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Abstract Consider a set of potential facility locations partitioned into non-
empty disjoint subsets, called clusters. The cost for using a facility is a sto-
chastic variable given by the sum of a deterministic cost associated to each
cluster plus a random term with unknown probability distribution which
represents the heterogeneity of the costs inside the cluster. The Stochastic
p-Median Problem with Unknown Cost Probability Distribution consists in
finding the location of p facilities, each belonging to one cluster, which min-
imizes the expected total cost. A large number of real-life situations can be
modeled in such a way. Using the method of the asymptotic approximations
derived from the extreme value theory the expected optimal value of the allo-
cation variables is shown to be a multinomial Logit model. The optimal value
of the location variables is then obtained by solving an integer deterministic
nonlinear problem.
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“Sapienza” - Università di Roma - Rome (ITALY)
Tel.: +39 06 49910904
Fax: +39 06 4959241
E-mail: nicoletta.ricciardi@uniroma1.it

Guido Perboli
Politecnico di Torino - Turin (ITALY)
Tel.: +39 011 0907097
Fax: +39 011 0907099
E-mail: guido.perboli@polito.it



2 R. Tadei, N. Ricciardi and G. Perboli

Mathematics Subject Classification (2000) 90B80 · 91B70 · 60G70 ·
41A60

1 Introduction

Given a set of customers, a set of potential facility locations, partitioned into
n nonempty disjoint subsets called clusters, and stochastic costs with un-
known probability distribution, the Stochastic p-Median Problem with Un-
known Cost Probability Distribution (SpMP −UCPD) consists in finding p,
with p ≤ n, facility locations, no more than one per cluster, which minimize
the expected total cost. The stochastic costs are given by the sum of a deter-
ministic cost associated to each cluster plus a random term, with unknown
probability distribution, which represents the cost heterogeneity inside each
cluster.

A large number of real-life situations can be satisfactorily modeled as
SpMP −UCPD. For instance, this problem may arise in marketing, where a
producer wishes to bring out a mix of p products which maximizes his profit
(see Section 2 for details). Further, it may apply in any context where random
utility choices are to be considered (e.g. transport planning, residential choice,
service location, etc.).

Moreover, the SpMP − UCPD may appear as a subproblem in many
approaches for several combinatorial optimization problems, like stochastic
scheduling and routing. Because of that, finding good methods for coping
with this problem may help to better solve stochastic scheduling and routing
problems also.

Various results on the p-median problem on stochastic networks are given
in the literature ([19], [20], [21], [23] and [31]). When the stochastic network
is a tree, Mirchandani and Oudjit [24] use a selective enumeration approach
for solving the 2-median problem.

The uncertainty in the p-median problem concerns mainly the weights,
which are considered as random variables. In particular, there are studies
where the probability that the objective function exceeds a given threshold
is minimized ([3], [4], [7]), others which analyze either the probability to have
particular optimal solutions ([32], [10], [9]) or the uncertainty about future
weights ([11], [8]). A different stream of studies concerns the uncertainty of
the locations. In particular, future locations [15] or the number of facilities
in the future [1] are considered.

In several papers dealing with uncertainty in the p-median problem, as-
sumptions on the type of the cost probability distribution are given (either
the probability distribution is known or a finite number of possible states,
each occuring with non-zero probability, is assumed). Unfortunately, in many
real-life situations the exact shape of this distribution is unknown.

Very good surveys on the p-median problem both deterministic and sto-
chastic can be found in [22], [30] and [2]. For a more general and very recent
survey on location analysis see [26].

In a very recent paper dedicated to the memory of Charles ReVelle [27]
the authors identify some new fields which they claim to be particularly
promising in location theory. They are:
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– different structures of customer demand
– models ranging from gravity types to Logit functions (which appear to

the authors to be most promising in the context of location modeling, see
e.g. [25]), and

– congestion along the roads and at the facilities.

This paper involves both the first and the second field. In fact, it con-
siders a random evaluation of the facilities by the customers (so a different
structure of customer demand) proving that, under a quite mild and reason-
able assumption on the shape of the unknown cost probability distribution
and the number of the potential facility locations, the probability distribu-
tion of the minimum cost becomes a Gumbel (or double exponential) one.
Moreover, using such a distribution, a multinomial Logit function for the al-
location variables (i.e. the variables which allocate demand to supply) of the
p-median problem is derived. We observe that the multinomial Logit function
has been proved to be particularly suitable to describe the dispersion, due to
the cost stochasticity, of the customer preferences among the facilities [6].

The remainder of the paper is organized as follows. In Section 2 the
SpMP −UCPD is introduced. In Section 3 the stochastic minimum cost for
any customer is considered and its, still unknown, probability distribution is
given. In Section 4 by applying the method of the asymptotic approximations
it is proved that the above unknown distribution becomes a Gumbel (or
double exponential) distribution. In Section 5 the expected optimal value of
the allocation variables is shown to be a multinomial Logit model. An integer
deterministic nonlinear problem to find the optimal location of the p facilities
is derived in Section 6. Finally, the conclusions of our work are reported in
Section 7.

2 Problem definition

Let V be the set of customers and U the set of potential facility locations,
partitioned into n nonempty disjoint subsets U1, ..., Un, called clusters.

Let rk
ij be the stochastic cost that customer iεV pays for using facility

jεUk, k = 1, ..., n.
We assume

rk
ij = ck + θij , iεV, jεUk, k = 1, ..., n, (1)

i.e., rk
ij is the sum of ck, a deterministic cost equal for any facility jεUk

(and for any customer iεV ), and θij , a stochastic variable representing the
heterogeneity of the cost paid by customer iεV for using any facility j, i.e. a
deviation (positive or negative) from the deterministic costs ck.

In practice, as the number of customers and potential facility locations is
usually very high, it is impossible to observe and measure the deviations θij .

Since the random terms θij are not observable, their probability distri-
bution is in general unknown, and any tight assumption about it would be
arbitrary.

Let us assume θij are independent and identically distributed (i.i.d.) ran-
dom variables with a common unknown probability distribution ([17], [16],
[18]) given by
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F (x) = Pr{θij ≥ x}, iεV, jεUk, k = 1, ..., n (2)

The independence of the random variables θij is justified by the fact they
derive from the heterogeneity of the customer costs, and the customers are
independent each other; moreover, there is no reason to consider different
distributions for these random variables, which implies the identity of the
distribution.

Let xk
ij be a continuous decision variable corresponding to the fraction of

the demand of customers iεV to facility jεUk (0 ≤ xk
ij ≤ 1); fk

j the fixed cost
associated with opening facility jεUk; p the desired number of facilities to be
opened; yk

j a binary variable which takes value 1 if destination jεUk is open,
0 otherwise.

The SpMP − UCPD may be formulated as follows

min
∑
jεUk

∑
iεV

n∑
k=1

rk
ijx

k
ij +

n∑
k=1

∑
jεUk

fk
j yk

j (3)

subject to
n∑

k=1

∑
jεUk

xk
ij = 1, iεV (4)

n∑
k=1

∑
jεUk

yk
j = p (5)

∑
jεUk

yk
j ≤ 1, k = 1, ..., n (6)

∑
iεV

xk
ij ≤ |V | yk

j , jεUk, k = 1, ..., n (7)

xk
ij ≥ 0, iεV, jεUk, k = 1, ..., n (8)

yk
j ∈ {0, 1}, jεUk, k = 1, ..., n (9)

The objective function (3) expresses the minimization of the total cost;
constraints (4) ensure that the demand of each customer is satisfied; con-
straint (5) establishes that the number of facilities is p; constraints (6) guar-
antee that an optimal solution will contain no more than one facility per clus-
ter; constraints (7) establish that no customer can use a not opened facility;
constraints (8) provide lower bounds on the xk

ij variables (it is worth noting
that constraints (4) and (8) imply 0 ≤ xk

ij ≤ 1 (iεV, jεUk, k = 1, ..., n)).
Finally, (9) are the integrality constraints.

As stated in the introduction, SpMP−UCPD models several combinato-
rial optimization problems. In the following, we will give some more examples
of possible applications of SpMP − UCPD.

Let us consider a set of potential products to be brought out by a pro-
ducer, in order to maximize his profit. A situation that arises often in practice



Stochastic p-Median Problem 5

is when the products can be characterized by a market price level. In this
case, a typical marketing issue is to have products differentiated enough in
their price. This can be obtained clustering them according to their market
price and imposing to produce at most one product per cluster. The problem
of choosing p products, one for each cluster, such that the producer’s profit
is maximized can be modeled by (3)-(9), setting ck = −pk and θij = −ηij ,
where pk is the market price associated to cluster Uk, and ηij represents a
deviation from the common price pk.

A second application arises in the design of transportation systems. In
this case, the problem consists in delivering goods to customers, whose exact
location inside given clusters is unknown. Examples of this type of problem
are present, in particular, in the dispatching of cars in the automotive indus-
try [29] and in the location of intermediate depots in Multi-Echelon Vehicle
Routing Problems [13].

3 Solving the problem

Provided that, for any given solution yk
j , the optimal solution in the xk

ij

variables of problem (3)-(9) is unique, it is obvious that the optimal solution
xm

il , iεV of problem (3)-(9) becomes

xm
il =

{
1, if rm

il = minjεUk,k=1,...,n rk
ij

0, otherwise.
(10)

Let us first consider the probability distribution of the stochastic costs
rk
ij , iεV, jεUk, k = 1, ..., n

Pr
{
rk
ij ≥ x

}
= Pr {ck + θij ≥ x} = Pr {θij ≥ x− ck} . (11)

The minimum cost ri for a customer i is given by

ri = min
k=1,...,n

{
min
jεUk

{
rk
ij

}}
= min

k=1,...,n

{
min
jεUk

{ck + θij}
}

=

min
k=1,...,n

{
ck + min

jεUk

θij

}
(12)

Let us define
θ

k

i = min
jεUk

θij , iεV, k = 1, ..., n (13)

The unknown probability distribution of the extreme (in this case the
minimum) value θ

k

i of the set of random variables θij for any customer i is

Hk(x) = Pr
{

θ
k

i ≥ x
}

. (14)

For (13), eq. (12) becomes

ri = min
k=1,...,n

{
ck + θ

k

i

}
(15)
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and its probability distribution

G(x) = Pr {ri ≥ x} = Pr
{

min
k=1,...,n

{
ck + θ

k

i

}
≥ x

}
. (16)

As

min
k=1,...,n

{
ck + θ

k

i

}
≥ x ⇐⇒

{
ck + θ

k

i

}
≥ x,∀k = 1, ..., n (17)

and the random variables θ
k

i are independent, using (14) eq. (16) gives

G(x) = Pr
{

min
k=1,...,n

{
ck + θ

k

i

}
≥ x

}
=

n∏
k=1

Pr
{{

ck + θ
k

i

}
≥ x

}
=

n∏
k=1

Pr
{

θ
k

i ≥ x− ck

}
=

n∏
k=1

Hk(x− ck). (18)

In order to determine the unknown distributions Hk, k = 1, ..., n let us
consider that θ

k

i ≥ x ⇐⇒ θij ≥ x, ∀jεUk.
Using (2) one gets

Hk(x) = Pr
{

θ
k

i ≥ x
}

=
∏
jεUk

Pr {θij ≥ x} = [F (x)]Qk (19)

where Qk = |Uk| .
Substituting (19) into (18), one obtains

G(x) =
n∏

k=1

Hk(x− ck) =
n∏

k=1

[F (x− ck)]Qk (20)

which is the distribution of the minimum cost ri for a customer i as a function
of three terms:

– the number of products in each cluster k, Qk

– the deterministic cost, ck

– the distribution of the random variables θij , F (x).

Unfortunately, the distribution (20) can not be used as it is because it
implies the knowledge of the probability distribution F (x), which is still
unknown. In order to solve this problem, the method of the asymptotic ap-
proximations derived from the extreme value theory [12] will be used.
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4 The asymptotic approximation of the probability distribution of
the minimum cost

The method of the asymptotic approximations is based on the following
observation: if under mild assumptions on the probability distribution F (x)
of the random terms θij , the distribution of the stochastic variables rk

ij (and
then of their minimum ri) tends to a specific functional form as the system
becomes large (i.e. when |Uk|, k = 1, ..., n become large), then further specific
knowledge of the probability distribution F (x) is not needed.

The asymptotic theory of extreme values seems particularly tailored for
this kind of problem, as it deals with the asymptotic behavior of maxima
and minima of sequences of random variables. Because our problem actually
deals with the minimum of a sequence of random variables, some results from
that theory can then be used.

The only very mild assumption we take for the probability distribution
F (x) is that it is asymptotically exponential in its left tail, i.e. there is a
constant β > 0 such that

lim
y→−∞

1− F (x + y)
1− F (y)

= eβx, ∀xεIR (21)

Loosely speaking, this assumption states that F (x) acts as an exponential
function in its left tail. This property is widely used in the extreme value the-
ory and defines the so-called domain of attraction of the double exponential
distribution [12].

Moreover, many (actually, infinite) probability distributions show such
a behavior, among them the following widely used distributions: Gumbel,
Logistics, Gamma, and Generalized Exponential.

It will be proved that under assumption (21) F (x) tends to a specific
functional form as the number of potential facility locations in each cluster
becomes large.

Consider the following simple but very important remark. If an arbitrary
constant is added to the random variables θij (and then to their minima
θ

k

i , k = 1, ..., n), this leaves the solution of problem (3)-(9) unchanged.
As a specific choice, let us use the constant aQk

root of the equation

1− F (aQk
) = 1/Qk. (22)

Replacing θ
k

i with θ
k

i − aQk
in (18) one has from (20)

G(x | Qk) =
n∏

k=1

[F (x− ck + aQk
)]Qk . (23)

Let us assume that Qk, k = 1, ..., n are large enough to use limQk→∞G(x |
Qk) as an approximation of G(x).

In order to obtain an explicit form of the probability distribution G(x)
consider the following



8 R. Tadei, N. Ricciardi and G. Perboli

Theorem 1 Under assumption (21)

G(x) = lim
Qk→∞

G(x | Qk) = exp
(
−Aeβx

)
, (24)

where

A =
n∑

k=1

e−βck . (25)

Proof By (23) one has

G(x) = lim
Qk→∞

G(x | Qk) = lim
Qk→∞

n∏
k=1

[F (x− ck + aQk
)]Qk . (26)

As limQk→∞ ak = −∞, from assumption (21) one obtains

lim
Qk→∞

1− F (x− ck + aQk
)

1− F (aQk
)

= eβ(x−ck). (27)

By (22) and (27) one has

lim
Qk→∞

F (x− ck + aQk
) = lim

Qk→∞

(
1− eβ(x−ck)

Qk

)
(28)

and

lim
Qk→∞

[F (x− ck + aQk
)]Qk = lim

Qk→∞

(
1− eβ(x−ck)

Qk

)Qk

= exp
(
−eβ(x−ck)

)
.

(29)
Substituting (29) into (26) one gets

G(x) =
n∏

k=1

exp
(
−eβ(x−ck)

)
= exp

(
−Aeβx

)
. (30)

�

A few words of comment on theorem 1 are worthwhile.
The main assumption is that F (x) is an exponential function in its left

tail. The second important assumption, which can be considered true in many
applications of our concern, is that Qk, k = 1, ..., n are quite large, in order
to justify the asymptotic approximation for G(x).

The two above assumptions allow to calculate G(x) as the asymptotic
form of the probability distribution of the extreme value (the minimum cost
in our problem) of a large set of i.i.d. random variables, which is consistent
with the objective of using those facilities which minimize the expected total
cost.

It is interesting to observe that consequently G(x) becomes a Gumble
(or double exponential) distribution [14], which will imply for the allocation
variables xk

ij of our problem a multinomial Logit form, as it will be show in
Section 5.
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5 Finding the expected optimal value of the allocation variables

The expected value of the minimum cost ri for a customer i becomes

r̃i = IE (ri) =
∫ +∞

−∞
xdG(x) = −

∫ +∞

−∞
x exp

(
−Aeβx

)
Aeβxβdx. (31)

Substituting for t = Aeβx one gets

r̃i = −1/β

∫ +∞

0

log(t/A)e−tdt =

= −1/β

∫ +∞

0

e−t log tdt + 1/β log A

∫ +∞

0

e−tdt =

= γ/β + 1/β log A =
= 1/β(γ + log A) (32)

where γ = −
∫ +∞
0

e−t log t dt ' 0.5772 is the Euler constant.
By (32) and (25), the expected value of the minimum total cost R̃ becomes

R̃ =
∑
iεV

r̃i=
∑
iεV

1/β(γ + log A) =

= |V | 1/β(γ + log
n∑

k=1

e−βck). (33)

We are now interested in finding the expected value x̃k∗
ij of the optimal

solution xk∗
ij of the SpMP − UCPD (3)-(9).

The following theorem holds

Theorem 2 For any given solution yk
j of problem (3)-(9), the expected value

x̃k∗
ij of the optimal solution xk∗

ij is

x̃k∗
ij =

e−βck∑n
l=1,l/∃jεUl,yl

j=1 e−βcl
, iεV, k = 1, ..., n/∃jεUk, yk

j = 1. (34)

Proof From the Total Probability Theorem [5] and assumptions (21), one
obtains

x̃k∗
ij =

∫ +∞

−∞
Pr {x < ck ≤ x + dx}Pr {cs > x, ∀s 6= k} =

=
∫ +∞

−∞
βeβ(x−ck)exp(−eβxA)dx =

= e−βck

∫ +∞

0

e−Atdt =
e−βck

A
=

=
e−βck∑n
l=1 e−βcl
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where t = eβx.
�

Let us observe that the formulation of x̃k∗
ij in (34) represents a multinomial

Logit model. This model is widely used in choice theory and particularly
suitable to describe the dispersion of customer preferences (due in our case
to the cost stochasticity) among different alternatives (the facilities).

Moreover, it is interesting to note that in the literature [6] the multinomial
Logit model is derived by assuming for the probability distribution of the
random terms the following Gumbel (or double exponential) distribution

F (x) = exp
(
−eβx

)
. (35)

Here, vice versa, we have decided, as F (x) is not observable, not to hy-
pothesize any specific form for it, but only its asymptotic exponential be-
havior (see (21)), and assume that the number of alternatives in any cluster
is quite large, which is easy observable and often true. As a result we get
the distribution (24) for G(x), which is actually a Gumbel distribution, but
obtained a posteriori by theorem 1.

6 Finding the optimal solution of the location variables

Until now, we have assumed that the solution yk
j (i.e., the location variables)

of problem (3)-(9) is given. Now, we drop this assumption and look for such
a solution.

As (34) is still valid, problem (3)-(9) has to be solved in yk
j , only. It is easy

to see that, using (33), the following integer deterministic nonlinear problem
holds

min
{yk

j }
|V | 1/β(γ + log

n∑
k=1

yk
j e−βck) +

n∑
k=1

∑
jεUk

fk
j yk

j (36)

subject to

n∑
k=1

∑
jεUk

yk
j = p (37)

∑
jεUk

yk
j ≤ 1, k = 1, ..., n (38)

yk
j ∈ {0, 1}, jεUk, k = 1, ..., n. (39)

By solving problem (36)-(39), a p-median solution yk∗
j and the corre-

sponding expected value of the minimum total cost can be obtained.
It is easy to prove, e.g. by reduction from the Dominating Set problem,

that problem (36)-(39) is NP -complete. Because of that, for solving real-
life instances of this problem in a reasonable computational time, efficient
heuristics are required. A particular efficient and effective one, developed for
a similar problem, can be found in [28].
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7 Conclusions

In this paper the p-median problem where the costs for using the facilities
are stochastic with unknown probability distribution has been considered. It
has been shown that, under a very mild and reasonable assumption on the
shape of this unknown probability distribution, and assuming the number
of potential facility locations quite large, some useful results of the extreme
value theory become available.

In particular, by applying the method of the asymptotic approximations
the above probability distribution becomes a Gumbel (or double exponential)
distribution. This result is quite important because it allows us to derive
for the expected optimal value of the xk

ij variables (i.e. the variables which
allocate demand to supply) a multinomial Logit model. This model is widely
used in choice theory and particularly suitable to describe the dispersion
of customer preferences (due in our case to the cost stochasticity) among
different alternatives (the facilities).

In order to find the optimal value of the facility location variables an
integer deterministic nonlinear problem derived from the original stochastic
p-median problem has been introduced. This problem is NP-complete and for
solving real-life size instances in a reasonable computational time heuristic
algorithms available in the literature can be used.
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