2(2λy)+
v
γ

√
2π(2λy)3

dv}dy

=
1

λtν

∫ +∞

0

W−ν,1−ν(− y

λtν
)pel(x, 2λy;x0, 0)dy.

The last step can be explained by considering formula (2.1) and (2.2). ¤

The previous result shows that the solution to (2.3) can be interpreted as
the distribution of the process defined as

Ψel
ν (t) = Bel(|Ψ2ν(t)|), t > 0,
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where the time argument is represented by the absolute value of a stochastic
process Ψ2ν , which is independent from Bel and whose density coincides with
the folded solution of (2.6).

Remark 2.1
The kernel pel(x, t; x0, 0) represents the transition density of a Brownian

motion starting from x = x0 > 0 and running on the half-line [0,∞) when an
elastic barrier at x = 0 is assumed. This means that each time the particle
visits the barrier it can either be absorbed or reflected and in the last case it
continues its motion. The reflection behavior of Bel can be expressed by means
of the survival random variable T with distribution

Pr {T > t| Bt} = e
1
γ L(0,t), γ < 0 (2.20)

where
L(0, t) = lim

ε→0

1
2ε

meas {s < t : |B(s)| < ε}
is the local time in zero up to time t and Bt the σ-field of events generated by
the Brownian motion B at time t.

The third term of the kernel pel(x, t; x0, 0) in (2.2) has a fine representation
in terms of the first passage time Ta of a standard Brownian motion through a
level a. This can be shown by taking the Laplace transform, as follows:

2e−
(x+x0)

γ

∫ ∞

0

e−utdt

∫ +∞

x+x0

v e−
v2
2t + v

γ

√
2πt3

dv (2.21)

= 2e−
(x+x0)

γ

∫ +∞

x+x0

e
v
γ dv

∫ ∞

0

e−ut v e−
v2
2t√

2πt3
dt

= 2e−
(x+x0)

γ

∫ +∞

x+x0

e−v
√

2u+ v
γ dv =

2e−
√

2u(x+x0)

√
2u− 1

γ

= 2
∫ +∞

0

e−
√

2u(x+x0+y)+ y
γ dy = 2

∫ +∞

0

e
y
γ Ee−uTx+x0+ydy.

From the above expressions we can also write that

2
∫ +∞

0

e
y
γ e−

√
2u(x+x0+y)dy (2.22)

= 2
∫ +∞

0

e
y
γ dy

∫ +∞

0

e−us x0e
− x2

0
2s√

2πs3
ds

∫ +∞

0

e−ut (x + y)e−
(x+y)2

2t√
2πt3

dt

= 2
∫ +∞

0

e
y
γ dy

∫ +∞

0

e−us x0e
− x2

0
2s√

2πs3
ds

∫ +∞

s

e−u(z−s) (x + y)e−
(x+y)2

2(z−s)

√
2π(z − s)3

dz

= 2
∫ +∞

0

e
y
γ dy

∫ +∞

0

e−uzdz

∫ z

0

x0e
− x2

0
2s√

2πs3

(x + y)e−
(x+y)2

2(z−s)

√
2π(z − s)3

ds

11



=
∫ +∞

0

e−uz





∫ z

0

x0e
− x2

0
2s√

2πs3
ds

∫ +∞

0

e
y
γ

2(x + y)e−
(x+y)2

2(z−s)

√
2π(z − s)3

dy



 dz

=
∫ +∞

0

e−uz





1
dx

∫ z

0

x0e
− x2

0
2s√

2πs3
dsE

{
e

1
γ L(0,z−s)1{

+
B(z−s)∈dx

}

∣∣∣∣∣
+

B(0) = x0

}

 dz

=
1
dx

∫ +∞

0

e−uz Pr
{

+

B(z) ∈ dx, T0 < z < T

∣∣∣∣
+

B(0) = x0

}
dz.

In the above calculations we have applied the well-known fact that the joint

density of the local time L(0, t) and the reflecting Brownian motion
+

B(t) has
the form

Pr
{

L(0, t) ∈ dv,
+

B(t) ∈ du

}
=

{
2(u+v)√

2πt3
e−

(u+v)2

2t du dv u, v > 0
0 otherwise

.

By comparing (2.21) and (2.22) we can conclude that the integral in pel(x, t; x0, 0)
can be interpreted as the probability that a reflecting Brownian motion is in x
at time t after its first visit of the barrier and before its extinction.

A derivation of the transition function by means of probabilistic arguments
is presented in Ito and McKean (1965), p.46, and also in Ito and McKean (1963).
An interpretation of the elastic Brownian motion as a process with a time change
is hinted at in Gallavotti and McKean (1972).

The density in (2.2) can also be rewritten in the form

pel(x, t;x0, 0) (2.23)

=
e−

(x−x0)2

2t√
2πt

+
e−

(x+x0)2

2t√
2πt

+
2
γ

e−
(x+x0)

γ

∫ +∞

x+x0

e−
v2
2t + v

γ

√
2πt

dv.

In (2.2) the elastic transition is decomposed into the sum of the absorbing
component plus the part depending on the effect of the elastic barrier. In (2.23)
we decompose the transition function of the elastic Brownian motion into two
components, the first being that pertaining to the reflecting part. It should be
pointed out that γ must be a negative constant and thus the last term in (2.23)
contributes negatively to the sum.

Formula (2.23) confirms that γ must be a negative constant and is the pa-
rameter of the exponential distribution (2.20) of the survival time T.

We can evaluate the survival probability by integrating the kernel of (2.2)

12



in [0,∞) :

Pr
{
Bel(t) > 0

}
=

∫ +∞

0

pel(x, t;x0, 0)dx (2.24)

=
∫ +∞

0

e−
(x−x0)2

2t√
2πt

dx−
∫ +∞

0

e−
(x+x0)2

2t√
2πt

dx

+2
∫ +∞

0

e−
(x+x0)

γ dx

∫ +∞

x+x0

ve−
v2
2t + v

γ

√
2πt3

dv

=
∫ x0√

t

− x0√
t

e−
w2
2√

2π
dw + 2

∫ +∞

x0

ve−
v2
2t + v

γ

√
2πt3

dv

∫ v−x0

0

e−
(x+x0)

γ dx

=
∫ x0√

t

− x0√
t

e−
w2
2√

2π
dw + 2γ

∫ +∞

x0

ve−
v2
2t + v

γ

√
2πt3

[
e−

x0
γ − e−

v
γ

]
dv

=
∫ x0√

t

− x0√
t

e−
w2
2√

2π
dw + 2γ

[
e−

v2
2t√

2πt

]+∞

x0

+2γe−
x0
γ

∫ +∞

x0

(
v√
t
− 1

γ
+

1
γ

)
e−

v2
2t + v

γ

√
2πt

dv

=
∫ x0√

t

− x0√
t

e−
w2
2√

2π
dw − 2γ

e−
x2
0

2t√
2πt

+

+2γe−
x0
γ

[
−e−

v2
2t + v

γ

√
2πt

]+∞

x0

+ 2e−
x0
γ

∫ +∞

x0

e−
v2
2t + v

γ

√
2πt

dv

=
∫ x0√

t

− x0√
t

e−
w2
2√

2π
dw + 2e

t
2γ2− x0

γ

∫ +∞

x0

e
−

[√
γv− t√

γ

]2 1
2γt

√
2πt

dv

=
∫ x0√

t

− x0√
t

e−
w2
2√

2π
dw + 2e

t
2γ2− x0

γ

∫ +∞

(x0− t
γ )/

√
t

e−
w2
2√

2π
dw.

We also remark that, for γ →∞, the survival probability (2.24) becomes

lim
γ→∞

Pr
{
Bel(t) > 0

}

=
∫ x0√

t

− x0√
t

e−
w2
2√

2π
dw + 2

∫ ∞

x0√
t

e−
w2
2√

2π
dw = 1,

since, as it is evident from (2.2), pel(x, t; x0, 0) coincides in the limit with the
transition function of the reflecting Brownian motion. Furthermore, for γ → 0
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the probability (2.24) tends to the survival probability of an absorbing Brownian
motion, as a straightforward application of the inequalities

(
1
x
− 1

x3

)
e−

x2
2√

2π
≤

∫ ∞

x

e−
w2
2√

2π
dw ≤ e−

x2
2

x
√

2π

shows.

Remark 2.2
Let us the consider the simplest case where the starting point is in the origin

(x0 = 0): from (2.2) it is evident that, in this case, the distribution of Bel(t)
reads

pel(x, t; 0, 0) = 2e−
x
γ

∫ +∞

x

ve−
v2
2t + v

γ

√
2πt3

dv, γ < 0. (2.25)

If we denote by Ta = inf(t : B(t) = a) the first passage time of the level a,
we can derive the distribution of the elastic Brownian motion at Ta as follows

Pr
{
Bel(Ta) ∈ dx

}

= E
{
Pr

{
Bel(Ta) ∈ dx

∣∣ Ta

}}

= dx2e−
x
γ

∫ +∞

x

ve
v
γ dv

∫ +∞

0

e−
v2
2t√

2πt3
ae−

a2
2t√

2πt3
dt

= dx
2e−

x
γ

2π

∫ +∞

x

ve
v
γ dv

∫ +∞

0

ye−
y
2 (v2+a2)dy

= dx22e−
x
γ

∫ +∞

x

ve
v
γ

π(v2 + a2)2
dv.

Remark 2.3
We show now that, in view of 2.24),

EBel(t) = x0 − 2γ

∫ ∞

x0√
t

e−
w2
2√

2π
dw + 2γe

− x0
γ + t

2γ2

∫ +∞

(x0− t
γ ) 1√

t

e−
w2
2√

2π
dw

= x0 − 2γ

∫ ∞

x0√
t

ϕ(w)dw + γ Pr
(
Bel(t) > 0

)− γ

∫ x0√
t

− x0√
t

ϕ(w)dw

= x0 − γ Pr
(
Bel(t) = 0

)
. (2.26)

and thus the mean position of an elastic Brownian motion lies somewhere to
the right of the starting position x0.
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Formula (2.26) can be evaluated by observing that

2
∫ +∞

0

xe−
x+x0

γ dx

∫ +∞

x+x0

ve−
v2
2t + v

γ

√
2πt3

dv

= 2
∫ +∞

x0

ve−
v2
2t + v

γ

√
2πt3

dv

∫ v−x0

0

xe−
x0
γ − x

γ dx

= 2
∫ +∞

x0

ve−
v2
2t + v

γ

√
2πt3

[
−γ(v − x0)e−

v
γ + γ2(e−

x0
γ − e−

v
γ )

]
dv

= −2γ

∫ +∞

x0

v(v − x0)
e−

v2
2t√

2πt3
dv − 2γ2

∫ ∞

x0

ve−
v2
2t√

2πt3
dv +

+2γ2e−
x0
γ

∫ ∞

x0

ve−
v2
2t + v

γ

√
2πt3

dv

= −2γ

∫ +∞

x0

e−
v2
2t√

2πt
dv − 2γ2 e−

x2
0

2t√
2πt

+ 2γ2e−
x0
γ

∫ ∞

x0

(
v

t
− 1

γ
+

1
γ

)
e−

v2
2t + v

γ

√
2πt

dv

= −2γ

∫ +∞

x0

e−
v2
2t√

2πt
dv − 2γ2 e−

x2
0

2t√
2πt

+ 2γ2 e−
x2
0

2t√
2πt

+ 2γe−
x0
γ

∫ ∞

x0

e−
v2
2t + v

γ

√
2πt

dv.

A change of variable then yields (2.26) once the remaining two integrals
of EBel(t) are evaluated. the second line of (2.26) is obtained by taking into
account (2.24).

For large values of t we can apply the approximation

∫ +∞

(x0− t
γ ) 1√

t

e−
w2
2√

2π
dw ∼ e−

(x0− t
γ )2 1

2t
2

1√
2π(x0 − t

γ ) 1√
t

and thus
lim

t→∞
EBel(t) = x0 − γ.

By means of result (2.26) we can also evaluate the mean value of the process
Ψel

ν (t) = Bel(|Ψ2ν(t)|) related to our Cauchy problem (2.3) as follows

EΨel
ν (t)

=
1

λtν

∫ +∞

0

W−ν,1−ν(− y

λtν
){x0 − 2γ

∫ ∞

x0

e−
v2

2(2λy)

√
2π(2λy)

dv

+2γe−
x0
γ

∫ ∞

x0

e−
v2

2(2λy)+
v
γ

√
2π(2λy)

dv}dy

= x0 − 2γ

λ

∫ ∞

λx0

uν(v, t)dv +
2γ

λ
e−

x0
γ

∫ ∞

λx0

e
v
γ uν(v, t)dv,

15



where, in the last step we have applied Theorem 2.1 of Orsingher and Beghin
(2007).

Remark 2.4
We can easily give an analytic solution to problem (2.3), which is valid for

any ν ∈ (0, 2), but looses the transparent probabilistic interpretation of (2.4).
We write (2.11) in the more convenient form

uel
ν (x, t; x0, 0) (2.27)

=
1
2π

∫ +∞

−∞
Eν,1(−λ2β2tν)

{
eiβ(x−x0) + e−iβ(x+x0) − 2

1− iβγ
e−iβ(x+x0)

}
dβ

=
1

2λtν/2
W− ν

2 ,1− ν
2

(
−|x− x0|

λtν/2

)
+

1
2λtν/2

W− ν
2 ,1− ν

2

(
−|x + x0|

λtν/2

)
+

−2
∫ +∞

0

dy

∫ +∞

−∞
e−y(1−iβγ)−iβ(x+x0)Eν,1(−λ2β2tν)dβ

=
1

2λtν/2
{W− ν

2 ,1− ν
2

(
−|x− x0|

λtν/2

)
+ W− ν

2 ,1− ν
2

(
−|x + x0|

λtν/2

)
+

−2
∫ +∞

0

e−yW− ν
2 ,1− ν

2

(
−|x + x0 − yγ|

λtν/2

)
dy}.

The last formula shows that the solution uel
ν can be expressed by suitably

combining the Wright function representing the solution uν of the fractional
equation in (−∞, +∞). This is analogous to what happens for the heat equation
(i.e. for ν = 1) where the solution (2.23) to the elastic Cauchy problem is
obtained by combining in a similar way the Gaussian transition function of the
free Brownian motion.

It is easy to see that in the absorbing case (γ = 0) we get from (2.27) the
solution under the boundary condition u|x=0+ = 0, that is

uν(x, t; x0, 0) =
1

2λtν/2
{W− ν

2 ,1− ν
2

(
−|x− x0|

λtν/2

)
−W− ν

2 ,1− ν
2

(
−|x + x0|

λtν/2

)
}.

On the other hand, for γ →∞, the third term in the last member of (2.27)
converges to zero and we get the solution under the action of the reflecting
barrier:

+
uν(x, t; x0, 0) =

1
2λtν/2

{W− ν
2 ,1− ν

2

(
−|x− x0|

λtν/2

)
+ W− ν

2 ,1− ν
2

(
−|x + x0|

λtν/2

)
}.

3 Iterated elastic Brownian motions

We examine now in detail the particular case where ν = 1
2n and λ2 = 2

1
2n−2,

which leads to a first form of iterated elastic Brownian motion, where the driv-
ing process is an elastic Brownian motion composed with the classical iterated
Brownian motion.
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Theorem 3.1
The solution to the Cauchy problem





∂
1

2n u

∂t
1

2n
= 2

1
2n−2 ∂2u

∂x2 , x, t > 0

u(0, t) + γ ∂u
∂x

∣∣
x=0+ = 0

u(x, 0) = δ(x− x0)

γ < 0 (3.1)

is given by

uel
1

2n
(x, t;x0, 0) =

∫ +∞

0

û 1
2n−1

(y, t)pel(x, 2
1

2n y;x0, 0)dy, (3.2)

where

û 1
2n−1

(y, t) = 2n

∫ +∞

0

...

∫ +∞

0

e−
y2

2z1√
2πz1

...
e−

z2
n−1
2t√

2πt
dz1...dzn−1. (3.3)

Proof
We specify the result of Theorem 2.1 to the case where ν = 1

2n and λ2 =
2

1
2n−2 as follows:

uel
1

2n
(x, t;x0, 0)

=
1

2
1

2n−1t
1

2n

∫ +∞

0

W− 1
2n ,1− 1

2n
(− y

2
1

2n−1t
1

2n
)pel(x, 2

1
2n y; x0, 0)dy,

which coincides with (3.2). The expression of the solution (3.3) can be obtained
by means of formula (1.9) of Orsingher and Beghin (2007). ¤

We point out that (3.3) coincides with the distribution of the absolute value
of In−1(t), which is defined as the (n− 1)-iterated Brownian motion

In−1(t) = B1(|B2(...|Bn(t)|...)|) t > 0.

Therefore we can interpret the solution as the transition density of the fol-
lowing process

Ψel
n (t) = Bel

1 (|In−1(t)|), t > 0.

Remark 3.1
If we now take the limit, for n →∞, of (3.2) and apply the following result

lim
n→∞

û 1
2n−1

(y, t) = lim
n→∞

1
2

1
2n−1t

1
2n

W− 1
2n ,1− 1

2n

(
− y

2
1

2n−1t
1

2n

)
(3.4)

= 2W0,1 (−2y) = 2e−2y,
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so that we get

lim
n→∞

uel
1

2n
(x, t;x0, 0) (3.5)

= lim
n→∞

∫ +∞

0

û 1
2n−1

(y, t)pel(x, 2
1

2n y; x0, 0)dy

=
∫ +∞

0

lim
n→∞

û 1
2n−1

(y, t){e−
(x−x0)2

2y

√
2πy

− e−
(x+x0)2

2y

√
2πy

+ 2e−
(x+x0)

γ

∫ +∞

x+x0

ve−
v2
2y + v

γ

√
2πy3

dv}dy

= 2
∫ +∞

0

e−2y{e−
(x−x0)2

2y

√
2πy

− e−
(x+x0)2

2y

√
2πy

+ 2e−
(x+x0)

γ

∫ +∞

x+x0

ve−
v2
2y + v

γ

√
2πy3

dv}dy

=
2e−2|x−x0|

2
− 2e−2|x+x0|

2
+

+4e−
|x+x0|

γ

∫ +∞

x+x0

e
v
γ dv

∫ ∞

0

e−2y ve−
v2
2y

√
2πy3

dy

= e−2|x−x0| − e−2|x+x0| + 4e−
x+x0

γ

∫ +∞

x+x0

e−v(2− 1
γ )dv

= e−2|x−x0| − e−2|x+x0| +
4γ

2γ − 1
e−2(x+x0)

= e−2|x−x0| +
2γ + 1
2γ − 1

e−2|x+x0|,

for x, x0 > .
Alternatively we can take the limit of (2.27), getting the same result:

lim
n→∞

uel
1

2n
(x, t;x0, 0)

= W0,1 (−2|x− x0|) + W0,1 (−2|x + x0|) +

−2
∫ +∞

0

e−yW0,1 (−2|x + x0 − yγ|) dy

= e−2|x−x0| + e−2(x+x0) − 2e−(x+x0)

∫ +∞

0

e−y+γydy

= e−2|x−x0| + e−2(x+x0) − 2
e−(x+x0)

1− 2γ

= e−2|x−x0| +
2γ + 1
2γ − 1

e−2(x+x0).

The most striking fact about (3.5) is that the limiting distribution does not
depend on t.
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The results obtained so far suggest us to introduce and examine new com-
positions of processes such as Bel

1 (|B2(t)|), Bel
1 (|Bel

2 (t)|) and B1(|Bel
2 (t)|), which

are similar to the iterated Brownian motion. These processes represent general-
izations in different directions of the iterated Brownian motion. Many properties
of I1(t) = B1(|B2(t)|) have been analyzed by Burdzy (1994) (the fourth-order
variation), by Burdzy and San Mart̀ın (1995) (the law of the iterated logarithm),
by Khoshnevisian and Lewis (1996) (the modulus of continuity) and by Allouba
and Zheng (2001). Applications of the iterated Brownian motion can be found
in De Blassie (2004).

The iterated processes of different forms emerging here can be imagined as
limits of compositions of independent random walks. In the simplest case a
random walk with a reflecting barrier on the y axis represents the time with
upward and downward steps of length ∆s (“upward” means that time moves
from the past to the future and viceversa for “downward”). At each instant
we can consider a random walk on a line parallel to the x axes, that, every ∆s
units of time, moves rightward or backwards. Thus the particle occupies the
position x if a sufficient time elapse has passed and we must sum up (integrate)
on all the random walks passing through x. In the limit this construction leads
to the iterated Brownian motion. Moreover, if at x = 0 some form of barrier
is considered, we have reflecting, absorbing or elastic random walks composed
with the random walk representing the time evolution.

The section below is devoted to the analysis of these processes (and their
extensions) and to the related boundary-value problems for the fractional diffu-
sion equation. For the sake of simplicity we consider elastic Brownian motions
starting at x = 0.

Theorem 3.2
The distribution of the process

Bel
1 (|B2(t)|), t > 0,

given by

Pr
{
Bel

1 (|B2(t)|) ∈ dx
}

(3.6)

= dx22e−
x
γ

∫ +∞

0

ds

∫ +∞

x

ve−
v2
2s + v

γ

√
2πs3

e−
s2
2t√

2πt
dv,

coincides with the solution uel
1
2
(x, t; 0, 0) of the Cauchy problem





∂
1
2 u

∂t
1
2

= 1
23/2

∂2u
∂x2 , x, t > 0

u(0, t) + γ ∂u(x,t)
∂x

∣∣∣
x=0+

= 0

u(x, 0) = δ(x)

γ < 0. (3.7)

Proof Instead of the reasoning used in Theorem 2.1, we resort here to the
Laplace transform

L(x, η) =
∫ +∞

0

e−ηtu(x, t)dt, (3.8)
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which converts problem (3.7) into



− 1√

η δ(x) +
√

ηL(x, η) = 1
23/2

∂2L
∂x2

L(0, η) + γ ∂L(x,η)
∂x

∣∣∣
x=0+

= 0
. (3.9)

The solution to equation (3.9), for x > 0, is clearly equal to

L(x, η) = Aex
√

2
√

2η + Be−x
√

2
√

2η (3.10)

and, in view of the boundedness of the solution we must assume that A = 0.
From (3.9), by integrating in the interval [0, ε) , we have that

− 1√
η

∫ ε

0

δ(x)dx +
√

η

∫ ε

0

L(x, η)dx (3.11)

=
1

23/2

∫ ε

0

∂2L(x, η)
∂x2

dx

=
1

23/2

[
−

√
2
√

2ηBe−ε
√

2
√

2η − ∂L(x, η)
∂x

∣∣∣∣
x=0+

]
.

By taking into account that L is a bounded function, from (3.11) we get that

B + γ

(
23/2

√
η
−B

√
2
√

2η

)
= 0

and thus

B = −23/2γ√
η

1

1− γ
√

2
√

2η
=

22

√
2η

(√
2
√

2η − 1
γ

) .

Therefore the solution to problem (3.9) is given by

L(x, η) =
22e−x

√
2
√

2η

√
2η

(√
2
√

2η − 1
γ

) (3.12)

and this coincides with the Laplace transform of (3.6). ¤

Remark 3.2
We show now that the distribution of Bel

1 (|B2(t)|) can be expressed by means
of the law of the iterated Brownian motion I(t). For the particular case where
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x0 = 0 we get from (2.25), for x > 0,

Pr
{
Bel

1 (|B2(t)|) ∈ dx
}

(3.13)

= 22e−
x
γ

∫ +∞

0

ds

∫ +∞

x

ve−
v2
2s + v

γ

√
2πs3

e−
s2
2t√

2πt
dv

= 22e−
x
γ {

∫ +∞

0

[
− e−

v2
2s√

2πs

e−
s2
2t√

2πt
e

v
γ

]v=+∞

v=x

ds +

+
1
γ

∫ +∞

x

dv

∫ +∞

0

e−
v2
2s + v

γ

√
2πs

e−
s2
2t√

2πt
ds}

= 22

∫ +∞

0

e−
x2
2s√

2πs

e−
s2
2t√

2πt
ds +

+
22e−

x
γ

γ

∫ +∞

x

e
v
γ dv

∫ +∞

0

e−
v2
2s + v

γ

√
2πs

e−
s2
2t√

2πt
ds

= 2Pr {I(t) ∈ dx}+
2e−

x
γ

γ

∫ +∞

x

e
v
γ Pr {I(t) ∈ dv}

= 2Pr {I(t) ∈ dx}+
2
γ

∫ +∞

0

e
y
γ Pr {I(t) ∈ d(x + y)}

= Pr {|I(t)| ∈ dx}+
1
γ

∫ +∞

0

e
y
γ Pr {|I(t)| ∈ d(x + y)}

Since γ is a negative constant the previous relationship shows that the dis-
tribution of Bel(|B(t)|) can be obtained from that of I(t) by an appropriate
correction (due to the partially absorbing effect of each visit of the barrier).

The same result could be also derived by considering that the process Bel(|B(t)|)
is a particular case of Ψel

n (t) = Bel
1 (|In−1(t)|) for n = 1 (i.e. for ν = 1/2), with

the additional assumption that x0 = 0. Therefore by specializing (3.2) we get

uel
1
2
(x, t; 0, 0) (3.14)

= 2
∫ +∞

0

e−
y2

2t√
2πt

pel(x, 2
1
2 y; 0, 0)dy

and, by inserting (2.25) we obtain again (3.13).

We consider now the process obtained by composing two independent elastic
Brownian motions Bel

1 and Bel
2 starting from the origin, as

Bel
1 (Bel

2 (t)), t > 0.

In this case the role of time is played by an elastic Brownian motion and its
related clock can be stopped during the visits of the origin. Once the clock is
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stopped the driving process is forced to be captured by the elastic trap because
it behaves like Bel

1 (0) for the remaining time elapse.
In the following result we prove that its density satisfies a Cauchy problem

identical to (3.7), but with an additional term in the boundary condition.

Theorem 3.3
The transition density of the process Bel

1 (Bel
2 (t)), t > 0, given by

Pr
{
Bel

1 (Bel
2 (t)) ∈ dx

}
(3.15)

= 2dxe−
x

γ1

∫ +∞

x

ve
v

γ1 dv

∫ +∞

0

e−
v2
2s√

2πs3


2e−

s
γ2

∫ +∞

s

we−
w2
2t + w

γ2√
2πt3

dw


 ds

solves the following Cauchy problem




∂
1
2 u

∂t
1
2

= 1
23/2

∂2u
∂x2 , x, t > 0

u(0, t) + γ1
∂u(x,t)

∂x

∣∣∣
x=0+

+ f(t) = 0

u(x, 0) = δ(x)

, (3.16)

where

f(t) =
2γ1

γ2
E 1

2 ,1

( √
t√

2γ2

)
, γ1, γ2 < 0. (3.17)

Proof We start by taking the Laplace transform of (3.15) with respect to t:
∫ +∞

0

e−ηt Pr
{
Bel

1 (Bel
2 (t)) ∈ dx

}
dt (3.18)

= 2dxe−
x

γ1

∫ +∞

x

ve
v

γ1 dv

∫ +∞

0

e−
v2
2s√

2πs3


2e−

s
γ2

∫ +∞

0

e−ηtdt

∫ +∞

s

w
e

w
γ2
−w2

2t

√
2πt3

dw


 ds

= 22dxe−
x

γ1

∫ +∞

x

ve
v

γ1 dv

∫ +∞

0

e−
v2
2s√

2πs3
e−

s
γ2 ds

∫ +∞

s

e
w
γ2
−w

√
2ηdw

= 22dxe−
x

γ1

∫ +∞

x

e
v

γ1 dv

∫ +∞

0

v
e−

v2
2s−s

√
2η

√
2πs3

1√
2η − 1

γ2

ds

= 22dxe−
x

γ1

∫ +∞

x

e
v

γ1
1√

2η − 1
γ2

e−v
√

2
√

2ηdv

=
22dx√
2η − 1

γ2

e−x
√

2
√

2η

√
2
√

2η − 1
γ1

.

We now pass to the Laplace transform of (3.16) which leads to



− 1√

η δ(x) +
√

ηL(x, η) = 1
23/2

∂2L
∂x2

L(0, η) + γ1
∂L(x,η)

∂x

∣∣∣
x=0+

+
∫ +∞
0

e−ηtf(t)dt = 0
. (3.19)
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The solution to the above equation, in view of its boundedness, takes the
following form

L(x, η) = Be−x
√

2
√

2η

and the constant B can be determined by integrating the first equation in (3.19)
on [0, ε] and then letting ε → 0:

− 1√
η

=
1

23/2

[
−B

√
2
√

2η − ∂L

∂x

∣∣∣∣
x=0+

]
. (3.20)

By inserting (3.20) into (3.19) we get that

B =
22√
2η

+ 1
γ1

∫ +∞
0

e−ηtf(t)dt
√

2
√

2η − 1
γ1

.

Thus the solution to problem (3.16) becomes

L(x, η) (3.21)

=
(

22

√
2η

+
1
γ1

∫ +∞

0

e−ηtf(t)dt

)
e−x

√
2
√

2η

√
2
√

2η − 1
γ1

.

We need now to determine the explicit expression for f(t), such that (3.21)
and (3.18) coincide; after some manipulation we obtain that

∫ +∞

0

e−ηtf(t)dt =
22γ1

γ2

1√
2η(

√
2η − 1

γ2
)

=
2γ1

γ2

1
η −√η 1√

2γ2

.

It can be checked that
∫ +∞

0

e−ηtE 1
2 ,1

( √
t√

2γ2

)
dt =

1
η −√η 1√

2γ2

, for η >
1

2γ2
2

and then (3.17) follows (for Laplace transforms of Mittag-Leffler functions see
Podlubny (1999), p.21, formula (1.80)). ¤

In the following theorem we obtain a connection between the two processes
Bel

1 (Bel
2 (t)) and Bel

1 (B2(t)).

Theorem 3.4
For the iterated elastic Brownian motion the following relationship holds

Pr
{
Bel

1 (Bel
2 (t)) ∈ dx

}
(3.22)

=
1

2γ2
2

∫ t

0

Pr
{
Bel

2 (s) > 0
}

Pr
{
Bel

1 (|B2(t− s)|) ∈ dx
}

ds,
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for x, t > 0 and γ2 < 0.
Proof The Laplace transform (3.18) can be rearranged as

∫ +∞

0

e−ηt Pr
{
Bel

1 (Bel
2 (t)) ∈ dx

}
dt (3.23)

=
√

2η√
2η − 1

γ2

22dxe−x
√

2
√

2η

√
2η

(√
2
√

2η − 1
γ1

) .

The second term in the right hand side of (3.23) corresponds to the Laplace
transform (3.12) of Bel

1 (|B2(t)|). In order to determine the inverse Laplace
transform of the additional term we write

1
1− 1

γ2
√

2η

=
∞∑

k=0

(
1

γ2

√
2η

)k

(3.24)

=
∫ +∞

0

e−ηt
∞∑

k=0

t
k
2−1

Γ
(

k
2

) 1(
γ2

√
2η

)k
dt,

and this permits us to conclude that it coincides with

g(t) =
1
t
E 1

2 ,0

(
1
γ2

√
t

2

)
. (3.25)

The previous function can be rewritten as follows

g(t) =
1
t

∞∑

k=1

(
1
γ2

√
t

2

)k
1

Γ
(

k
2

)

=
1
t

∞∑
r=0

(
1
γ2

√
t

2

)r+1
1

Γ
(

r
2 + 1

2

)

=
1
t

∞∑
r=0

(
1
γ2

√
t

2

)r+1
Γ

(
r
2

)
2r

2
√

πΓ (r)

=
1

2
√

πt

∫ +∞

0

e−w
∞∑

r=1

(
1
γ2

√
t

2

)r+1
w

r
2−12r

(r − 1)!
dw

=
1

2γ2
2

√
π

∫ +∞

0

e−ww−
1
2 e

1
γ2

√
2twdw.

By the change of variable y =
√

2w and by comparing (2.24) for x0 = 0,
formula (3.22) is then obtained. ¤
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Formula (3.22) shows that Bel
1 (Bel

2 (t)) can reach a point x if the “time” pro-
cess Bel

2 has not been absorbed up to time s and then it behaves as Bel
1 (|B2(t)|),

in the interval (s, t).
The mean value of the iterated elastic Brownian motion starting at x0 = 0

can be obtained, by recalling (2.26), as follows

E
(
Bel

1 (Bel
2 (t)

)
) (3.26)

=
∫ +∞

0

EBel
1 (s) Pr

{
Bel

2 (t) ∈ ds
}

= −γ1

∫ +∞

0

Pr
{
Bel

1 (s) = 0
}

Pr
{
Bel

2 (t) ∈ ds
}

.

From (3.26) and (2.26) we can easily check that EBel
1 (s) and thus E

(
Bel

1 (Bel
2 (t)

)
)

are non-negative: indeed we rewrite the first one follows

EBel
1 (s) = −γ1 + 2γ1e

s

2γ2
1

∫ +∞

−
√

s
γ1

e−
w2
2√

2π
dw

=
[
y = w +

√
s/γ1

]

= −2γ1

∫ +∞

0

e−
y2

2√
2π

(
1− e

y
√

s
γ1

)
dy > 0,

for γ1 < 0 and for any s > 0.

We generalize the previous results to the n-times iterated elastic Brownian
motion (with starting point at x = 0) and we show that its density (consisting
of 2n + 1 integrals), given by

Pr
{
Bel

1 (Bel
2 (...(Bel

n+1(t))...)) ∈ dx
}

(3.27)

= dx2n+1e−
x

γ1

∫ +∞

x

v1e
v1
γ1 dv1

∫ +∞

0

e−
v2
1

2s1√
2πs3

1

e−
s1
γ2 ds1

∫ +∞

s1

v2e
v2
γ2 dv2 ·

·
∫ +∞

0

e−
v2
2

2s2√
2πs3

2

ds2...

∫ +∞

0

e
− sn

γn+1
vne−

v2
n

2sn√
2πs3

n

dsn

∫ +∞

sn

vn+1e
vn+1
γn+1 dvn+1

e−
v2

n+1
2t√

2πt3
,

satisfies similar relationships.
For n = 1 the previous expression clearly gives the one-time iterated elastic

Brownian motion studied above.
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We give now the explicit Laplace transform of the distribution (3.27):
∫ +∞

0

e−ηt Pr
{
Bel

1 (Bel
2 (...(Bel

n+1(t))...)) ∈ dx
}

dt (3.28)

= dx2n+1e−
x

γ1

∫ +∞

x

v1e
v1
γ1 dv1

∫ +∞

0

e−
v2
1

2s1√
2πs3

1

ds1e
− s1

γ2

∫ +∞

s1

v2e
v2
γ2 dv2 ·

·
∫ +∞

0

e−
v2
2

2s2√
2πs3

2

ds2...

∫ +∞

0

e
− sn

γn+1
vne−

v2
n

2sn√
2πs3

n

dsn

∫ +∞

sn

e
vn+1
γn+1 e−vn+12

1
2 η

1
2 dvn+1

= dx2n+1e−
x

γ1

∫ +∞

x

v1e
v1
γ1 dv1

∫ +∞

0

e−
v2
1

2s1√
2πs3

1

e−
s1
γ2 ds1

∫ +∞

s1

v2e
v2
γ2 dv2 ·

·
∫ +∞

0

e−
v2
2

2s2√
2πs3

2

ds2...

∫ +∞

0

e−sn2
1
2 η

1
2

2
1
2 η

1
2 − 1

γn+1

vne−
v2

n
2sn√

2πs3
n

dsn

=
dx2n+1e−2

1− 1
2n+1 η

1
2n+1 x

n+1∏
j=1

(
21− 1

2n−j+2 η
1

2n−j+2 − 1
γj

) .

If we let γ1, γ2, ...γn+1 →∞ we get from (3.28) that

lim
γ1,γ2,...γn+1→∞

∫ +∞

0

e−ηt Pr
{
Bel

1 (Bel
2 (...(Bel

n+1(t))...)) ∈ dx
}

dt

=
∫ +∞

0

e−ηt Pr {|B1(|B2(...(|Bn+1(t)|)...)|)| ∈ dx} dt (3.29)

=
dx2n+1e−2

1− 1
2n+1 η

1
2n+1 x

2n+1
(

η
2

)∑n+1
j=1

1
2n−j+2

=
dxe−2

1− 1
2n+1 η

1
2n+1 x

(
η
2

)1− 1
2n+1

.

If we let n →∞ in (3.29) we obtain that

lim
n→∞

∫ +∞

0

e−ηt Pr {|B1(|B2(...(|Bn+1(t)|)...)|)| ∈ dx} dt

= dx
2e−2x

η
= 2e−2xdx

∫ +∞

0

e−ηtdt.

We thus conclude that

lim
n→∞

Pr {|B1(|B2(...(|Bn+1(t)|)...)|)| ∈ dx}
= 2e−2xdx, x > 0
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and this is in accordance with the results of Remark 3.4 of Orsingher and Beghin
(2007).

In the same spirit of Theorem 3.4 we can prove the following result.

Theorem 3.5
For the n-times iterated elastic Brownian motion the following relationship

holds, for x > 0,

Pr
{
Bel

1 (Bel
2 (...(Bel

n+1(t))...)) ∈ dx
}

(3.30)

=
1

2γ2
n+1

∫ t

0

Pr
{
Bel

n+1(s) > 0
}

Pr
{
Bel

1 (Bel
2 (...(|Bn+1(t− s)|)...)) ∈ dx

}
.

Proof We start with the Laplace transform
∫ +∞

0

e−ηt Pr
{
Bel

1 (Bel
2 (...(|Bn+1(t)|)...)) ∈ dx

}
dt (3.31)

= dx2n+1e−
x

γ1

∫ +∞

x

v1e
v1
γ1 dv1

∫ +∞

0

e−
v2
1

2s1√
2πs3

1

ds1 ·

·e−
s1
γ2

∫ +∞

s1

v2e
v2
γ2 dv2

∫ +∞

0

e−
v2
2

2s2√
2πs3

2

ds2...e
− sn−1

γn

∫ +∞

sn−1

vne
vn
γn dvn

∫ +∞

0

e−
v2

n
2t e−ηt

√
2πt

dt

=
2n+1

√
2η

dxe−2
1− 1

2n+1 η
1

2n+1 x

n∏
j=1

(
21− 1

2n−j+2 η
1

2n−j+2 − 1
γj

)

=
2

1
2 η

1
2 − 1

γn+1√
2η

∫ +∞

0

e−ηt Pr
{
Bel

1 (Bel
2 (...(Bel

n+1(t))...)) ∈ dx
}

dt,

where the last step is obtained by comparing (3.31) with (3.28). The conclusion
follows from (3.31) if we note that

1
1− 1

γn+1

√
2η

can be expanded as

g(t) =
1
t
E 1

2 ,0

(
1

γn+1

√
t

2

)
.

¤

We are now interested in finding the boundary-value problem which is sat-
isfied by the density (3.27) and we follow the same steps performed in Theorem
3.3.
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Theorem 3.6
The transition density of the n-times iterated elastic Brownian motion, given

in (3.27) solves the following Cauchy problem




∂
1

2n u

∂t
1

2n
= 2

1
2n−2 ∂2u

∂x2 , x, t > 0

u(0, t) + γ1
∂u(x,t)

∂x

∣∣∣
x=0+

+ fn(t) = 0

u(x, 0) = δ(x)

, (3.32)

where fn(t) is a function with Laplace transform
∫ +∞

0

e−ηtfn(t)dt (3.33)

= γ1


2n+1

n+1∏

j=2

1

21− 1
2n−j+2 η

1
2n−j+2 − 1

γj

− 22− 1
2n η

1
2n−1


 .

Proof The Laplace transform of (3.32) leads to
{

η
1

2n L(x, η)− η
1

2n−1δ(x) = 2
1

2n−2 ∂2L
∂x2

L(0, η) + γ1
∂L(x,η)

∂x

∣∣∣
x=0+

+
∫ +∞
0

e−ηtfn(t)dt = 0
(3.34)

and, by considering the boundedness of the solution, we get

L(x, η) = Be−2
1− 1

2n+1 η
1

2n+1 x, x > 0.

By integrating the first equation in (3.34) on [0, ε] and then letting ε → 0

−η
1

2n−1 = 2
1

2n−2

[
−Bη

1
2n+1 21− 1

2n+1 − ∂L

∂x

∣∣∣∣
x=0+

]
(3.35)

we get

B + γ1

[
η

1
2n−122− 1

2n −Bη
1

2n+1 21− 1
2n+1

]
+

∫ +∞

0

e−ηtfn(t)dt = 0,

which gives

L(x, η) =
e−2

1− 1
2n+1 η

1
2n+1 x

[
η

1
2n−122− 1

2n + 1
γ1

∫ +∞
0

e−ηtfn(t)dt
]

η
1

2n+1 21− 1
2n+1 − 1

γ1

. (3.36)

By equating (3.36) to (3.28) we get

22− 1
2n η

1
2n−1 +

1
γ1

∫ +∞

0

e−ηtfn(t)dt (3.37)

=
2n+1

n+1∏
j=2

(
21− 1

2n−j+2 η
1

2n−j+2 − 1
γj

)
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and (3.33). ¤

Remark 3.3
The results of theorems 3.4 and 3.6 prove that the distribution of processes

like Bel
1 (Bel

2 (...)), obtained by composing independent elastic Brownian motions
are related to fractional differential equations with non-homogeneous elastic
boundary conditions. On the other hand processes of the form Bel

1 (|In−1|)
emerge when an homogeneous boundary condition is considered.

For n = 1 the previous result reduces to Theorem 3.3, since the function fn

appearing in (3.33) coincides with (3.17): indeed we can rewrite it as follows

∫ +∞

0

e−ηtf1(t)dt = γ1


 22

√
2

(√
η − 1

γ2
√

2

) − 23/2

√
η




= γ122

{∫ +∞

0

e−ηt

[
1√
2t

E 1
2 , 1

2

(
1
γ2

√
t

2

)
dt− t−

1
2√

2Γ
(

1
2

)
]

dt

}
.

Therefore we get

f1(t) = 22γ1

[
γ2

t

∞∑

k=0

(
t

2γ2
2

) k+1
2 1

Γ
(

k+1
2

) − γ2t
− 1

2

γ2

√
2Γ

(
1
2

)
]

=
22γ1γ2

t

∞∑

k=1

(
t

2γ2
2

) k+1
2 1

Γ
(

k−1
2 + 1

)

=
22γ1γ2

t

∞∑
r=0

(
t

2γ2
2

) r
2 +1 1

Γ
(

r
2 + 1

)

=
2γ1

γ2
E 1

2 ,1

( √
t√

2γ2

)
,

which coincides with f(t) given in (3.17), obtained by a different approach.
For n = 2, the Laplace transform (3.33) can be still inverted as follows

∫ +∞

0

e−ηtf2(t)dt =

= 23γ1


 1

21− 1
22

(
η

1
4 − 1

γ223/4

)
2

1
2

(
η

1
2 − 1

γ321/2

) − 2−1 1
22 η

1
22
−1




= 23γ1{ 1

2
5
22

∫ +∞

0

e−ηt[
∫ t

0

s−
3
4 E 1

4 , 1
4

(
s1/4

γ223/4

)
(t− s)−

1
2 E 1

2 , 1
2

(
(t− s)1/2

γ321/2

)
ds +

−dt

∫ t

0

s−
3
4 (t− s)−

1
2

Γ
(

1
4

)
Γ

(
1
2

) ds]dt}
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so that we get an explicit form for f2(t) in terms of convolutions of two Mittag-
Leffler functions

f2(t) = 23/4γ1

∫ t

0

s−
3
4 (t−s)−

1
2

[
E 1

4 , 1
4

(
s1/4

γ223/4

)
E 1

2 , 1
2

(
(t− s)1/2

γ321/2

)
− 1

Γ
(

1
4

)
Γ

(
1
2

)
]

ds.

For an arbitrary value of n the form of fn(t) is much more complicated and
can be expressed as convolutions of Mittag-Leffler functions of different order.

4 Fractional diffusion equations with drift and
boundary conditions

In this section we add to the fractional diffusion equation (1.1) a term repre-
senting a drift of intensity µ. The presence of drift in time-fractional diffusion
equations is the source of interesting extensions of the previous results. We thus
examine fractional equations of the form

∂νu

∂tν
= λ2 ∂2u

∂x2
− µ

∂u

∂x

either on the whole line, or on the half-lines [0,+∞) , (−∞, a] and with different
forms of boundary conditions.

The drift makes the consideration of elastic boundary conditions extremely
hard and we restrict ourselves to the reflecting and absorbing barriers only.

The special case ν = 1
2n leads to processes of the following forms: Bµ/λ(|In−1(t)|),

B
µ/λ

(|In−1(t)|) and
+

Bµ/λ(|In−1(t)|), where Bµ/λ, B
µ/λ

and
+

Bµ/λ are, respec-
tively, free, absorbing and reflecting Brownian motions, independent from the
iterated Brownian motion In−1 and endowed with drift µ/λ.

In all these cases, in the limit for n → ∞, we obtain asymmetric distribu-
tions composed by combinations of exponentials where the dependence from t
is cancelled.

We start with the case where only the initial condition is assumed and, for
the sake of simplicity, we write p(x, t) and uν(x, t) instead of p(x, t; 0, 0) and
uν(x, t; 0, 0), when the starting point is x0 = 0.

Theorem 4.1
The following initial value problem, for 0 < ν < 1,

{
∂νu
∂tν = λ2 ∂2u

∂x2 − µ∂u
∂x

u(x, 0) = δ(x)
, x, µ ∈ R, t > 0 (4.1)

is solved by

uµ
ν (x, t) =

1
λtν

∫ +∞

0

e−
(x−µz

λ
)2

2(2λz)

√
2π(2λz)

W−ν,1−ν(− z

λtν
)dz (4.2)

=
∫ +∞

0

pµ(x, z)û2ν(z, t)dz
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where û2ν(z, t) is given in (2.5) and u2ν(z, t) is the solution to (2.6). The kernel
pµ/λ(x, z) represents the transition density of a Brownian motion Bµ/λ with a
drift of intensity µ

λ and an infinitesimal variance equal to 2λ, i.e. coincides with
the solution to {

∂p
∂t = λ ∂2p

∂x2 − µ
λ

∂p
∂x

p(x, 0) = δ(x)
, x, µ ∈ R, λ, t > 0. (4.3)

Proof
By applying to (4.1) the Laplace transform and taking into account that for

the Dzherbashyan-Caputo fractional derivative the following formula holds
∫ +∞

0

e−ηt ∂
νu(x, t)
∂tν

dt

= ην

∫ +∞

0

e−ηtu(x, t)dt−
m−1∑

k=0

ην−1−k ∂ku(x, t)
∂tk

∣∣∣∣
t=0

,

(where m = bνc+ 1), we obtain that
∫ +∞

0

e−ηtdt

∫ +∞

−∞
eiβxuµ

ν (x, t)dx (4.4)

=
ην−1

ην + λ2β2 − iβµ
.

By inverting the Laplace transform we get
∫ +∞

−∞
eiβxuµ

ν (x, t)dx = Eν,1

(−(λ2β2 − iβµ)tν
)

(4.5)

so that the solution can be extracted by inverting the Fourier transform as
follows:

uµ
ν (x, t) (4.6)

=
1
2π

∫ +∞

−∞
e−iβxEν,1

(−(λ2β2 − iβµ)tν
)
dβ

=
1
2π

∫ +∞

−∞
e−iβx dβ

2πi

∫

Ha

ezzν−1

zν + tν [λ2β2 − iβµ]
dz

=
1

2πi

∫

Ha

ezzν−1 dz

2π

∫ +∞

−∞

e−iβx

zν + tν [λ2β2 − iβµ]
dβ

=
1

2πi

∫

Ha

ezzν−1 dz

2π

∫ +∞

−∞
dβ

∫ +∞

0

e−iβx−y[zν+tν(λ2β2−iβµ)]dy

=
∫ +∞

0

dy
1

2πi

∫

Ha

e−yzν

ezzν−1 e
− (x−µtν y)2

2(2tν λ2y)

√
2π(2tνλ2y)

dz

=
∫ +∞

0

e
− (x−µtν y)2

2(2tν λ2y)

√
2π(2tνλ2y)

W−ν,1−ν(−y)dy,
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which gives (4.2), after the change of variable z = tνλy. ¤

Remark 4.1
The previous result shows that uµ

ν (x, t) can be interpreted as the distribution
of the process

T µ
ν (t) = Bµ/λ (|T2ν(t)|) , t > 0 (4.7)

where T2ν(t) is the process whose law is obtained by folding the solution to
the fractional equation (2.6). The drift appears only in the distribution of the
driving Brownian motion Bµ/λ and we note also that if the drift is absent we get
T 0

ν (t) = Tν(t) = B (|T2ν(t)|) (where B = B0), as in Theorem 2.3 of Orsingher
and Beghin (2007).

Remark 4.2
We can derive an alternative expression for the solution uµ

ν (x, t) where, with
respect to (4.2), the roles of time and space are interchanged. We prove that
the following relationship holds

uµ
ν (x, t) =

∫ +∞

0

uµ
2ν(x, z)

e−
z2
4t√
πt

dz, (4.8)

by evaluating the Fourier transform of the r.h.s. of (4.8)

∫ +∞

−∞
eiβx

∫ +∞

0

uµ
2ν(x, z)

e−
z2
4t√
πt

dzdx (4.9)

=
∫ +∞

0

E2ν,1

(− (
λ2β2 − iβµ

)
z2ν

) e−
z2
4t√
πt

dz

=
∞∑

k=0

(− (
λ2β2 − iβµ

))k

Γ(2kν + 1)
√

πt

∫ +∞

0

z2νke−
z2
4t dz

=
∞∑

k=0

(− (
λ2β2 − iβµ

))k√
t

Γ(2kν + 1)
√

πt
22νktνkΓ

(
kν +

1
2

)

=
∞∑

k=0

(− (
λ2β2 − iβµ

)
tν

)k

2kνΓ(2kν)
√

π
22νk

√
π21−2kν Γ (2kν)

Γ (kν)

=
∞∑

k=0

(− (
λ2β2 − iβµ

)
tν

)k

Γ(kν + 1)
=

∫ +∞

−∞
eiβxuµ

ν (x, t)dx.

Formula (4.8) suggests that the solution to (4.1) can be interpreted as the
distribution of the process

T µ
ν (t) = T µ

2ν (|B(t)|) , t > 0, (4.10)

which is an alternative form of (4.7)
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Remark 4.3
We consider now the particular case where ν = 1

2n and λ2 = 2
1

2n−2 (we
maintain λ in the distribution of the driving process, only for typographical
reasons): by applying Theorem 4.1 together with Theorem 2.2 of Orsingher and
Beghin (2007) we can show that uµ

1
2n

(x, t) can be written as

uµ
1

2n
(x, t) =

∫ +∞

0

e−
(x−µz

λ
)2

2(2λz)

√
πλz

û 1
2n−1

(z, t)dz (4.11)

= 2n

∫ +∞

0

e−
(x−µz

λ
)2

2(2λz)

√
πλz





∫ +∞

0

e−
z2

2w1√
2πw1

dw1...

∫ +∞

0

e−
w2

n−1
2t√

2πt
dwn−1



 dz

and thus can be interpreted as the distribution of the process

T µ
1

2n
(t) = Bµ/λ (|In−1(t)|) , t > 0. (4.12)

In particular, for n = 1, the process (4.12) coincides with the iterated Brow-
nian motion B

µ/λ
1 (|B2(t)|) , where the driving process possesses drift equal to

µ/λ.

Remark 4.4
In order to study the asymptotic behavior of the solution we specialize the

Fourier transform (4.5) of uµ
ν (x, t) for ν = 1

2n and let n →∞, so that we get

lim
n→∞

∫ +∞

−∞
eiβxuµ

1
2n

(x, t)dx (4.13)

= lim
n→∞

E 1
2n ,1

(
−(λ2β2 − iβµ)t

1
2n

)

= E0,1

(−(λ2β2 − iβµ)
)

=
1

1 + λ2β2 − iβµ
.

By taking the inverse Fourier transform of (4.13) we obtain that

lim
n→∞

uµ
1

2n
(x, t) =

1
2π

∫ +∞

−∞

e−iβx

1 + µ2

4λ2 +
(
λβ − iµ

2λ

)2 dβ (4.14)

=
[
w = λβ − iµ

2λ

]

=
1

2πλ

∫ +∞

−∞

e−
ix
λ [w+ iµ

2λ ]

1 + µ2

4λ2 + w2
dw

=


y =

w√
1 + µ2

4λ2
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=
e

µx

2λ2

2πλ

∫ +∞

−∞

1√
1 + µ2

4λ2

e−
ixy
λ

√
1+ µ2

4λ2

1 + y2
dy

=
e

µx

2λ2

2λ
√

1 + µ2

4λ2

e−
|x|
λ

√
1+ µ2

4λ2 =
e

1
2λ2

[
µx−|x|

√
4λ2+µ2

]

√
4λ2 + µ2

=





e
− x

2λ2 [
√

4λ2+µ2−µ]√
4λ2+µ2

x > 0

e
x

2λ2 [
√

4λ2+µ2+µ]√
4λ2+µ2

x < 0
.

Formula (4.14) coincides with the solution of the limiting equation

u = λ2 ∂2u

∂x2
− µ

∂u

∂x

obtained from (4.1), for ν = 1
2n , with limn→∞ ∂1/2n

u
∂t1/2n = u, as should be.

We recognize in (4.14) an asymmetric exponential random variable X (in-
dependent from t) and we evaluate below its moments. By denoting A =√

4λ2+µ2−µ

2λ2 and B =
√

4λ2+µ2+µ

2λ2 we obtain the mean value as follows

EX =
1√

4λ2 + µ2

[∫ +∞

0

xe−xAdx +
∫ 0

−∞
xexBdx

]

=
1√

4λ2 + µ2

[
1

A2
− 1

B2

]

=
1√

4λ2 + µ2




(
2λ2

√
4λ2 + µ2 − µ

)2

−
(

2λ2

√
4λ2 + µ2 + µ

)2



=
22λ4

√
4λ2 + µ2




(√
4λ2 + µ2 + µ

)2

(4λ2)2
−

(√
4λ2 + µ2 − µ

)2

(4λ2)2




=
22µ

√
4λ2 + µ2

22
√

4λ2 + µ2
= µ.

Analogously, for the second moment we get

EX2 =
1√

4λ2 + µ2

[∫ +∞

0

x2e−xAdx +
∫ 0

−∞
x2exBdx

]

=
1√

4λ2 + µ2

[∫ +∞

0

x2e−xAdx +
∫ +∞

0

x2e−xBdx

]

=
2√

4λ2 + µ2

[
1

A3
+

1
B3

]
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=
2√

4λ2 + µ2




(
2λ2

√
4λ2 + µ2 − µ

)3

+

(
2λ2

√
4λ2 + µ2 + µ

)3



=
24λ6

√
4λ2 + µ2




(√
4λ2 + µ2 + µ

)3

(4λ2)3
+

(√
4λ2 + µ2 − µ

)3

(4λ2)3




=
1

22
√

4λ2 + µ2

[
2(

√
4λ2 + µ2)3 + 3 · 2µ2

√
4λ2 + µ2

]

=
1
2

[
4λ2 + µ2 + 3µ2

]
= 2(λ2 + µ2).

The variance of the asymmetric exponential random variable is therefore
equal to V arX = 2λ2 + µ2. We can arrive at the same conclusion by taking the
derivatives of the function (4.13) for β = 0.

We consider now the time-fractional diffusion equation with drift µ, subject
to reflecting boundary conditions. We will study two different formulations of
this problem: in the first one we impose the following condition

µu(0, t) = λ2 ∂u

∂x

∣∣∣∣
x=0+

, (4.15)

which reveals the presence of a reflecting barrier in the origin.
Moreover we assume that our motion starts now from a point x0 > 0, so

that we modify the initial condition as follows

u(x, 0) = δ(x− x0), x0 > 0. (4.16)

Theorem 4.2
The solution to the following Cauchy problem, for 0 < ν < 1,





∂νu
∂tν = λ2 ∂2u

∂x2 − µ∂u
∂x

µu(0, t) = λ2 ∂u
∂x

∣∣
x=0+

u(x, 0) = δ(x− x0)
, x, µ ∈ R, t, x0 > 0 (4.17)

coincides with
+
u

µ

ν (x, t; x0, 0) (4.18)

=
1

λtν

∫ +∞

0

W−ν,1−ν(− z

λtν
){e−

(x−x0−µ
λ

z)2

2(2λz)

√
2π(2λz)

+ e−
x0µ

λ2
e−

(x+x0−µ
λ

z)2

2(2λz)

√
2π(2λz)

+

− µ

λ2

∫ −x0

−∞
e

µw

λ2
e−

(x−w−µ
λ

z)2

2(2λz)

√
2π(2λz)

dw}dz

=
∫ +∞

0

+
p

µ/λ

(x, z; x0, 0)û2ν(z, t)dz
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where û2ν is defined in (2.5).
Proof We first give the general solution to (4.17), obtained by means of the
method of separation of variables. For uν(x, t) = X(t)T (t), we have the ordinary
differential equations

∂νT

∂tν
= −β2T (4.19)

and
λ2X ′′ − µX ′ + β2X = 0, (4.20)

whose solutions are
{

X(x) = e
xµ

2λ2

(
Ae

x
2λ2

√
µ2−4λ2β2

+ Be−
x

2λ2

√
µ2−4λ2β2

)

T (t) = CEν,1(−β2tν)
.

We can therefore write the general solution as

uν(x, t) (4.21)

= e
xµ

2λ2

{∫ +∞

−∞
Eν,1(−β2tν)

[
Ae

x
2λ2

√
µ2−4λ2β2

+ Be−
x

2λ2

√
µ2−4λ2β2

]
dβ

}

=
[
γ2 = 4λ2β2 − µ2

]

= e
xµ

2λ2

∫ +∞

−∞
Eν,1(

(
− tν

4λ2

(
µ2 + γ2

)) [
A(γ)e

iγx

2λ2 + B(γ)e−
iγx

2λ2

]
dγ.

By imposing the conditions in (4.17) we get

+
u

µ

ν (x, t; x0, 0) (4.22)

=
e

µ(x−x0)
2λ2

2π(2λ2)

∫ +∞

−∞
Eν,1(− tν

4λ2

(
µ2 + β2

)
)

{
e

iβ

2λ2 (x−x0) + e−
iβ

2λ2 (x+x0) − 2µe−
iβ

2λ2 (x+x0)

iβ + µ

}
dβ,

since the unknown constants must be in this case

B =
iβ − µ

iβ + µ
A

and

A =
e−

iβx0
2λ2 e−

µx0
2λ2

2π(2λ2)
.

36



The third term in (4.22) can be developed as follows

−2µe
µ(x−x0)

2λ2

2π(2λ2)

∫ +∞

−∞
Eν,1(− tν

4λ2

(
µ2 + β2

)
)
e−

iβ

2λ2 (x+x0)

iβ + µ
dβ

= −2µe
µ(x−x0)

2λ2

2π(2λ2)

∫ +∞

−∞

e−
iβ

2λ2 (x+x0)dβ

i(β − iµ)
1

2πi

∫

Ha

ezzν−1dz

∫ +∞

0

e−y[zν+ tν

4λ2 (µ2+β2)]dy

= [β − iµ = v]

= −2µe
µ(x−x0)

2λ2

2π(2λ2)

∫ +∞

0

e−
ytν µ2

4λ2 dy
1

2πi

∫

Ha

ezzν−1e−yzν

dz

∫ +∞

−∞

e−
ytν

4λ2 (iµ+v)2

iv
e−

i(x+x0)
2λ2 (iµ+v)dv

= −2µe
µ(x−x0)+µ(x+x0)

2λ2

2π(2λ2)

∫ +∞

0

dy

2πi

∫

Ha

ezzν−1e−yzν

dz

∫ +∞

−∞

e−
ytν

4λ2 (v2+2µvi)

iv
e−

iv(x+x0)
2λ2 dv

= − 2µe
µx

λ2

2π(2λ2)

∫ +∞

0

dy

2πi

∫

Ha

ezzν−1e−yzν

dz

∫ +∞

−∞

e−
iv(x+x0)

2λ2

iv
dv ·

·
∫ +∞

−∞
eivw e

−
(

w+ µytν

2λ2

)2 2λ2
2ytν

√
2π tνy

2λ2

dw

= −µe
µx

λ2

λ2

∫ +∞

0

W−ν,1−ν(−y)dy

∫ +∞

−∞

e
−

(
w+ µytν

2λ2

)2 2λ2
2ytν

√
2π tνy

2λ2

dw

2π

∫ +∞

−∞

eivw−iv
x+x0
2λ2

iv
dv

= −µe
µx

λ2

λ2

∫ +∞

0

W−ν,1−ν(−y)dy

∫ +∞

−∞

e
−

(
w+ µytν

2λ2

)2 2λ2
2ytν

√
2π tνy

2λ2

H x+x0
2λ2

(w)dw

= −µe
µx

λ2

λ2

∫ +∞

0

W−ν,1−ν(−y)dy

∫ +∞

x+x0
2λ2

e
−

(
w+ µytν

2λ2

)2 2λ2
2ytν

√
2π tνy

2λ2

dw

=
[
2λ2w = x− w′

]

= −µe
µx

λ2

λ2

∫ +∞

0

W−ν,1−ν(−y)dy

∫ −x0

−∞

e
− (x−w+µytν)2

2(2λ2tν y)

√
2π(2λ2tνy)

dw

= − µ

λ2

∫ +∞

0

W−ν,1−ν(−y)dy

∫ −x0

−∞
e

µw

λ2
e
− (x−w−µytν)2

2(2λ2tν y)

√
2π(2λ2tνy)

dw.
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As far as the first term in (4.22) is concerned, we can write it as

e
µ(x−x0)

2λ2

2π(2λ2)

∫ +∞

−∞
e

iβ

2λ2 (x−x0)dβ
1

2πi

∫

Ha

ezzν−1dz

∫ +∞

0

e−y[zν+ tν

4λ2 (µ2+β2)]dy

=
e

µ(x−x0)
2λ2

2λ2

∫ +∞

0

e−
ytν µ2

4λ2
dy

2πi

∫

Ha

ezzν−1e−yzν

dz

∫ +∞

−∞

e
iβ

2λ2 (x−x0)

2π
e−

ytν

4λ2 β2
dβ

= e
µ(x−x0)

2λ2

∫ +∞

0

e−
ytν µ2

4λ2 W−ν,1−ν(−y)dy

∫ +∞

−∞

eiβ(x−x0)

2π
e−

y2λ2tν

2 β2
dβ

= e
µ(x−x0)

2λ2

∫ +∞

0

e−
ytν µ2

4λ2
e
− (x−x0)2

2(2λ2tν y)

√
2π(2λ2tνy)

W−ν,1−ν(−y)dy

=
∫ +∞

0

e
− (x−x0−µtν y)2

2(2λ2tν y)

√
2π(2λ2tνy)

W−ν,1−ν(−y)dy.

Analogously the second term becomes

e−
x0µ

λ2

∫ +∞

0

e
− (x+x0−µtν y)2

2(2λ2tν y)

√
2π(2λ2tνy)

W−ν,1−ν(−y)dy,

so that the solution coincides with (4.18), after the change of variable y = z/λtν .
¤

Remark 4.5
Let us check that (4.18) integrates to one, with respect to x: it is sufficient

to calculate the integral below
∫ +∞

0

+
p

µ/λ

(x, z;x0, 0)dx (4.23)

=
∫ +∞

0

e−
(x−x0−µ

λ
z)2

2(2λz)

√
2π(2λz)

dx + e−
x0µ

λ2

∫ +∞

0

e−
(x+x0−µ

λ
z)2

2(2λz)

√
2π(2λz)

dx +

− µ

λ2

∫ +∞

0

dx

∫ −x0

−∞
e

µw

λ2
e−

(x−w−µ
λ

z)2

2(2λz)

√
2π2(2λz)

dw

=
∫ +∞

− x0+ µ
λ

z√
2λz

e−
y2

2√
2π

dy + e−
x0µ

λ2

∫ +∞

x0−µ
λ

z√
2λz

e−
y2

2√
2π

dy +

− µ

λ2

∫ −x0

−∞
e

µw

λ2 dw

∫ +∞

−w+ µ
λ

z√
2λz

e−
y2

2√
2π

dy

The last integral in (4.23) can be rewritten, by inverting the order of inte-
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gration, as follows

− µ

λ2

∫ +∞

x0−µ
λ

z√
2λz

e−
y2

2√
2π

dy

∫ −x0

−
√

2λzy−µ
λ z

e
µw

λ2 dw (4.24)

= −e
µx0
λ2

∫ +∞

x0−µ
λ

z√
2λz

e−
y2

2√
2π

dy +
∫ +∞

x0−µ
λ

z√
2λz

e−
y2

2 − µ

λ2 (
√

2λzy+ µ
λ z)

√
2π

dy

= −e
µx0
λ2

∫ +∞

x0−µ
λ

z√
2λz

e−
y2

2√
2π

dy +
∫ +∞

x0+ µ
λ

z√
2λz

e−
y2

2√
2π

dy,

where, in the last step, the following change of variable

y′ = y +
2µz

λ

1√
2λz

has been introduced. By putting pieces together we have that (4.23) and thus
(4.18) both integrate to one.

The solution (4.18) is thus a proper probability density and coincides with

the distribution of the process
+

Bµ/λ (|T2ν(t)|), which for ν = 1
2n becomes

+

Bµ/λ (|In−1(t)|) .
It can also be expressed in terms of the solution of equation (4.1) (without
boundary conditions) as follows

+
u

µ

ν (x, t;x0, 0) (4.25)

= uµ
ν (x, t; x0, 0) + e−

x0µ

λ2 uµ
ν (x, t;−x0, 0) +

− µ

λ2

∫ −x0

−∞
e

µw

λ2 uµ
ν (x, t; w, 0).

Formula (4.25) shows that the solution of the boundary-value problem en-
visaged in Theorem 4.2 can be constructed by superposing solutions of equation
(4.1) emanating from the sources at x = x0 (with unit intensity), at x = −x0

(with intensity e−
x0µ

λ2 ) and a continuum of negative sources of exponentially
decaying intensity placed on the half-line (−∞,−x0) .

For ν = 1, formula (4.25) represents the distribution of a reflecting Brownian
motion with drift expressed in terms of the transition function of a free Brownian
motion.

Remark 4.6
In the case where the equation (4.1) is subject to the absorbing condition

u(0, t) = 0, it can be proved with little effort that the solution to the corre-
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sponding boundary-value problem reads

uµ
ν (x, t;x0, 0) (4.26)

=
1

λtν

∫ +∞

0

W−ν,1−ν(− z

λtν
){e−

(x−x0−µ
λ

z)2

2(2λz)

√
2π(2λz)

− e−
x0µ

λ2
e−

(x+x0−µ
λ

z)2

2(2λz)

√
2π(2λz)

}dz

=
∫ +∞

0

pµ/λ(x, z;x0, 0)û2ν(z, t)dz.

The second boundary-value problem with a reflecting barrier that we will
consider is expressed by the following condition

∂u

∂x

∣∣∣∣
x=a

− µu(a, t) = 0,

which means that a reflecting barrier is placed in a. We also assume that the
motion starts from zero.

Theorem 4.3
The solution to the following problem, for 0 < ν < 1,





∂νu
∂tν = λ2 ∂2u

∂x2 − µ∂u
∂x

u(x, 0) = δ(x)
∂u
∂x

∣∣
x=a

− µu(a, t) = 0
, x < a, t > 0, (4.27)

is given by

+
u

µ,a

ν (x, t) (4.28)

=
∫ +∞

0


e−

(x−µz
λ

)2

4λz√
4πλz

+ e
aµ

λ2
e−

(x−2a−µz
λ

)2

4λz√
4πλz


 û2ν(z, t)dz +

+
µ

λ2

∫ +∞

0

[∫ +∞

2a

e
µ

λ2 (v−a) e
−(x−v−y µ

λ )2 1
4λy

√
4πyλ

dv

]
û2ν(y, t)dy,

where û2ν(y, t) coincides with (2.5).
Proof The general solution to equation (4.27) can be written down as in (4.21)
and then

∂u

∂x
(4.29)

=
µe

µx

2λ2

2λ2

∫ +∞

−∞
Eν,1

(
− tν

4λ2

(
µ2 + γ2

)) [
A(γ)e

iγx

2λ2 + B(γ)e−
iγx

2λ2

]
dγ

+e
µx

2λ2

∫ +∞

−∞
Eν,1

(
− tν

4λ2

(
µ2 + γ2

))[
iγ

2λ2
A(γ)e

iγx

2λ2 − iγ

2λ2
B(γ)e−

iγx

2λ2

]
dγ

=
e

µx

2λ2

2λ2

∫ +∞

−∞
Eν,1

(
− tν

4λ2

(
µ2 + γ2

))[
A(γ)

2
(µ + iγ)e

iγx

2λ2 +
B(γ)

2
(µ− iγ)e−

iγx

2λ2

]
dγ.
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Therefore, by applying the conditions in (4.27), we get the following rela-
tionship between the unknown constants

[
1
2

(µ + iγ)− µ

]
Ae

iγ

2λ2 a = −
[
1
2

(µ− iγ)− µ

]
Be−

iγ

2λ2 a

B =
−µ + iγ

µ + iγ
e

iγ

λ2 aA

A =
1
2π

1
2λ2

.

We insert the previous expression into (4.29) and then put γ′ = γ+iµ
2λ2 so that

we get

+

uµ,a
ν (x, t) (4.30)

=
e

µx

2λ2

4πλ2

∫ +∞

−∞
Eν,1

(
− tν

4λ2

(
µ2 + γ2

)) [
eiγx + e−

iγ(x−2a)
2λ2 − 2µ

µ + iγ
e−

iγ(x−2a)
2λ2

]
dγ

=
∫ +∞

0


e−

(x−µz
λ

)2

4λz√
4πλz

+ e
aµ

λ2
e−

(x−2a−µz
λ

)2

4λz√
4πλz


 û2ν(z, t)dz +

−2µe
µx

2λ2

4πλ2

∫ +∞

−∞
Eν,1

(
− tν

4λ2

(
µ2 + γ2

)) dγ

µ + iγ
e−

iγ(x−2a)
2λ2 ,

where, for the first term we have applied (4.6).
The last line in (4.30) can be rewritten as

−2µe
µx

2λ2

4πλ2

∫ +∞

−∞

dγ

µ + iγ
e

iγ(2a−x)
2λ2

[
1

2πi

∫

Ha

ezzν−1

zν + tν

4λ2 (µ2 + γ2)
dz

]
(4.31)

= −2µe
µx

2λ2

4πλ2

∫ +∞

0

dy

∫ +∞

−∞

dγ

µ + iγ
e

iγ(2a−x)
2λ2

1
2πi

∫

Ha

ezzν−1e−y[zν+ tν

4λ2 (µ2+γ2)]dz

=
∫ +∞

0

e−
ytν µ2

4λ2

2πi
dy

∫

Ha

ezzν−1e−yzν

dz

∫ +∞

−∞

(
−µe

µx

2λ2

λ2

)
1
2π

dγ

µ + iγ
e

iγ(2a−x)
2λ2 e−

ytν γ2

4λ2 .

The last integral in (4.31) can be evaluated as follows

−µe
µx

2λ2

λ2

1
2π

∫ +∞

−∞

e
iγ(2a−x)

2λ2

i(γ − iµ)
e−

ytν γ2

4λ2 dγ (4.32)

= [γ − iµ = w]

= −µe
µx

2λ2

λ2

e
µ(x−2a)

2λ2

2π

∫ +∞

−∞

eiw
(2a−x)

2λ2

iw
e−

ytν (iµ+w)2

4λ2 dw

= − µ

λ2

e
2µ(x−a)

2λ2 + ytν µ2

4λ2

2π

∫ +∞

−∞

eiw
(2a−x)

2λ2 −iw ytν µ

2λ2

iw
e−

ytν w2

4λ2 dw
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= − µ

λ2

e
2µ(x−a)

2λ2 + ytν µ2

4λ2

2π

∫ +∞

−∞

eiw
(2a−x)

2λ2

iw
dw

∫ +∞

−∞
eiwz e−(z+ ytν µ

2λ2 )2 λ2
ytν

√
2π ytν

2λ2

dz

= − µ

λ2

e
2µ(x−a)

2λ2 + ytν µ2

4λ2

2π

∫ +∞

−∞

e−(z+ ytν µ

2λ2 )2 λ2
ytν

√
2π ytν

2λ2

dz

∫ +∞

−∞
eiwz eiw

(2a−x)
2λ2

iw
dw

=
µ

λ2
e

2µ(x−a)
2λ2 + ytν µ2

4λ2

∫ +∞

−∞

e−(z+ ytν µ

2λ2 )2 λ2
ytν

√
2π ytν

2λ2

H 2a
2λ2

( x

2λ2
− z

)
dz

=
[
v =

x

2λ2
− z

]

=
µ

λ2
e

2µ(x−a)
2λ2 + ytν µ2

4λ2

∫ +∞

−∞

e−( x
2λ2−v+ ytν µ

2λ2 )2 λ2
ytν

√
2π ytν

2λ2

H 2a
2λ2

(v) dv

=
µ

λ2
e

2µ(x−a)
2λ2 + ytν µ2

4λ2

∫ +∞

2a
2λ2

e−( x
2λ2−v+ ytν µ

2λ2 )2 λ2
ytν

√
2π ytν

2λ2

dv

=
µ

λ2
e

2µ(x−a)
2λ2 + ytν µ2

4λ2

∫ +∞

2a

e
−(x−v+ytνµ)2 1

4λ2ytν

√
4πytνλ2

dv

=
µ

λ2
e

ytν µ2

4λ2

∫ +∞

2a

e
−(x−v−ytνµ)2 1

4λ2ytν

√
4πytνλ2

e
µ

λ2 (v−a)dv.

In the last step we have carried out the following manipulations:

(x− v + ytνµ)2 − 4µ(x− a)tνy − y2t2νµ2

= (x− v − ytνµ + 2ytνµ)2 − 4µ(x− a)tνy − y2t2νµ2

= (x− v − ytνµ)2 + 4ytνµ(x− v − ytνµ)− 4µ(x− a)tνy + 3y2t2νµ2

= (x− v − ytνµ)2 + 4ytνµ(−v + a)− y2t2νµ2.
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By inserting (4.32) into (4.31) we get

µ

λ2

∫ +∞

0

dy

2πi

∫

Ha

ezzν−1e−yzν

dz

∫ +∞

2a

e
−(x−v−ytνµ)2 1

4λ2ytν

√
4πytνλ2

e
µ

λ2 (v−a)dv

=
µ

λ2

∫ +∞

0

W−ν,1−ν(−y)dy

∫ +∞

2a

e
−(x−v−ytνµ)2 1

4λ2ytν

√
4πytνλ2

e
µ

λ2 (v−a)dv (4.33)

=
µ

λ2

∫ +∞

2a

e
µ

λ2 (v−a)dv

∫ +∞

0

W−ν,1−ν(−y)
e
−(x−v−ytνµ)2 1

4λ2ytν

√
4πytνλ2

dy

=
µ

λ2

∫ +∞

2a

e
µ

λ2 (v−a)dv

∫ +∞

0

1
λtν

W−ν,1−ν(− y′

λtν
)
e
−(x−v−y′ µ

λ )2 1
4λy′

√
4πy′λ

dy′

=
µ

λ2

∫ +∞

2a

e
µ

λ2 (v−a)dv

∫ +∞

0

û2ν(y, t)
e−(x−v−y µ

λ )2 1
4λy

√
4πyλ

dy.

Finally we substitute the last line of (4.30) with (4.33) and we obtain (4.28).
¤

Remark 4.7
The comments following Theorem 4.2 can easily be adapted to the solutions

of diffusion equation (4.27) with reflecting boundary conditions at x = a and
starting point x = 0.

Finally let us consider the case where, together with the presence of a drift,
an absorbing barrier is assumed in a > 0.

Theorem 4.4
The solution to the following boundary-initial value problem, for a > 0 and

0 < ν < 1, 



∂νu
∂tν = λ2 ∂2u

∂x2 − µ∂u
∂x

u(x, 0) = δ(x)
u(a, t) = 0

, x < a, t > 0, (4.34)

is given by

uµ,a
ν (x, t) (4.35)

=
∫ +∞

0


 e−

(x−µ
λ

z)2

2(2λz)

√
2π(2λz)

− e
aµ

λ2
e−

(x−2a−µ
λ

z)2

2(2λz)

√
2π(2λz)


 û2ν(z, t)dz.

Proof
The application of the boundary and initial conditions to (4.21) leads to

B(γ) = −A(γ)e
xγa

λ2 A(γ) =
1

2π(2λ2)
.

Thus the solution to (4.34) reads
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uµ,a
ν (x, t) (4.36)

=
e

xµ

2λ2

4πλ2

{∫ +∞

−∞
Eν,1

(
− tν

4λ2

(
µ2 + γ2

)) [
e

iγx

2λ2 − e−
iγ(x−2a)

2λ2

]
dγ

}

=
e

xµ

2λ2

4πλ2

∫ +∞

−∞

[
e

iγx

2λ2 − e−
iγ(x−2a)

2λ2

] dγ

2πi

∫

Ha

ezzν−1dz

∫ +∞

0

e−y(zν+ tν

4λ2 (µ2+γ2)dy

=
e

xµ

2λ2

2λ2

∫ +∞

0

e−y tν

4λ2 µ2 dy

2πi

∫

Ha

ez−yzν

zν−12λ2


 e

− x2

2(2ytν λ2)

√
2π(2ytνλ2)

− e
− (x−2a)2

2(2ytν λ2)

√
2π(2ytνλ2)


 dz

=
∫ +∞

0

e−y tν µ2

4λ2


 e

− (x−µytν )2

2(2ytν λ2)

√
2π(2ytνλ2)

− e
aµ

λ2
e
− (x−2a−µytν )2

2(2ytν λ2)

√
2π(2ytνλ2)


 e

µ2tν y

4λ2
dy

2πi

∫

Ha

ez−yzν

zν−1dz

=
[
z = yλ2tν

]

=
1

λtν

∫ +∞

0


 e−

(x−µ
λ

z)2

2(2λz)

√
2π(2λz)

− e
aµ

λ2
e−

(x−2a−µ
λ

z)2

2(2λz)

√
2π(2λz)


 W−ν,1−ν(− z

λtν
)dz,

for x < a, which coincides with (4.35). ¤

Remark 4.8
Formula (4.35) suggests the following interpretation for the process governed

by (4.34):
T a,µ

ν (t) = B
a,µ/λ

(|T2ν(t)|) , t > 0, (4.37)

where B
a,µ/λ

denotes a Brownian motion with drift of intensity µ/λ and an
absorbing barrier. We note that result (4.37) is analogue to (4.7).

The survival probability of the process (4.37) is equal to 1−eaµ/λ2
for µ < 0,

as can be ascertained from (4.35), by means of the transformation w = x−µytν√
2ytνλ2

and letting t → +∞.

Remark 4.9
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If we assume that ν = 1
2n and λ2 = 2

1
2n−2, from (4.35) we get

ua,µ
1

2n
(x, t) (4.38)

=
∫ +∞

0


e−

(x−µ
λ

z)2

2(2λz)

√
4πλz

− e
aµ

λ2
e−

(x−2a−µ
λ

z)2

2(2λz)

√
4πλz


 û 1

2n−1
(z, t)dz

= 2n

∫ +∞

0

[
e−

(x−µ
λ

z)2

2(2λz) − e
aµ

λ2−
(x−2a−µ

λ
z)2

2(2λz)

]

√
4πλz

·

·




∫ +∞

0

e−
z2

2w1√
2πw1

dw1...

∫ +∞

0

e−
w2

n−1
2t√

2πt
dwn−1



 dz,

which represents the counterpart of (4.11), when an absorbing barrier at x = a
is considered (we have left λ in the density of the driving process, only for
typographical reasons). Therefore in this case the process can be expressed as

T a,µ
1

2n
(t) = B

a,µ/λ
(|In−1(t)|) , t > 0. (4.39)

Remark 4.10 We study the limiting behavior of (4.35) for ν = 1
2n and n →∞,

for arbitrary values of λ. By considering the last line of (4.36), we obtain the
following asymptotic distribution

lim
n→∞

ua,µ
1

2n
(x, t) (4.40)

=
1
λ

∫ +∞

0


e−

(x−µ
λ

z)2

2(2λz)

√
4πλz

− e
aµ

λ2
e−

(x−2a−µ
λ

z)2

2(2λz)

√
4πλz


 e−

z
λ dz

=
e

µx

2λ2

λ

∫ +∞

0

e−
x2
4λz−µ2z

4λ3− z
λ

√
4πλz

dz − e
aµ

λ2
e

µ(x−2a)
2λ2

λ

∫ +∞

0

e−
(x−2a)2

4λz −µ2z

4λ3− z
λ

√
4πλz

dz

=
e

µx

2λ2

λ

e
− |x|√

2λ

√
2
λ

(
1+ µ2

4λ2

)

2
√

1 + µ2

4λ2

− e
aµ

λ2
e

µ(x−2a)
2λ2

λ

e
− |x−2a|√

2λ

√
2
λ

(
1+ µ2

4λ2

)

2
√

1 + µ2

4λ2

=
e

µx

2λ2

√
4λ2 + µ2

[
e−

|x|
λ

√
1+ µ2

4λ2 − e−
|x−2a|

λ

√
1+ µ2

4λ2

]
,

for x < a.
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We integrate the previous expression in (−∞, a) , for a > 0, and we get

∫ 0

−∞

e
x

(
µ

2λ2 + 1
λ

√
1+ µ2

4λ2

)

√
4λ2 + µ2

dx +
∫ a

0

e
x

(
µ

2λ2− 1
λ

√
1+ µ2

4λ2

)

√
4λ2 + µ2

dx + (4.41)

−e−
2a
λ

√
1+ µ2

4λ2

√
4λ2 + µ2

∫ a

−∞
e
x

(
µ

2λ2 + 1
λ

√
1+ µ2

4λ2

)

dx

=
1√

4λ2 + µ2

1
µ

2λ2 − 1
λ

√
1 + µ2

4λ2

[
e
a

(
µ

2λ2− 1
λ

√
1+ µ2

4λ2

)

− 1

]
+

+
1√

4λ2 + µ2

1
µ

2λ2 + 1
λ

√
1 + µ2

4λ2

[
1− e

a

(
µ

2λ2− 1
λ

√
1+ µ2

4λ2

)]

= 1− e
a

(
µ

2λ2− 1
λ

√
1+ µ2

4λ2

)

.
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